Biodiv Sci ›› 2018, Vol. 26 ›› Issue (6): 535-544. DOI: 10.17520/biods.2018056
• Original Papers: Plant Diversity • Next Articles
Qinhong Ma1,2,3, Yanpeng Li1,2,3, Juyu Lian1,2, Wanhui Ye1,2,*()
Received:
2018-02-12
Accepted:
2018-04-02
Online:
2018-06-20
Published:
2018-09-11
Contact:
Ye Wanhui
About author:
# Co-first authors
Qinhong Ma, Yanpeng Li, Juyu Lian, Wanhui Ye. Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiv Sci, 2018, 26(6): 535-544.
功能性状 Functional trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
比叶面积 Specific leaf area | 0.582 | -0.062 | 0.088 | 0.237 |
叶干物质含量 Leaf dry matter content | -0.367 | 0.489 | -0.059 | -0.178 |
叶面积 Leaf area | 0.289 | -0.378 | -0.558 | -0.337 |
叶片厚度 Leaf thickness | -0.366 | -0.512 | -0.273 | -0.282 |
叶绿素含量 Chlorophyll concentration | -0.339 | -0.324 | -0.177 | 0.816 |
木材密度 Wood density | -0.422 | -0.201 | 0.367 | -0.196 |
最大胸径 Maximum diameter at breast height | -0.126 | 0.455 | -0.66 | 0.121 |
累计解释量 Cumulative interpretation (%) | 33.2 | 56.6 | 71.7 | 82.1 |
Table 1 Factor loadings of the principal components of the PCA on functional traits
功能性状 Functional trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
比叶面积 Specific leaf area | 0.582 | -0.062 | 0.088 | 0.237 |
叶干物质含量 Leaf dry matter content | -0.367 | 0.489 | -0.059 | -0.178 |
叶面积 Leaf area | 0.289 | -0.378 | -0.558 | -0.337 |
叶片厚度 Leaf thickness | -0.366 | -0.512 | -0.273 | -0.282 |
叶绿素含量 Chlorophyll concentration | -0.339 | -0.324 | -0.177 | 0.816 |
木材密度 Wood density | -0.422 | -0.201 | 0.367 | -0.196 |
最大胸径 Maximum diameter at breast height | -0.126 | 0.455 | -0.66 | 0.121 |
累计解释量 Cumulative interpretation (%) | 33.2 | 56.6 | 71.7 | 82.1 |
模型 Model | 合计 Total | 绝对差异 Absolute difference | 等级差异 Hierarchical difference | |
---|---|---|---|---|
基本模型 Basic model | 38 | NA | NA | |
邻体等价模型 Neighbour equivalence model | 7 | NA | NA | |
同种密度效应模型 Onspecific density effect model | 5 | NA | NA | |
基于性状差异的模型 Models based on trait difference | 比叶面积 Specific leaf area | 6 | 6 | 0 |
叶干物质含量 Leaf dry matter content | 9 | 8 | 1 | |
叶面积 Leaf area | 8 | 6 | 2 | |
叶片厚度 Leaf thickness | 1 | 0 | 1 | |
叶绿素含量 Chlorophyll concentration | 6 | 5 | 1 | |
木材密度 Wood density | 3 | 0 | 3 | |
最大胸径 Maximum diameter at breast height | 4 | 4 | 0 | |
PCA轴1 PCA axis 1 | 1 | NA | NA | |
PCA轴1-4 PCA axes 1-4 | 2 | NA | NA | |
总计 Total | 90 | 29 | 8 |
Table 2 Selection of models on survival for 90 species
模型 Model | 合计 Total | 绝对差异 Absolute difference | 等级差异 Hierarchical difference | |
---|---|---|---|---|
基本模型 Basic model | 38 | NA | NA | |
邻体等价模型 Neighbour equivalence model | 7 | NA | NA | |
同种密度效应模型 Onspecific density effect model | 5 | NA | NA | |
基于性状差异的模型 Models based on trait difference | 比叶面积 Specific leaf area | 6 | 6 | 0 |
叶干物质含量 Leaf dry matter content | 9 | 8 | 1 | |
叶面积 Leaf area | 8 | 6 | 2 | |
叶片厚度 Leaf thickness | 1 | 0 | 1 | |
叶绿素含量 Chlorophyll concentration | 6 | 5 | 1 | |
木材密度 Wood density | 3 | 0 | 3 | |
最大胸径 Maximum diameter at breast height | 4 | 4 | 0 | |
PCA轴1 PCA axis 1 | 1 | NA | NA | |
PCA轴1-4 PCA axes 1-4 | 2 | NA | NA | |
总计 Total | 90 | 29 | 8 |
Fig. 1 Distribution of abundance for species with different survival response sensitivity to neighborhood crowding are showed. Species sensitive to neighborhood crowding are in black while insensitive ones in grey. Median values of abundance are indicated in dashed lines. The abundance data were log transformed beforehand.
Fig. 2 Shade tolerance index of species with different response sensitivity to neighborhood crowding, where IS and S separately represent the species group insensitive and sensitive to neighborhood.
Fig. 3 Relationship between shade tolerance index. (A) Specific leaf area (SLA); (B) Leaf dry matter content (LDMC); (C) Leaf area (LA); (D) Leaf thickness (LT); (E) Chlorophyll concentration (Chl); (F) Wood density (WD); (G) Maximum diameter at breast height (MDBH). Trends of shade tolerance index with each trait are indicated in dashed lines.
[1] | Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306. |
[2] | Bernard-Verdier M, Navas M, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433. |
[3] | Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32, 429-437. |
[4] | Canham CD, Papaik MJ, Uriarte M, McWilliams WH, Jenkins JC, Twery MJ (2006) Neighborhood analyses of canopy tree competition along environmental gradients in new England forests. Ecological Applications, 16, 540-554. |
[5] | Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785. |
[6] | Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332. |
[7] | Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334. |
[8] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[9] | Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Gunther A, Falczuk V, Ruger N, Mahecha MD, Gorne LD (2016) The global spectrum of plant form and function. Nature, 529, 167-171. |
[10] | Fortunel C, Valencia R, Wright SJ, Garwood NC, Kraft NJB (2016) Functional trait differences influence neighborhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 19, 1062-1070. |
[11] | Gravel D, Canham CD, Beaudet M, Messier C (2010) Shade tolerance, canopy gaps and mechanisims of coexistence of forest trees. Oikos, 119, 475-484. |
[12] | Han BC, Umaña MN, Mi XC, Liu XJ, Chen L, Wang YQ, Liang Y, Wei W, Ma KP (2017) The role of transcriptomes linked with responses to light environment on seedling mortality in a subtropical forest, China. Journal of Ecology, 105, 592-601. |
[13] | He FL, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688. |
[14] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248. |
[15] | HilleRisLambers J, Clark JS, Beckage B (2002) Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. |
[16] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859-875. |
[17] | Johnson DJ, Bourg NA, Howe R, McShea WJ, Wolf A, Clay K (2014) Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology, 95, 2493-2503. |
[18] | Kobe RK, Vriesendorp CF (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecology Letters, 14, 503-510. |
[19] | Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422. |
[20] | Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM, Fox J (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599. |
[21] | Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. |
[22] | Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Penuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Stahl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. |
[23] | Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840. |
[24] | Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait- mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, USA, 111, 5616-5621. |
[25] | Lasky JR, Bachelot B, Muscarella R, Schwartz N, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Zimmerman JK, Uriarte M (2015) Ontogenetic shifts in trait-mediated mechanisms of plant community assembly. Ecology, 96, 2157-2169. |
[26] | Ma L, Chen C, Shen Y, Wu LF, Huang ZL, Cao HL (2014) Determinants of tree survival at local scale in a sub-tropical forest. Ecological Research, 29, 69-80. |
[27] | Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093. |
[28] | McCarthy-Neumann S, Kobe R (2008) Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology, 89, 1883-1892. |
[29] | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[30] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. |
[31] | Peters HA (2003) Neighbour-regulated mortality: The influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765. |
[32] | Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manriques G, Harms KE, Licona JC, Martinez- Ramos M, Mazer SJ, Muller-Landau HC, Pena-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology, 89, 1908-1920. |
[33] | R Core Team (2018) R: A Language and Environment for Statistical Computing.R foundation for statistical computing, Vienna, Austria.. (accessed on 2018-03-12) |
[34] | Shen Y, Santiago LS, Ma L, Lin GJ, Lian JY, Cao HL, Ye WH (2013) Forest dynamics of a subtropical monsoon forest in Dinghushan, China: Recruitment, mortality and the pace of community change. Journal of Tropical Ecology, 29, 131-145. |
[35] | Shen Y, Santiago LS, Shen H, Ma L, Lian JY, Cao HL, Lu HP, Ye WH (2014) Determinants of change in subtropical tree diameter growth with ontogenetic stage. Oecologia, 175, 1315-1324. |
[36] | Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661. |
[37] | Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048-3062. |
[38] | Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004a) A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecological Monographs, 74, 591-614. |
[39] | Uriarte M, Condit R, Canham CD, Hubbell SP (2004b) A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter? Journal of Ecology, 92, 348-360. |
[40] | Uriarte M, Swenson NG, Chazdon RL, Comita LS, Kress WJ, Erickson D, Forero-Montana J, Zimmerman JK, Thompson J (2010) Trait similarity, shared ancestry and the structure of neighborhood interactions in a subtropical wet forest: Implications for community assembly. Ecology Letters, 13, 1503-1514. |
[41] | Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257. |
[42] | Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest. PLoS ONE, 7, 10. |
[43] | Wiegand T, Uriarte M, Kraft NJB, Shen GC, Wang XG, He FL (2017) Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annual Review of Ecology, Evolution, and Systematics, 48, 329-351. |
[44] | Wright SJ (2002) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1-14. |
[45] | Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674. |
[46] | Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84, 3174-3185. |
[47] | Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM (2008) Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Journal of Plant Ecology (Chinese Version), 32, 274-286. (in Chinese with English abstract) |
[叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 (2008) 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.] | |
[48] | Zambrano J, Marchand P, Swenson NG (2017) Local neighborhood and regional climatic contexts interact to explain tree performance. Proceedings of the Royal Society B: Biological Sciences, 284, 20170523. |
[49] | Zhu Y, Hogan JA, Cai HY, Xun YH, Jiang F, Jin GZ (2017) Biotic and abiotic drivers of the tree growth and mortality trade-off in an old-growth temperate forest. Forest Ecology and Management, 404, 354-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn