Biodiversity Science ›› 2003, Vol. 11 ›› Issue (1): 63-69.doi: 10.17520/biods.2003009

• 论文 • Previous Article     Next Article

Some scientific questions for ecosystem services

GUO Zhong-Wei, GAN Ya-Ling*   

  1. Institute of Zoology,Chinese Academy of Sciences,Beijing 100080
  • Received:2002-04-27 Revised:2002-11-13 Online:2003-01-20
  • GAN Ya-Ling

Ecosystem services and the natural capital stocks that produce them are critical to the functioning of the Earth′s life supporting system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. Four scientific quastions about the functions of ecosystem services are discussed in this paper. They are: 1) study of the integration, amount and spatial location of functions of ecosystem services; 2) the spatial transfer of functions of ecosystem services; 3) the relationship between ecosystem service and ecological security; and 4) the sustainable use of ecosystem services. The heterogeneity in the structure of ecosystem's results in heterogeneity of their functions. Consequentially, there is spatial heterogeneity in the functions of ecosystem services. Thus, it is necessary to analyze the functions of ecosystem services by qualitative, quantitative and spatial means. Some functions of ecosystem services can be transferred spatially by various methods, and produce benefits at areas far removed from their habitats and range of suitable conditions. This phenomenon is called spatial transfer of ecosystem services. Thus, characteristic ecosystem services can bring economic values to a region of larger area than that covered by the ecosystem′s habitats. Ecosystem services provide supporting system for humans, and their strengths depend on ecological capital stock. Ecological capital stock illustrates the capability of sustainable development of a country. Ecological capital stock of an ecosystem relies in turn on the function and the structure of the ecosystem. Endangerment of ecosystem service raises a question for ecological security. In many regions ecological resources are rare. To use ecological resources sustainably, local communities should be urged to develop their economies by means of managing ecosystem services, i.e., to industrialize the management of ecosystem services. These four scientific questions for ecosystem services are related to each other. The aim of discussing them is to focus study on ecosystem services in the future.

Key words: Rhinopithecus bieti, geographical distribution, population size, ecology, conservation

[1] Wenying Zhuang Yi Li Huandi Zheng Zhaoqing Zeng Xincun Wang. (2020) Threat status of macro-ascomycetes in China and analysis of its threatening factors . Biodiv Sci, 28(1): 0-0.
[2] Yi Li Dongmei Liu Ke Wang Haijun Wu Lei Cai Lei Cai Junsheng Li Yijian Yao. (2020) Red list assessment of macrofungi in China: challenges and resolvement . Biodiv Sci, 28(1): 0-0.
[3] Yi Li Zhiyao Tang Yujing Yan Ke Wang Lei Cai Jinsheng He Song Gu Yijian Yao. (2020) Incorporating species distribution modelling into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 0-0.
[4] Xiaoyu Li, Lingyun Xiao, Xuchang Liang, Chen Cheng, Chen Feng, Xiang Zhao, Yanlin Liu, Xiaoxing Bian, Bing He, Changzhi Zhang, Justine Shanti Alexander, Rui Xing, Yahui Huang, Awangjiumei , Xierannima , Dazhao Song, Qiaowen Huang, , Kui Peng, Hang Yin, Xinming Lian, Xin Yang, Sheng Li, Xiaogang Shi, Chuangming Yang, Zhi Lü. (2019) Ongoing threats and the current status of snow leopard conservation in China . Biodiv Sci, 27(9): 932-942.
[5] Lingyun Xiao, Chen Cheng, Huawei Wan, Dehai Zhang, Yongcai Wang, Tsedan , Peng Hou, Juan Li, Xin Yang, Zhi Lü, Yuping Liu. (2019) Defining conservation priority areas of snow leopard habitat in the Sanjiangyuan Region . Biodiv Sci, 27(9): 943-950.
[6] Rui Yang, Qinyi Peng, Yue Cao, Le Zhong, Shuyu Hou, Zhicong Zhao, Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[7] CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. (2019) Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae . Chin J Plant Ecol, 43(8): 718-728.
[8] Yang Lixin, Pei Shengji, Zhang Yu. (2019) Action research on Tibetan sacred nature sites (SNS) conservation in Tibetan community in NW Yunnan . Biodiv Sci, 27(7): 749-757.
[9] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
[10] Jiang Zhigang. (2019) China’s key protected species lists, their criteria and management . Biodiv Sci, 27(6): 698-703.
[11] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. (2019) Influence of future climate change in suitable habitats of tea in different countries . Biodiv Sci, 27(6): 595-606.
[12] LIU Xiao-Tong, YUAN Quan, NI Jian. (2019) Research advances in modelling plant species distribution in China . Chin J Plant Ecol, 43(4): 273-283.
[13] Mo Zhangqin. (2019) Re-legalizing China’s ecological conservation redline: The position, dilemma and path . Biodiv Sci, 27(3): 347-352.
[14] Chen Lijun,Xiao Wenhong,Xiao Zhishu. (2019) Limitations of relative abundance indices calculated from camera-trapping data . Biodiv Sci, 27(3): 243-248.
[15] Zhao Yang,Wen Yuanyuan. (2019) Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China . Biodiv Sci, 27(3): 339-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed