Biodiversity Science ›› 2018, Vol. 26 ›› Issue (5): 476-485.doi: 10.17520/biods.2018036

• Reviews • Previous Article     Next Article

Biological characteristics, threat factors and conservation strategies for the giant honey bee Apis dorsata

Pei Yang1, Yanqiong Peng1, *(), Ronghua Zhao2, Darong Yang1   

  1. 1 Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303
    2 Yunnan University of Traditional Chinese Medicine, Kunming 650500
  • Received:2018-02-05 Accepted:2018-03-28 Online:2018-09-11
  • Peng Yanqiong E-mail:pengyq@xtbg.ac.cn
  • About author:

    # Co-first authors

Insect pollinators play a vital role in plant sexual reproduction. Pollinators facilitate cross-pollination that in turn promotes genetic diversity, mediates plant speciation, and contributes to ecosystem stability. However, the abundance, diversity and health of wild pollinators are threatened by human activities such as anthropogenic climate impacts, habitat destruction and environmental pollutants, and the impact of these human activities on ecosystems is likely to increase. Despite recognizing the importance of wild pollinators and the implementation of targeted conservation programs, the contemporary threats of wild insect pollinators remain poorly understood. For the giant honey bee (Apis dorsata), an important wild pollinator and honey producer in tropical rainforests and agricultural areas across Asia, here we describe nest characteristics, colony migration and pollination role and review threats to their conservation. We found that A. dorsata nests featured a single honeycomb hanging from the branches of large trees. The bees undertook long distance migrations to locate seasonally ephemeral forage sources but regularly returned to previous nesting sites. We identified several anthropogenic activities that posed significant threats to A. dorsata conservation: harvesting entire colonies, deforestation, pesticide and herbicide utilization, parastioids, mites, pathogens and climate change. Based on our study, we recommend several conservation initiatives to promote wild A. dorsata populations, which include artificial domestication, developing ecological agriculture, establishing of ecological corridors, inspection and quarantine controls on domesticated colonies, and sustainable utilization of the floral resources used by A. dorsata. We hope that this review will stimulate future research on giant honey bees whilst playing a significant role in their conservation and sustainable utilization.

Key words: Apis dorsata, wild insect pollinators, pollination services, threat factors, conservation

Fig. 1

The geographical distribution of Apis dorsata. The black dots show the distribution sites in references."

Fig. 2

Colony sites of Apis dorsata. A-B, Separate colonies aggregated on the branches of Bombax ceiba (A) and cliff (B); C, The colony under the eave; D, Multiple-layer curtain formed by A. dorsata workers."

Fig. 3

Apis dorsata visiting flowers of four tropical plants. A, Dombeya acutangula; B, Amomum villosum; C, Musa ornata; D, Homonoia riparia."

1 Alexandra-Maria K, Bernard EV, James HC, Ingolf S-D, Saul AC, Claire K, Teja T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, 274, 303-313.
2 Ali M, Saeed S, Sajjad A, Bashir MA (2014) Exploring the best native pollinators for pumpkin (Cucurbita pepo) production in Punjab, Pakistan. Pakistan Journal of Zoology, 46, 531-539.
3 Boreux V, Krishnan S, Cheppudira KG, Ghazoul J (2013) Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. Agriculture, Ecosystems & Environment, 172, 42-48.
4 Breeze TD, Vaissière BE, Bommarco R, Petanidou T, Seraphides N, Kozák L, Scheper J, Biesmeijer JC, Kleijn D, Gyldenkærne S (2014) Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS ONE, 9, e82996.
5 Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339, 1611-1615.
6 Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences, USA, 108, 662-667.
7 Cao LF, Hu FL (2012) Biological characters of Apis dorsata from China. Journal of Bee, (4), 1-2. (in Chinese)
[曹联飞, 胡福良 (2012) 中国大蜜蜂生物学特性研究初报. 蜜蜂杂志, (4), 1-2.]
8 Chantawannakul P, de Guzman LI, Li J, Williams GR (2016) Parasites, pathogens, and pests of honeybees in Asia. Apidologie, 47, 301-324.
9 Colla SR (2016) Status, threats and conservation recommendations for wild bumble bees (Bombus spp.) in Ontario, Canada: A review for policymakers and practitioners. Natural Areas Journal, 36, 412-426.
10 Crane E, van Luyen V, Mulder V, Ta TC (1993) Traditional management system for Apis dorsata in submerged forests in southern Vietnam and central Kalimantan. Bee World, 74, 27-40.
11 Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA, 105, 6668-6672.
12 Dorjay N, Abrol DP, Shankar U (2017) Insect visitors on cucumber and bittergourd flowers and impact on quantity of crop production by different pollination treatment. Journal of Apiculture, 32, 77-88.
13 Dyer FC, Seeley T (1994) Colony migration in the tropical honey bee Apis dorsata F. (Hymenoptera: Apidae). Insectes Sociaux, 41, 129-140.
14 Dyer FC (1985) Nocturnal orientation by the Asian honey bee, Apis dorsata. Animal Behaviour, 33, 769-774.
15 Ellis J, Hepburn H (2006) An ecological digest of the small hive beetle (Aethina tumida), a symbiont in honey bee colonies (Apis mellifera). Insectes Sociaux, 53, 8-19.
16 Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 86, 810-821.
17 Ghazoul J (2015) Qualifying pollinator decline evidence. Science, 348, 981-982.
18 Hepburn H, Radloff SE (2011) Biogeography. In: Honeybees of Asia (eds Hepburn R, Radloff S), pp. 51-67. Springer, Heidelberg.
19 Itioka T, Inoue T, Kaliang H, Kato M, Nagamitsu T, Momose K, Sakai S, Yumoto T, Mohamad SU, Hamid AA (2001) Six-year population fluctuation of the giant honey bee Apis dorsata (Hymenoptera: Apidae) in a tropical lowland dipterocarp forest in Sarawak. Annals of the Entomological Society of America, 94, 545-549.
20 Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL (2015) Climate change impacts on bumblebees converge across continents. Science, 349, 177-180.
21 Kevan PG, Viana BF (2003) The global decline of pollination services. Biodiversity, 4, 3-8.
22 Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Steffan-Dewenter I, Vazquez DP (2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10, 299-314.
23 Lahjie AM, Seibert B (1990) Honey gathering by people in the interior of East Kalimantan. Bee World, 71, 153-157.
24 Laigo FM, Morse RA (1968) The mite Tropilaelaps clareae in Apis dorsata colonies in the Philippines. Bee World, 49, 116-118.
25 Lebuhn G, Droege S, Connor EF, Gemmill-Herren B, Potts SG, Minckley RL, Griswold T, Jean R, Kula E, Roubik DW (2013) Detecting insect pollinator declines on regional and global scales. Conservation Biology, 27, 113-120.
26 Makinson JC, Schaerf TM, Rattanawannee A, Oldroyd BP, Beekman M (2014) Consensus building in giant Asian honeybee, Apis dorsata, swarms on the move. Animal Behaviour, 93, 191-199.
27 Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. American Journal of Botany, 85, 1477-1501.
28 Moreyra S, D’Adamo P, Lozada M (2017) Long-term spatial memory in Vespula germanica social wasps: The influence of past experience on foraging behavior. Insect Science, 24, 853-858.
29 Nagir MT, Atmowidi T, Kahono S (2016) The distribution and nest-site preference of Apis dorsata Binghami at Maros forest, South Sulawesi, Indonesia. Journal of Insect Biodiversity, 4, 1-14.
30 Nath S, Roy P, Leo R, John M (1994) Honeyhunters and Beekeepers of Tamil Nadu, A Survey Document. Coonoor Printing Press, Tamil Nadu.
31 Neokosmidis L, Tscheulin T, Devalez J, Petanidou T (2018) Landscape spatial configuration is a key driver of wild bee demographics. Insect Science, 25, 172-182.
32 Neumann P, Koeniger N, Koeniger G, Tingek S, Kryger P, Moritz RF (2000) Home-site fidelity in migratory honeybees. Nature, 406, 474-475.
33 Noreen A, Niissalo M, Lum S, Webb E (2016) Persistence of long-distance, insect-mediated pollen movement for a tropical canopy tree species in remnant forest patches in an urban landscape. Heredity, 117, 472-480.
34 Oldroyd B, Osborne K, Mardan M (2000) Colony relatedness in aggregations of Apis dorsata Fabricius (Hymenoptera, Apidae). Insectes Sociaux, 47, 94-95.
35 Oldroyd BP, Nanork P (2009) Conservation of Asian honey bees. Apidologie, 40, 296-312.
36 Ollerton J (2017) Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376.
37 Ollerton J, Erenler H, Edwards M, Crockett R (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346, 1360-1362.
38 Paar J, Oldroyd B, Huettinger E, Kastberger G (2004) Genetic structure of an Apis dorsata population: The significance of migration and colony aggregation. Journal of Heredity, 95, 119-126.
39 Paar J, Oldroyd B, Kastberger G (2000) Giant honeybees return to their nest sites. Nature, 406, 475.
40 Pauw A (2007) Collapse of a pollination web in small conservation areas. Ecology, 88, 1759-1769.
41 Pauw A, Stanway R (2015) Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere. Journal of Biogeography, 42, 652-661.
42 Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
43 Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: How do floral communities structure pollinator communities? Ecology, 84, 2628-2642.
44 Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ, Aizen MA, Cunningham SA, Eardley C, Freitas BM, Gallai N, Kevan PF, Kovács-Hostyánszki A, Kwapong PK, Li J, Li X, Martins DJ, Nates-Parra G, Pettis JS, Rader R, Viana BF (2016) IPBES: Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn.
45 Qian ZN, Meng QW, Ren MX (2016) Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers. Biodiversity Science, 24, 1364-1372. (in Chinese with English abstract)
[钱贞娜, 孟千万, 任明迅 (2016) 风筝果镜像花的雌雄异位变化及传粉生态型的形成. 生物多样性, 24, 1364-1372.]
46 Raghunandan K, Basavarajappa S (2014) Floral hosts and pollen calendar of Asian giant honeybee, Apis dorsata Fabricius at Southern Karnataka, India. Journal of Ecology and the Natural Environment, 6, 321-330.
47 Rattanawannee A, Chanchao C (2011) Bee diversity in Thailand and the applications of bee products. In: Changing Diversity in Changing Environment (eds Grillo O, Venora G), pp. 152-154. InTech, Rijeka.
48 Rattanawannee A, Chanchao C, Lim J, Wongsiri S, Oldroyd BP (2013) Genetic structure of a giant honey bee (Apis dorsata) population in northern Thailand: Implications for conservation. Insect Conservation and Diversity, 6, 38-44.
49 Ren MX, Zhang DY (2004) Herkogamy. In: Plant Life-History Evolution and Reproductive Ecology (ed. Zhang DY), pp. 302-321. Science Press, Beijing. (in Chinese)
[任明迅, 张大勇 (2004) 雌雄异位. 见: 植物生活史进化与繁殖生态学 (张大勇主编), 302-321页. 科学出版社, 北京.]
50 Ren MX, Zhong YF, Song XQ (2013) Mirror-image flowers without buzz pollination in the Asian endemic Hiptage benghalensis (Malpighiaceae). Botanical Journal of the Linnean Society, 173, 764-774.
51 Robinson WS (2012) Migrating giant honey bees (Apis dorsata) congregate annually at stopover site in Thailand. PLoS ONE, 7, e44976.
52 Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: Life history, implications, and impact. Annual Review of Entomology, 45, 519-548.
53 Shankar U, Abrol D, Chatterjee D, Rizvi S (2017) Diversity of native bees on Parkinsonia aculeata L. in Jammu region of North-West Himalaya. Tropical Ecology, 58, 211-215.
54 Sihag RC (2014) Phenology of migration and decline in colony numbers and crop hosts of giant honeybee (Apis dorsata F.) in semiarid environment of Northwest India. Journal of Insects, 2014, 1-9.
55 Sihag RC (2017) Nesting behavior and nest site preferences of the giant honey bee (Apis dorsata F.) in the semi-arid environment of north west India. Journal of Apicultural Research, 56, 452-466.
56 Sodhi NS, Koh LP, Brook BW, Ng PK (2004) Southeast Asian biodiversity: An impending disaster. Trends in Ecology & Evolution, 19, 654-660.
57 Soman A, Kshirsagar K (1991) Preliminary survey on the rockbee (Apis dorsata F.) and some observations on the traditional methods of honey hunting. Indian Bee Journal, 53, 17-22.
58 Somanathan H, Warrant EJ, Borges RM, Wallén R, Kelber A (2009) Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. Journal of Experimental Biology, 212, 2448-2453.
59 Srivastava K, Sharma D, Pandey S, Anal A, Nath V (2017) Dynamics of climate and pollinator species influencing litchi (Litchi chinensis) in India. Indian Journal of Agricultural Sciences, 87, 266-269.
60 Starr CK, Schmidt PJ, Schmidt JO (1987) Nest-site preferences of the giant honey bee, Apis dorsata (Hymenoptera: Apidae), in Borneo. Pan-Pacific Entomologist, 63, 37-42.
61 Tan NQ, Chinh PH, Thai PH, Mulder V (1997) Rafter beekeeping with Apis dorsata: Some factors affecting the occupation of rafters by bees. Journal of Apicultural Research, 36, 49-54.
62 Tan NQ, Ha DT (2002) Socio-economic factors in traditional rafter beekeeping with Apis dorsata in Vietnam. Bee World, 83, 165-170.
63 Wardhaugh CW (2015) How many species of arthropods visit flowers? Arthropod-Plant Interactions, 9, 547-565.
64 Warrit N, Lekprayoon C (2011) Asian honeybee mites. In: Honeybees of Asia (eds Hepburn R, Radloff S), pp. 347-368. Springer, Heidelberg.
65 Woyke J (1984) Survival and prophylactic control of Tropilaelaps clareae infesting Apis mellifera colonies in Afghanistan. Apidologie, 15, 421-434.
66 Woyke J, Wilde J, Wilde M (2012) Swarming and migration of Apis dorsata and Apis laboriosa honey bees in India, Nepal and Bhutan. Journal of Apicultural Science, 56, 81-91.
67 Wu YR (2000) Fauna Sinica (Tomus 20), Insecta, Melittidae, Apidae. Science Press, Beijing. (in Chinese)
[吴燕如 (2000) 中国动物志 (第20卷) 昆虫纲•准蜂科•蜜蜂科. 科学出版社, 北京.]
68 Zhang ZS (1974) Primary research on Apis dorsata Fabricius in Yunnan. Entomological Knowledge, (3), 42-44. (in Chinese)
[张正松 (1974) 云南排蜂的初步研究. 昆虫知识, (3), 42-44.]
[1] Jiang Zhigang. China’s key protected species lists, their criteria and management [J]. Biodiv Sci, 2019, 27(6): 698-703.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] Mo Zhangqin. Re-legalizing China’s ecological conservation redline: The position, dilemma and path [J]. Biodiv Sci, 2019, 27(3): 347-352.
[4] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[5] Lü Zhongmei. Systematic legislation for nature conservation with national parks as the main body [J]. Biodiv Sci, 2019, 27(2): 128-136.
[6] Xian Yang, Dong Xin, Xie Xiaoman, Wu Dan, Han Biao, Wang Yan. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chin Bull Bot, 2019, 54(1): 64-71.
[7] Wang Yufei,Su Hongqiao,Zhao Xinrui,Su Yang,Luo Min. Conservation easement-inspired adaptive management methods for natural protected areas: A case study on Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 88-96.
[8] Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43(1): 1-15.
[9] Zhiyao Tang, Minwei Jiang, Jian Zhang, Xinyue Zhang. Applications of satellite and air-borne remote sensing in biodiversity research and conservation [J]. Biodiv Sci, 2018, 26(8): 807-818.
[10] Xuehua Liu, Pengfeng Wu, Xiangbo He, Xiangyu Zhao. Application and data mining of infra-red camera in the monitoring of species [J]. Biodiv Sci, 2018, 26(8): 850-861.
[11] Wang Shitong, Wu Hao, Liu Mengting, Zhang Jiaxin, Liu Jianming, Meng Hongjie, Xu Yaozhan, Qiao Xiujuan, Wei Xinzeng, Lu Zhijun, Jiang Mingxi. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China [J]. Biodiv Sci, 2018, 26(7): 749-759.
[12] Jiaxing Huang,Jiandong An. Species diversity, pollination application and strategy for conservation of the bumblebees of China [J]. Biodiv Sci, 2018, 26(5): 486-497.
[13] Xiangyu Jia,Bin Bai,Jieqing Zhang,Yi Huang. The effects of IPBES deliverables on global biodiversity conservation strategy—an analysis based on the U. S. pollinator protection policy [J]. Biodiv Sci, 2018, 26(5): 527-534.
[14] Yao Zhao,Gengyun Li,Ji Yang. Conservation and utilization of wild relatives of cultivated plants [J]. Biodiv Sci, 2018, 26(4): 414-426.
[15] Ruiling Song,Jinxian Yao,Kaiyue Wu,Xiaochuan Zhang,Zhi Lü,Zhengguang Zhu,Lijie Yin. Evaluation of the effectiveness of marine protected areas: Methodologies and progress [J]. Biodiv Sci, 2018, 26(3): 286-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Fu-Zhong, YANG Wan-Qin, ZHANG Jian, ZHOU Li-Qiang. Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii[J]. Chin J Plan Ecolo, 2010, 34(10): 1220 -1226 .
[2] Zhigang Jiang,Yong Ma,Yi Wu,Yingxiang Wang,Zuojian Feng,Kaiya Zhou,Shaoying Liu,Zhenhua Luo,Chunwang Li. China’s mammalian diversity[J]. Biodiv Sci, 2015, 23(3): 351 -364 .
[3] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .
[4] WANG Guan-Lin, YANG Huai-Yi, XIA Ran, FANG Hong-Jun, JING Shi-Xi. Cloning and Sequencing the Full-length cDNA of Annexin from Strawberry Fruit[J]. J Integr Plant Biol, 2001, 43(8): 874 -876 .
[5] . [J]. Chin J Plan Ecolo, 1963, (2): 141 .
[6] ZHAN Zha_Jun, SUN Han_Dong, WU Hou_Ming and YUE Jian_Min. Chemical Components from the Fungus Englero myces goetzei[J]. J Integr Plant Biol, 2003, 45(2): 248 -252 .
[7] You Wen-hui, Song Yong-chang. A Study on Energy in Vascular Aquatic Macrophyte Communities in Dianshan Lake[J]. Chin J Plan Ecolo, 1995, 19(3): 208 -216 .
[8] YUAN Zheng-Qiang, ZHAO Cun-You, ZHOU Yan, TIAN Ying-Chuan. Aphid-resistant Transgenic Tobacco Plants Expressing Modified gna Gene[J]. J Integr Plant Biol, 2001, 43(6): 592 -597 .
[9] . [J]. Chin J Plan Ecolo, 2015, 39(11): 1123 .
[10] WANG Hong-Xing, CHEN Xin, TANG Jian-Jun, SHIMIZU Katsuyoshi. Influence of released transgenic pest and disease resistant crops on plant associated microorganisms in soil[J]. Biodiv Sci, 2002, 10(2): 232 -237 .