生物多样性 ›› 2018, Vol. 26 ›› Issue (1): 53-65.doi: 10.17520/biods.2017189

• 生物编目 • 上一篇    下一篇


张凤麟1, 2, 王昕1, 2, 张健1, 2*()   

  1. 1 华东师范大学生态与环境科学学院, 浙江天童森林生态系统国家野外科学观测研究站, 上海 200241
    2 上海污染控制与生态安全研究院, 上海 200092
  • 收稿日期:2017-06-25 接受日期:2018-01-05 出版日期:2018-01-27
  • 作者简介:

    # 共同第一作者

  • 基金项目:

Biodiversity information resources. II. Environmental data

Fenglin Zhang1, 2, Xin Wang1, 2, Jian Zhang1, 2, *()   

  1. 1 Tiantong National Station for Forest Ecosystem Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
    2 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092
  • Received:2017-06-25 Accepted:2018-01-05 Online:2018-01-27
  • Contact: Zhang Jian E-mail:jzhang@des.ecnu.edu.cn
  • About author:

    # Co-first authors

环境类型数据是研究生物多样性分布格局、多样性形成与维持机制、物种保育等很多重要生态学问题的基础。近年来, 随着环境监测网络在全球范围内的不断扩张与新监测手段的不断涌现, 区域和全球尺度上的不同类型的环境数据呈爆炸式增长。然而, 这些海量的数据零散地分布在互联网的各个角落, 给生物多样性研究人员了解数据信息、高效选择和利用数据等带来了挑战。面对环境数据来源广、分布零散的现状, 本文从气候、地形地貌土壤与生境异质性、土地覆盖、水文和其他等5个方面对环境数据进行整理, 并且选取其中一些使用频率较高的数据集, 从它们的数据来源、数据结构、数据获取方式、数据精度以及数据使用情况等方面举例介绍。本文共介绍了45个不同类型的数据集, 既包括WorldClim气候数据、HWSD (Harmonized World Soil Database)土壤数据等在生态学中频繁使用的数据集, 也包括气候变化速率、EarthEnv生境异质性数据、全球森林覆盖数据、全球光污染数据等最新发布或较少使用的数据集。另外, 需要指出的是, 这些数据集远不能涵盖目前所能获得并在持续增加的环境类型数据。作者希望本文的不完整总结能够为研究人员高效选择和有效利用这些和其它相似的环境数据提供参考。

关键词: 生物多样性信息学, 生物地理学, 宏生态学, 大数据, 数据共享

Environmental data are the basis for addressing many important ecological issues, including biodiversity distribution patterns, mechanisms of biodiversity formation and maintenance, and species conservation. Recently, many types of environment data at regional and global scales have dramatically increased, with the continuous expansion of global environment monitoring networks and emergence of new monitoring technologies. However, the vast amounts of data are scattered all around the world, making it much more difficult for biodiversity researchers to access detailed information and use these data efficiently. In this paper, we combine the main sources of environmental datasets, and classify them into five major groups, including (1) climate, (2) topography, soil and habitat heterogeneity, (3) land cover, (4) hydrology variables, and (5) other data sets. We then select several datasets with high-frequency usage to briefly introduce the data source, data structure, data availability, and data quality. We also select several previous studies to showcase the use of these datasets. In summary, we include 45 environmental data sets in this paper, covering several frequently used data in ecology (e.g., WorldClim and Harmonized World Soil Database), as well as some latest released or seldom used data (e.g., climate change velocity, EarthEnv habitat heterogeneity data, global forest coverage data, and global light pollution data). In addition, it is important to point out that these data sets are only a small fraction of currently available and continuously increasing environmental data. Overall, we hope that the incomplete list of environmental data can provide guidelines for researchers to select and utilize them and other similar data accurately and effectively.

Key words: Key Words: biodiversity informatics, biogeography, macroecology, big data, data sharing


基于WorldClim的数据在2006年至2017年11月之间发表的论文统计(数据来源: ISI Web of Science)"




全球生境异质性的测度变量。EVI: 增强型植被指数(来源: http://www.earthenv.org/texture)。"

度量 Metric 测度 Measure
First-order variables
变量系数 Coefficient of variation EVI的标准分散度 Normalized dispersion of EVI
均匀度 Evenness EVI的均匀度 Evenness of EVI
范围 Range EVI范围 Range of EVI
Shannon指数 EVI的多样性 Diversity of EVI
Simpson指数 EVI的多样性 Diversity of EVI
标准差 Standard deviation EVI的离散度 Dispersion of EVI
Second-order variables
对比度 Contrast 相邻栅格之间EVI的指数加权差异
Exponentially weighted difference in EVI between adjacent pixels
相关度 Correlation 相邻栅格之间EVI的线性关系 Linear dependency of EVI on adjacent pixels
差异性 Dissimilarity 相邻栅格之间EVI的差异 Difference in EVI between adjacent pixels
熵 Entropy EVI的无序性 Disorderliness of EVI
同质性 Homogeneity 相邻栅格之间EVI的相似性 Similarity of EVI between adjacent pixels
最大值 Maximum 相邻栅格之间EVI的优势组合 Dominance of EVI combinations between adjacent pixels
一致性 Uniformity EVI的有序性 Orderliness of EVI
1 Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB (2010) The geography of climate change: Implications for conservation biogeography. Diversity and Distributions, 16, 476-487.
2 Avitabile V, Herold M, Heuvelink GBM, Lewis SL, Phillips OL, Asner GP, Armston J, Ashton PS, Banin L, Bayol N, Berry NJ, Boeckx P, Jong BHJ, Vries B, Girardin CAJ, Kearsley E, Lindsell JA, Lopez-Gonzalez G, Lucas R, Malhi Y, Morel A, Mitchard ETA, Nagy L, Qie L, Quinones MJ, Ryan CM, Ferry SJW, Sunderland T, Laurin GV, Gatti RC, Valentini R, Verbeeck H, Wijaya A, Willcock S (2016) An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology, 22, 1406-1420.
3 Barton CM, Tortosa JEA, Garcia-Puchol O, Riel-Salvatore JG, Gauthier N, Conesa MV, Bouchard CP (2018) Risk and resilience in the late glacial: A case study from the western Mediterranean. Quaternary Science Reviews. Doi: 10.1016/
4 Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabi C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V, Oost KV, Montanarella L, Panagos P (2013) An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8, 1-13.
5 Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore P, Brown JC, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Sydeman WJ, Ferrier S, Williams KJ, Poloczanska ES (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507, 492-495.
6 Carroll C, Lawler JJ, Roberts D, Hamann A (2015) Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE, 10, e0140486.
7 Cavanaugh NR, Shen SSP (2014) Northern hemisphere climatology and trends of statistical moments documented from GHCN-daily surface air temperature station data from 1950 to 2010. Journal of Climate, 27, 5396-5410.
8 Chen F, Yang S (2014) Land surface thermal environment during heat wave event measured by satellite observation. Proceedings of SPIE—The International Society for Optical Engineering, 9260, 926015.
9 Chen Y, Zhang J, Jiang J, Nielsen SE, He F (2017) Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Diversity and Distributions, 23, 146-157.
10 Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK (2012) The climate velocity of the contiguous United States during the 20th century. Global Change Biology, 19, 241-251.
11 Domisch S, Giuseppe A, Jetz W (2015) Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Scientific Data, 2, 150073.
12 Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
13 Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Goldewijk KK, Verburg PH (2013) Used planet: A global history. Proceedings of the National Academy of Sciences, USA, 110, 7978-7985.
14 Falchi F, Cinzano P, Duriscoe DM, Kyba CCM, Elvidge CD, Baugh KE, Portnov BA, Rybnikova NA, Furgoni R (2016) The new world atlas of artificial night sky brightness. Science Advances, 2, e1600377.
15 Fick S, Hijmans R (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
16 Fordham DA, Saltré F, Haythorne S, Wigley TML, Otto-Bliesner BL, Chan KC, Brook BW (2017) Paleoview: A tool for generating continuous climate projections spanning the last 21000 years at regional and global scales. Ecography, 40, 1-11.
17 Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proceedings of the Royal Society B: Biological Sciences, 270, 1293-1300.
18 Gaston KJ, Bennie J, Davies TW, Hopkins J (2013) The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biological Reviews, 88, 912-927.
19 Gaughan AE, Stevens FR, Huang Z, Nieves J, Sorichetta A, Lai S, Ye X, Linard C, Hornby GM, Hay SI, Yu H, Tatem A (2016) Spatiotemporal patterns of population in mainland China, 1990 to 2010. Scientific Data, 3, 160005.
20 Giglio L, Randerson JT, Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFDE4). Journal of Geophysical Research: Biogeosciences, 118, 317-328.
21 Goldewijk KK, Beusen AHW, Janssen P (2010) Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene, 20, 565-573.
22 Gong P, Wang J, Yu L, Zhao YC, Zhao YY, Liang L, Niu ZG, Huang XM, Fu HH, Liu S, Li CC, Li XY, Fu W, Liu CX, Xu Y, Wang XY, Cheng Q, Hu LY, Yao WB, Zhang H, Zhu P, Zhao ZY, Zhang HY, Zheng YM, Ji LY, Zhang YW, Chen H, Yan A, Guo JH, Yu L, Wang L, Liu XJ, Shi TT, Zhu MH, Chen YL, Yang GW, Tang P, Xu B, Ciri C, Clinton N, Zhu ZL, Chen J, Chen J (2013) Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34, 2607-2654.
23 Guo QH, Liu J, Li YM, Zhai QP, Wang YC, Wu FF (2016) A near-surface remote sensing platform for biodiversity monitoring: Perspectives and prospects. Biodiversity Science, 24, 1249-1266.(in Chinese with English abstract)
[郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳 (2016) 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 24, 1249-1266.]
24 Haddad N, Brudvig L, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen E, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules C, Melbourne BA, Nicholls AO, Orrock J, Song DX, Townshend JRG (2015) Habitat fragmentation and its lasting impact on earth’s ecosystems. Science Advances, 1, e1500052.
25 Hansen MC, Potapov P, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov AV, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science, 342, 850-853.
26 Hare KM, Cree A (2010) Exploring the consequences of climate-induced changes in cloud cover on offspring of a cool-temperate viviparous lizard. Biological Journal of the Linnean Society, 101, 844-851.
27 Harris I, Jones PD, Osborn TJ, Lister D (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642.
28 Hayashi M, Saigusa N, Oguma H, Yamagata Y (2013) Forest canopy height estimation using icesat/glas data and error factor analysis in Hokkaido, Japan. ISPRS Journal of Photogrammetry and Remote Sensing, 81, 12-18.
29 Hengl T, Jesus JMD, Heuvelink G, Gonzalez MR, Kilibarda M, Blagotić A, Wei S, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, Macmillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12, e0169748.
30 Hijmans R, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
31 Hölker F, Moss T, Griefahn B, Kloas W, Voigt CC, Henckel D, Hänel A, Kappeler PM, Völker S, Schwope A, Franke S, Uhrlandt D, Fischer J, Klenke R, Wolter C, Tockner K (2010) The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecology and Society, 15, 13.
32 Huang M, Su QM, Huang SZ (2013) Optimum calculation method of SRTM DEM data based on ArcGIS technology. Journal of Sichuan Agricultural University, 31, 456-460.(in Chinese with English abstract)
[黄明, 苏巧梅, 黄诗哲 (2013) 基于ArcGIS计算SRTM数据DEM坡度的最优方法探讨. 四川农业大学学报, 31, 456-460.]
33 Iversen LL, Jacobsen D, Sand-Jensen K (2017) Are latitudinal richness gradients in European freshwater species only structured according to dispersal and time? Ecography, 39, 1-3.
34 Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 3, from the CGIAR-CSI SRTM 90 m database.
35 Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2011) Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21, 775-791.
36 Kerr J, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254.
37 Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature, 548, 206-209.
38 Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Transactions of the American Geophysical Union, 2008, 89, 93-94.
39 Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature, 462, 1052-1055.
40 Margolis HA, Nelson RF, Montesano PM, Beaudoin A, Sun G, Andersen H, Wulderg MA (2015) Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research, 45, 838-855.
41 Margono B, Potapov P, Turubanova S, Stolle F, Hansen MC (2014) Primary forest cover loss in Indonesia over 2000-2012. Nature Climate Change, 4, 730-735.
42 Marino GP, Kaiser DP, Gu L, Ricciuto DM (2011) Reconstruction of false spring occurrences over the southeastern United States, 1901-2007: An increasing risk of spring freeze damage? Environmental Research Letters, 6, 024015.
43 Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the Global Historical Climatology Network-Daily database. Journal of Atmospheric and Oceanic Technology, 29, 897-910.
44 Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7, 13603.
45 Moulatlet G, Zuquim G, Figueiredo FOG, Lehtonen S, Emilio T, Ruokolainen K, Tuomisto H (2017) Using digital soil maps to infer edaphic affinities of plant species in Amazonia: Problems and prospects. Ecology and Evolution, 7, 8463-8477.
46 Nachtergaele F, van Velthuizen H, Verelst L, Wilberg D (2012) Harmonized World Soil Database (version 1.2). FAO, Rome and IIASA, Laxenburg, Austria.
47 Nolan M, Fatland R (2013) New DEMs may stimulate significant advancements in remote sensing of soil moisture. EOS Transactions of the American Geophysical Union, 84, 233-237.
48 Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422.
49 Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning AS (1998) Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology, 4, 461-475.
50 Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA Rentería LY, Rodríguez- Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M (2015) Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1314-1328.
51 Poorter L, Bongers F, Aide TM, Zambrano AMA, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Broadbent EN, Chazdon RL, Craven D, Almeida-Cortez JS, Cabral GAL, Jong BHJ, Denslow JS, Dent DH, Walt SJ, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona J, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Muñoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Oliveira AA, Orihuela-Belmonte E, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Rodríguez-Velázquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, van Breugel M, van der Wal H, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Bentos TV, Williamson GB, Rozendaal DMA (2016) Biomass resilience of Neotropical secondary forests. Nature, 530, 211-214.
52 Razafindrajao F, Bamford AJ, Young HG, Andrianarimisa A, Aboudou AIB, Lewis RE (2017) Reassessing the conservation outlook for Madagascar’s endemic Anatidae following the creation of new protected areas. Wildfowl, 67, 72-86.
53 Robinson N, Regetz J, Robert G (2014) EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 57-67.
54 Rodríguez A, Holmes ND, Ryan PG, Wilson K, Faulquier L, Murillo Y, Raine AF, Penniman JF, Neves V, Rodríguez B, Negro JJ, Chiaradia A, Dann P, Anderson T, Metzger B, Shirai M, Deppe L, Wheeler J, Hodum P, Gouveia C, Carmo V, Carreira GP, Delgado-Alburqueque L, Guerra-Correa C, Couzi F, Travers M, Corre ML (2017) Seabird mortality induced by land-based artificial lights. Conservation Biology, 31, 986-1001.
55 Running SW, Zhao M (2015) User’s Guide,Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm, Version 3.0 For Collection 6. University of Montana, USA, NASA.
56 Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JCS (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science, 334, 660-664.
57 Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115, 15-40.
58 Shao KZ, Lee H, Lin YC, Lai KQ (2014) A review of marine biodiversity information resources. Biodiversity Science, 22, 253-263.(in Chinese with English abstract)
[邵广昭, 李瀚, 林永昌, 赖昆祺 (2014) 海洋生物多样性信息资源. 生物多样性, 22, 253-263.]
59 Silva AD, Kempenaers B (2017) Singing from north to south: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297.
60 Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne LiDAR. Journal of Geophysical Research: Biogeosciences, 116, G04021.
61 Song YC (2017) Vegetation Ecology, 2nd edn. Higher Education Press, Beijing.(in Chinese)
[宋永昌 (2017) 植被生态学(第二版). 高等教育出版社, 北京.]
62 Stisen S, Tumbo M (2015) Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data. Hydrological Sciences Journal, 60, 1911-1926.
63 Strayer D, Dudgeon D (2010) Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 29, 344-358.
64 Stralberg D, Matsuoka SM, Hamann A, Bayne EM, Solymos P, Schmiegelow FKA, Wang X, Cumming SG, Song S (2015) Projecting boreal bird responses to climate change: The signal exceeds the noise. Ecological Applications, 25, 52-69.
65 Szabolcs Z, Mizsei E, Jablonski D, Vági B, Mester B, Végvári Z, Lengyel S (2017) Distribution and diversity of amphibians in Albania: New data and foundations of a comprehensive database. Amphibia-Reptilia, 38, 435-448.
66 Su Y, Guo Q (2014) A practical method for SRTM DEM correction over vegetated mountain areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 216-228.
67 Sunday JM, Pecl G, Frusher S, Hobday AJ, Hill NA, Holbrook NJ, Edgar GJ, Stuart-Smith RD, Barrett NS, Wernberg T, Watson R, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, Bates AE (2015) Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters, 18, 944-953.
68 Tuanmu M, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 23, 1031-1045.
69 Tuanmu M, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329-1339.
70 Turner W, Spector S, Gardiner EP, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314.
71 Turner W (2014) Sensing biodiversity. Science, 346, 301-302.
72 van Andel TR, Croft S, van Loon EE, Quiroz D, Towns AM, Raes N (2015) Prioritizing West African medicinal plants for conservation and sustainable extraction studies based on market surveys and species distribution models. Biological Conservation, 181, 173-181.
73 van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, Marle M, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997-2016. Earth System Science Data, 9, 697-720.
74 Wang D, Wang AH (2017) Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013. Climatic and Environmental Research, 22, 446-462.(in Chinese with English abstract)
[王丹, 王爱慧 (2017) 1901-2013年GPCC和CRU降水资料在中国大陆的适用性评估. 气候与环境研究, 22, 446-462.]
75 Wang T, Hamann A, Spittlehouse DL, Aitken SN (2006) Development of PRISM-based scale-free climate data for western Canada for use in resource management. International Journal of Climatology, 26, 383-397.
76 Wang X, Zhang FL, Zhang J (2017) Biodiversity information resources. I. Species distribution, catalogue, phylogeny, and life history traits. Biodiversity Science, 25, 1223-1238.(in Chinese with English abstract)
[王昕, 张凤麟, 张健 (2017) 生物多样性信息资源. I. 物种分布、编目、系统发育与生活史性状. 生物多样性, 25, 1223-1238.]
77 Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868-2883.
78 Weigelt P, Jetz W, Kreft H (2013) Bioclimatic and physical characterization of the world’s islands. Proceedings of the National Academy of Sciences, USA, 110, 15307-15312.
79 Weigelt P, Steinbauer MJ, Cabral JS, Kreft H (2016) Late Quaternary climate change shapes island biodiversity. Nature, 532, 99-102.
80 Welbers AAMH, van Dis NE, Kolvoort AM, Ouyang J, Visser ME, Spoelstra K, Dominoni DM (2017) Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Frontiers in Ecology and Evolution, 231, 882-889.
81 Whittaker RH (1975) Communities and Ecosystem. Macmillan, London.
82 Wilson AM, Jetz W (2016) Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biology, 14, e1002415
83 Yeaman S, Hodgins KA, Lotterhos K, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe K, Hamann A, Holliday JA, Whitlock MC, Rieseberg LH, Aitken SN (2016) Convergent local adaptation to climate in distantly related conifers. Science, 353, 1431-1433.
84 Yue TX, Chen CF, Li BL (2012) A high accuracy method for filling SRTM voids and its verification. International Journal of Remote Sensing, 33, 2815-2830.
85 Zhang J, Huang S, Hogg EH, Lieffers V, Qin Y, He F (2014) Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 11, 2793-2808.
86 Zhang J, Huang S, He F (2015) Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences, USA, 112, 4009-4014.
87 Zhang J, Nielsen SE, Mao L, Chen S, Svenning JCS (2016) Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 104, 469-478.
88 Zhang J (2017) Biodiversity science and macroecology in the era of big data. Biodiversity Science, 25, 355-363.(in Chinese with English abstract)
[张健 (2017) 大数据时代的生物多样性科学与宏生态学. 生物多样性, 25, 355-363.]
[1] 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. (2018) 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系. 生物多样性, 26(9): 941-950.
[2] 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平. (2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25(5): 464-480.
[3] 张健. (2017) 大数据时代的生物多样性科学与宏生态学. 生物多样性, 25(4): 355-363.
[4] 孙航, 邓涛, 陈永生, 周卓. (2017) 植物区系地理研究现状及发展趋势. 生物多样性, 25(2): 111-122.
[5] 李嵘, 孙航. (2017) 植物系统发育区系地理学研究: 以云南植物区系为例. 生物多样性, 25(2): 195-203.
[6] 王昕, 张凤麟, 张健. (2017) 生物多样性信息资源. I. 物种分布、编目、系统发育与生活史性状. 生物多样性, 25(11): 1223-1238.
[7] 李俊洁, 黄晓磊. (2016) 生物多样性数据论文发表趋势分析. 生物多样性, 24(12): 1317-1324.
[8] 周喜乐, 张宪春, 孙久琼, 严岳鸿. (2016) 中国石松类和蕨类植物的多样性与地理分布. 生物多样性, 24(1): 102-107.
[9] 张德兴. (2015) 对我国分子生态学研究近期发展战略的一些思考. 生物多样性, 23(5): 559-569.
[10] 张德兴. (2015) 对我国分子生态学研究近期发展战略的一些思考. 生物多样性, 23(5): 559-569.
[11] 徐爱春, 斯幸峰, 王彦平, 丁平. (2014) 千岛湖片段化栖息地地栖哺乳动物的红外相机监测及最小监测时长. 生物多样性, 22(6): 764-772.
[12] 邵广昭, 李瀚, 林永昌, 赖昆祺. (2014) 海洋生物多样性信息资源. 生物多样性, 22(3): 253-263.
[13] 王利松, 张红瑞, 张宪春. (2014) Scratchpads 2.0: 互联网时代的生物多样性虚拟研究环境. 生物多样性, 22(3): 264-276.
[14] 苗林, 罗述金. (2014) 基因组时代的新视野: 东南亚哺乳动物类群在第四纪冰河时期多样性的起源与分化. 生物多样性, 22(1): 40-50.
[15] 辛玉华, 周宇光, 东秀珠. (2013) 低温细菌与古菌的生物多样性及其冷适应机制. 生物多样性, 21(4): 468-480.
Full text