Biodiversity Science ›› 2018, Vol. 26 ›› Issue (7): 760-765.doi: 10.17520/biods.2018078


• Review • Previous Article     Next Article

A horizon scan of the impacts of environmental change on wild bees in China

Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu*()   

  1. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
  • Received:2018-03-12 Accepted:2018-06-10 Online:2018-09-11
  • Zhu Chaodong
  • About author:# Co-first authors

Wild pollinator bees play an important role in ecosystem function and food security. In recent years, natural forests have been lost, while afforestation programs are primarily monoculture plantation, whether commercial or restorative. The net effect for bees has been fragmentation and sometime wholesale loss of habitats. For instance, diversity of wild bees in pure forest, Camellia oleifera and rubber (Hevea brasiliensis) plantation was found to be unexpectedly low. The rampant use of neonicotinoid pesticides and herbicide is known to negatively impact development and behavior of bees. Urbanization has dramatically impacted bee communities, with significant changes in species richness between suburban and central business areas. These are likely tied to the effect of effluent, exhaust gas and dust on foraging, growth and development. Climate change from greenhouse gas emissions can disrupt the mutualistic relationship between pollinating bees and plants via rapid phenological shifts. The above environmental changes occurring in China are likely cause wide declines in diversity and decreases in populations. Although China has rich natural heritage for bees, there is a lack of long term monitoring programs for species of pollinator bees and a dearth of data on distributions of bee species. As a result, the drivers of bee community composition and population decline are poorly understood. We emphasize the need to prioritize surveys of pollinating bees, continue ongoing monitoring programs and build wider research networks for the study of wild pollinator bees. These steps will ensure that sufficient data can accumulate for developing a prediction and risk assessment framework to help manage the declines in pollinating bee populations and mitigate the attendant economic and non-economic impacts.

Key words: habitat, urbanization, climate change, environmental pollution, pollinating bees

[22] Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu J, Xu W, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang X, Yang G, Gong S, Wu B, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science, 352, 1455-1459.
[23] Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
[24] Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature, 540, 220-229.
[25] Ren G, Young SS, Wang L, Wang W, Long Y, Wu R, Li J, Zhu J, Yu DW (2015) Effectiveness of China’s National Forest Protection Program and nature reserves. Conservation Biology, 29, 1368-1377.
[26] Robbirt KM, Roberts DL, Hutchings MJ, Davy AJ (2014) Potential disruption of pollination in a sexually deceptive orchid by climatic change. Current Biology, 24, 2845-2849.
[27] Rodríguez A, Kouki J (2017) Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecological Applications, 27, 589-602.
[28] Sing KW, Wang WZ, Wan T, Lee PS, Li ZX, Chen X, Wang YY, Wilson JJ (2016) Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities. Genome, 59, 827-839.
[29] Tan K, Chen WW, Dong SH, Liu X, Wang Y, Nieh JC (2014) Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS ONE, 9, e102725.
[30] Tan K, Chen WW, Dong SH, Liu X, Wang Y, Nieh JC (2015) A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Scientific Reports, 5, 10989.
[31] van der Valk H, Koomen I, Nocelli RCF, Ribeiro MdeF, Freitas BM, Carvallho SM, Kasina JM, Martins DJ, Maina G, Ngaruiya, P, Gikungu MNM, Odhiambo C, Kinuthia W, Kipyab P, Blacquiere T, van der Steen J, Roessink I, Wassenberg J, Gemmill-Herren B (2013) Aspects Determining the Risk of Pesticides to Wild Bees: Risk Profiles for Focal Crops on Three Continents. Food and Agriculture Organization of the United Nations, Rome.
[32] Williams NM, Winfree R (2013) Local habitat characteristics but not landscape urbanization drive pollinator visitation and native plant pollination in forest remnants. Biological Conservation, 160, 10-18.
[33] Xia JP, Chen JY, Deng XZ (2010) Discussion on current situation and importance of pollination insects of Camellia oleifera Abel. in the future. Hubei Forestry Science and Technology, (4), 61-63. (in Chinese with English abstract)
[夏剑萍, 陈京元, 邓先珍 (2010) 油茶传粉昆虫研究现状与今后研究重点探讨. 湖北林业科技, (4), 61-63.]
[34] Xiang J, Tang Y (2005) Intensive agriculture and its environmental consequences. World SCI-TECH R&D, 27(6), 81-87. (in Chinese with English abstract)
[向晶, 唐亚 (2005) 集约化农业及其环境效应. 世界科技研究与发展, 27(6), 81-87. ]
[35] Xu HL, Yang JW, Sun JR (2009) Current status on the study of wild bee-pollinators and conservation strategies in China. Acta Phytophylacica Sinica, 36, 371-376. (in Chinese with English abstract)
[徐环李, 杨俊伟, 孙洁茹 (2009) 我国野生传粉蜂的研究现状与保护策略. 植物保护学报, 36, 371-376.]
[36] Yang LL, Wu YR (1998) Species diversity of bees in different habitats in Xishuangbanna tropical forest region. Chinese Biodiversity, 6, 197-204. (in Chinese with English abstract)
[杨龙龙, 吴燕如 (1998) 西双版纳热带森林地区不同生境蜜蜂的物种多样性研究. 生物多样性, 6, 197-204.]
[37] Yu LS, Ji T, Zhang ZY, Xie WF, Huang SS (2009) Impacts of ecological environment on bees and safety processing of bee productions. Apiculture of China, 60(10), 45-47. (in Chinese)
[1] Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980.
[2] Baldock KC, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282, 20142849.
[37] [于林生, 吉挺, 张中印, 谢文飞, 黄思思 (2009) 生态环境对蜜蜂与蜂产品安全生产的影响. 中国蜂业, 60(10), 45-47.]
[38] Zhang JQ, Xue DY (2013) The impacts of rubber plantation on the eco-environment in Xishuangbanna of Yunnan Province. China Population, Resources and Environment, 23, 304-307. (in Chinese with English abstract)
[3] Berry JB, Darly GC, Shih TM, Oviedo F, Durán (2007) The effects of forest fragmentation on bee communities in tropical countryside. Journal of Applied Ecology, 45, 773-783.
[4] Brown PT, Caldeira K (2017) Greater future global warming inferred from Earth’s recent energy budget. Nature, 552, 45-50.
[5] Burkle LA, Marlin JC. Knight TM (2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339, 1611-1615.
[6] Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences, USA, 110, 18466-18471.
[38] [张佳琦, 薛达元 (2013) 西双版纳橡胶林种植的生态环境影响研究. 中国人口·资源与环境, 23, 304-307.]
[39] Zhou HP, Yan XS, Zhang HD, Zhang LQ, Wei LP (2012) Species diversity of understorey vegetation in rubber plantation in Xishuangbanna. Chinese Journal of Tropical Crops, 33, 1444-1449. (in Chinese with English abstract)
[7] Dorchin A, Filin I, Lzhaki I, Dafni A (2013) Movement of patters of solitary bees in a threatened fragmented habitat. Apidologie, 44, 90-99.
[8] Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ (2015) Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 17, 969-983.
[39] [周会平, 岩香甩, 张海东, 张丽谦, 魏丽萍 (2012) 西双版纳橡胶林下植被多样性调查研究. 热带作物学报, 33, 1444-1449.]
[40] Zhou SF, Han CY (2011) Research progress and conservation strategies of insect pollinators of Camellia oleifera Abel. Journal of Henan Agricultural Sciences, 40(9), 8-10. (in Chinese with English abstract)
[9] Fuentes JD, Chamecki M, Roulston T, Chen BC, Pratt KR (2016) Air pollutants degrade floral scents and increase insect foraging times. Atmospheric Environment, 141, 361-374.
[10] Hanula JL, Horn S, O’Brien JJ (2015) Have changing forests conditions contributed to pollinator decline in the southeastern United States? Forest Ecology and Management, 348, 142-152.
[40] [周士峰, 韩春叶 (2011) 油茶传粉昆虫研究现状和保护策略. 河南农业科学, 40(9), 8-10.]
[41] Zhou Z, Hu SY, Tan YZ (2006) Ecological environment impact from large-scale rubber planting in Xishuangbanna. Yunnan Environmental Science, 25(Suppl.), 67-69. (in Chinese with English abstract)
[11] Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
[12] Hua FY, Wang XY, Zheng XL, Fisher B, Wang L, Zhu J, Tang Y, Yu DW, Wilcove DS (2016) Opportunities for biodiversity gains under the world’s largest reforestation programme. Nature Communications, 7, 12717.
[13] Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science, 349, 177-180.
[14] Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein AM, Kremen C, Gonigle LKM, Rader R, Ricketts TH, Williams NM, Adamson NL, Ascher JS, Báldi A, Batáry P, Benjamin F, Biesmeijer JC, Blitzer EJ, Bommarco R, Brand MR, Bretagnolle V, Button L, Cariveau DP, Chifflet R, Colville JF, Danforth BN, Elle E, Garratt MPD, Herzog F, Holzschuh A, Howlett BG, Jauker F, Jha S, Knop E, Krewenka KM, Féon VL, Mandelik Y, May EA, Park MG, Pisanty G, Reemer M, Riedinger V, Rollin O, Rundlöf M, Sardiñas HS, Scheper J, Sciligo AR, Smith HG, Steffan-Dewenter I, Thorp R, Tscharntke T, Verhulst J, Viana BF, Vaissière BE, Veldtman R, Westphal C, Potts SG (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 6, 7414.
[15] Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature, 548, 206-209.
[16] Liu XW, Chesters D, Dai QY, Niu ZQ, Beckschäfer P, Martin K, Zhu CD (2017) Integrative profiling of bee communities from habitats of tropical southern Yunnan (China). Scientific Reports, 7, 5336.
[41] [周宗, 胡绍云, 谭应中 (2006) 西双版纳大面积橡胶种植与生态环境影响. 云南环境科学, 25(增刊), 67-69. ]
[42] Zhuo D (2017) Environmental Risk Management for China’s Intensive Agricultural Land Use. PhD dissertation, China Agricultural University, Beijing. (in Chinese with English abstract)
[17] Miller-Struttmann NE, Geib JC, Franklin JD, Kevan PG, Holdo RM, Ebert-May D, Lynn AM, Kettenbach JA, Hedrick E, Galen C (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Science, 349, 1541-1544.
[18] Moron D, Greześ IM, Skórka P, Szentgyörgyi H, Laskowski R, Potts SG, Woyciechowski M (2012) Abundance and diversity of wild bees along gradients of metal pollution. Journal of Applied Ecology, 49, 118-125.
[42] [卓东 (2017) 高集约化农业土地利用的环境风险管理体系研究. 博士学位论文, 中国农业大学, 北京.]
[43] Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW (2016) Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proceeding of the Royal Society B: Biological Sciences, 283, 20160414.
[19] Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agronomy for Sustainable Development, 33, 257-274.
[20] Ollerton J (2017) Pollinator diversity: Distribution, ecological, function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376.
[21] Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
[1] Chen Xing, Zhao Lianjun, Hu Xixi, Luo Chunping, Liang Chunping, Jiang Shiwei, Liang Lei, Zheng Weichao, Guan Tianpei. Impact of livestock terrain utilization patterns on wildlife: A case study of Wanglang National Nature Reserve [J]. Biodiv Sci, 2019, 27(6): 630-637.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[4] Chen Qiangqiang, Li Meiling, Wang Xu, Mueen Qamer Faisal, Wang Peng, Yang Jianwei, Wang Muyang, Yang Weikang. Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China [J]. Biodiv Sci, 2019, 27(2): 186-199.
[5] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[6] NING Yao, LEI Jin-Rui, SONG Xi-Qiang, HAN Shu-Mei, ZHONG Yun-Fang. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant [J]. Chin J Plan Ecolo, 2018, 42(9): 946-954.
[7] Chenchen Ding,Yiming Hu,Chunwang Li,Zhigang Jiang. Distribution and habitat suitability assessment of the gaur Bos gaurus in China [J]. Biodiv Sci, 2018, 26(9): 951-961.
[8] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[9] Qian Lei, Jinya Li, Keming Ma. Applications of remote sensing technology in avian ecology [J]. Biodiv Sci, 2018, 26(8): 862-877.
[10] Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677.
[11] Yu Zhang, Gang Feng. Distribution pattern and mechanism of insect species diversity in Inner Mongolia [J]. Biodiv Sci, 2018, 26(7): 701-706.
[12] MENG Ling-Jun, YAO Jie, QIN Jiang-Huan, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Drivers of composition and density pattern of tree seedlings in a secondary mixed conifer and broad-leaved forest, Jiaohe, Jilin, China [J]. Chin J Plan Ecolo, 2018, 42(6): 653-662.
[13] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[14] SUN Xiao-Wei,YANG Qing-Song,LIU He-Ming,WANG Xi-Hua. Classification of plant associations based on a 20 hm2 dynamics plot of evergreen broad- leaved forest in Mt. Tiantong, Zhejiang, China [J]. Chin J Plan Ecolo, 2018, 42(5): 550-561.
[15] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
Full text



[1] LI Bin, GU Wan-Chun, ZHOU Shi-Liang. Conservation genetics of Pinus bungeana .Ⅰ.Gene conservation analysis[J]. Biodiv Sci, 2003, 11(1): 28 -36 .
[2] Huang Jian. [J]. Chin J Plan Ecolo, 1992, 16(3): 292 .
[3] TAN Yi-Fang, ZHANG Qi-Fa. Correlation of Simple Sequence Repeat (SSR) Variants in the Leader Sequence of the waxy Gene with Amylose Content of the Grain in Rice[J]. J Integr Plant Biol, 2001, 43(2): 146 -150 .
[4] Chang-Qing Yang, Xin Fang, Xiu-Ming Wu, Ying-Bo Mao, Ling-Jian Wang, and Xiao-Ya Chen. Transcriptional Regulation of Plant Secondary Metabolism[J]. J Integr Plant Biol, 2012, 54(10): 703 -712 .
[5] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[6] . All Papers in This Issue[J]. Biodiv Sci, 2016, 24(2): 0 .
[7] TIAN Han-Qin, WAN Shi-Qiang, MA Ke-Ping. [J]. Chin J Plan Ecolo, 2007, 31(2): 173 -174 .
[8] Ruili Zhang, Yin Jia, Qixiang Zhang. Phenotypic variation of natural populations of Primula denticulata ssp. sinodenticulata[J]. Biodiv Sci, 2008, 16(4): 362 -368 .
[9] Dong-Yao Gao, Zhao-Shi Xu, Yi He, Yong-Wei Sun, You-Zhi Ma, and Lan-Qin Xia. Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting[J]. J Integr Plant Biol, 2014, 56(5): 480 -491 .
[10] GAO Lian-Ming, LI De-Zhu, ZHANG Chang-Qin. Phylogenetic relationships of Rhododendron section Azaleastrum(Ericaceae) based on ITS sequences[J]. J Syst Evol, 2003, 41(2): 173 -179 .