生物多样性 ›› 2017, Vol. 25 ›› Issue (1): 11-22.doi: 10.17520/biods.2016290

• • 上一篇    下一篇

天童常绿阔叶林定居幼苗存活和生长的关联

刘何铭1, 2, 马遵平1, 2, 杨庆松1, 2, 方晓峰1, 2, 林庆凯1, 2, 宗意1, 2, 阿尔达克·阿庆1, 2, 王希华1, 2, *()   

  1. 1 华东师范大学生态与环境科学学院, 上海 200241
    2 浙江天童森林生态系统国家野外科学观测研究站, 浙江宁波 315114);
  • 收稿日期:2016-10-05 接受日期:2016-11-30 出版日期:2017-01-20
  • 通讯作者: 王希华 E-mail:xhwang@des.ecnu.edu.cn
  • 基金项目:
    国家自然科学基金重大国际合作项目(31210103920)

Relationships between established seedling survival and growth in evergreen broad-leaved forest in Tiantong

Heming Liu1, 2, Zunping Ma1, 2, Qingsong Yang1, 2, Xiaofeng Fang1, 2, Qingkai Lin1, 2, Yi Zong1, 2, 1, 2, Xihua Wang1, 2, *()   

  1. 1 School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
    2 Tiantong National Forest Ecosystem Observation and Research Station, Ningbo, Zhejiang 315114
  • Received:2016-10-05 Accepted:2016-11-30 Online:2017-01-20
  • Contact: Wang Xihua E-mail:xhwang@des.ecnu.edu.cn

群落幼苗的更新过程是维持群落物种共存的关键环节, 其中幼苗成功定居后的发展阶段是群落幼苗更新过程的重要组成部分, 对群落可繁殖个体补充格局的形成起着十分重要的作用。然而, 相比于新生幼苗, 群落内定居幼苗短期死亡率相对较低, 需要较长时间的监测才能完整地了解其存活格局, 所以相关的研究还相对较少。本研究假设群落内已经成功定居的幼苗的生长状况能够较好地预测其存活情况, 通过分析影响其生长的外在因素, 尝试间接地估计定居幼苗可能的存活格局, 从而了解定居幼苗的存活和生长过程。为验证该假设, 本文选取浙江天童20 ha森林动态监测样地内的定居幼苗作为研究对象, 利用广义线性混合模型分析其相对生长速率, 以及生物邻体因子(同种/异种成树邻体指数, 同种/异种幼苗邻体密度, 同种/异种成树邻体的凋落叶产量)和微生境因子(冠层开度、草本覆盖率、海拔、坡度、坡向、土壤pH、全氮和全磷含量)对定居幼苗短期存活概率的影响, 并利用线性混合模型分析生物邻体因子和微生境因子对定居幼苗相对生长速率的影响。结果显示, 群落内定居幼苗的相对生长速率对其本身的短期存活概率有显著正影响, 且其影响程度最高; 冠层开度对群落幼苗相对生长速率有显著正影响, 且是唯一有显著影响的因子。上述结果说明, 在群落幼苗成功定居后, 其生长状况能够较好地预测其存活情况, 加之林下较好的光照条件能够促进幼苗的生长, 这可能间接导致在林下光照较好的生境条件下定居幼苗长期存活的可能性相对较高。

关键词: 存活率, 相对生长速率, 广义线性混合模型, 冠层开度, 森林动态样地

Community seedling regeneration is a crucial process for maintaining species coexistence. The stage from which an established seedling becomes a new reproductive individual is one of the most important components of community regeneration, and influences the community recruitment pattern. However, the short-term mortality of established seedlings is lower than newly germinated seedlings, and previous studies have not been able to analyze the effect of biotic neighborhoods and abiotic micro-habitat factors on established seedling survival perfectly. Therefore, we suggest that the growth status of established seedlings could predict established seedling survival during development, and analyze the effects of these biotic and abiotic factors on established seedling growth, in order to indirectly estimate their effects on established seedling survival. To test this hypothesis, we selected established seedlings in the 20 ha forest dynamics plot in Tiantong as samples. Then, we used generalized linear mixed models to assess the effects of relative growth rate, biotic neighborhood factors (conspecific/heterospecific adult neighborhood indices, density of conspecific/heterospecific seedling neighbors, the amount of conspecific/heterospecific leaf litter from neighbors) and abiotic micro-habitat factors (canopy openness, herbaceous coverage, elevation, slope, aspect, pH value, total nitrogen and total phosphorus in the soil) on short-term established seedling survival rates. We used linear mixed models to assess the effects of biotic neighborhood factors and abiotic micro-habitat factors on relative growth rates of established seedlings. Results showed that relative growth rates have a significant, positive effect on established seedling survival, and this factor is the most important factor among potential influencing factors. In addition, canopy openness, as only one significant influencing factor, has a positive effect on relative growth rates of established seedlings. These results suggest that the growth status of seedlings could predict established seedling survival during development. Meanwhile, established seedlings prefer to grow in habitat with better light. Therefore, the established seedling survival rate would be higher in the habitat with better light through higher relative growth rates.

Key words: survival rate, relative growth rate, generalized linear mixed models, canopy openness, forest dynamics plot

图1

天童20 ha森林动态监测样地地形图及幼苗监测样点分布图"

表1

幼苗样方微生境因子"

微生境因子
Micro-habitat factors
最大值
Maximum value
最小值
Minimum value
平均值
Mean
标准差
Standard deviation
冠层开度 Canopy openness (%) 35.31 2.58 9.09 3.86
海拔 Elevation (m) 572.28 321.89 441.87 53.9
坡度 Slope (°) 82.65 4.00 35.08 11.98
坡向 Aspect (°) 318.92 30.00 185.93 54.86
草本覆盖度 Herbaceous coverage (%) 100.00 0.00 20.76 24.94
全氮 Total nitrogen (g/kg) 10.04 0.95 3.15 1.27
全磷 Total phosphorus (g/kg) 0.79 0.02 0.26 0.13
pH值 pH value 5.26 3.50 4.14 0.25

图2

定居幼苗多度(A)和相对生长速率(B)随时间的动态 变化"

图3

各因子对群落内定居幼苗短期存活概率的影响。AICc的相对权重为该因子的影响程度(按影响程度降序排列)。RGR: 前一年相对生长速率; Icon: 同种成树邻体指数; Ihet: 异种成树邻体指数; Scon: 同种幼苗邻体密度; Shet: 异种幼苗邻体指数; Lcon: 同种凋落叶产量; Lhet: 异种凋落叶产量; Coverage: 幼苗样方内的草本覆盖度; Openness: 冠层开度; Slope: 坡度; Aspect: 坡向(经cos(α)+1.1转换); Elevation: 幼苗监测样点周围的海拔; pH: 土壤pH值; TN: 土壤全氮含量; TP: 土壤全磷含量。"

图4

生物邻体和微生境因子对群落内定居幼苗相对生长速率的影响。AICc的相对权重为该因子的影响程度(按影响程度降序排列)。Icon: 同种成树的邻体指数; Ihet: 异种成树的邻体指数; Scon: 同种幼苗邻体密度; Shet: 异种幼苗邻体指数; Lcon: 同种凋落叶产量; Lhet: 异种凋落叶产量; Coverage: 幼苗样方内的草本覆盖度; Openness: 冠层开度; Slope: 坡度; Aspect: 坡向(经cos(α)+1.1转换); Elevation: 幼苗监测样点周围的海拔; pH: 土壤pH值; TN: 土壤全氮含量; TP: 土壤全磷含量。"

1 Alvarez-Buylla ER, Martinez-Ramos M (1992) Demography and allometry of Cecropia obtusifolia, a neotropical pioneer tree—an evaluation of the climax-pioneer paradigm for tropical rain forests. Journal of Ecology, 80, 275-290.
2 Bai XJ, Queenborough SA, Wang XG, Zhang J, Li BH, Yuan ZQ, Xing DL, Lin F, Ye J, Hao ZQ (2012) Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia, 170, 755-765.
3 Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 3.2.1.
4 Bazzaz FA (1991) Habitat selection in plants. The American Naturalist, 137, 116-130.
5 Berkowitz AR, Canham CD, Kelly VR (1995) Competition vs. facilitation of tree seedling growth and survival in early successional communities. Ecology, 76, 1156-1168.
6 Blau GE, Neely WB (1975) Mathematical model building with an application to determine the distribution of Dursban insecticide added to a simulated ecosystem. Advances in Ecological Research, 9, 133-163.
7 Boudell JA, Stromberg JC (2015) Impact of nitrate enrichment on wetland and dryland seed germination and early seedling development. Journal of Vegetation Science, 26, 452-463.
8 Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd edn. Springer, New York.
9 Canham CD (1988) Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology, 69, 786-795.
10 Canham CD, LePage PD, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Canadian Journal of Forest Research, 34, 778-787.
11 Castro J, Zamora R, Hódar JA, Gómez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology, 92, 266-277.
12 Chanthorn W, Caughlin T, Dechkla S, Brockelman WY (2013) The relative importance of fungal infection, conspecific density and environmental heterogeneity for seedling survival in a dominant tropical tree. Biotropica, 45, 587-593.
13 Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334.
14 Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RP, Itoh A, LaFrankie JV (2000) Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
15 Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds den Boer PJ, Gradwell GR), pp. 298-12. Centre for Agricultural Publishing and Documentations,Wageningen.
16 De-Steven D (1991) Experiments on mechanisms of tree establishment in old-field succession: seedling survival and growth. Ecology, 72, 1076-1088.
17 Ellenberg H (1974) Scripta Geobotanica. Verlag Erich. Goltze, Göttingen. (in German)
18 García-Guzmán G, Benítez-Malvido J (2003) Effect of litter on the incidence of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra ambigens. Journal of Tropical Ecology, 19, 171-177.
19 Gerhardt K (1996) Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. Forest Ecology and Management, 82, 33-48.
20 Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107-145.
21 Hubbell SP, Foster RB (1986) Biology, chance, and history and the structure of tropical rain forest tree communities. In: Community Ecology (eds Diamond J, Case JT), pp. 314-329, Harper & Row, New York.
22 Hubbell SP(2001)The unified neutral theory of biodiversity and biogeography.Princeton University Press, Princeton & Oxford.
23 Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859-875.
24 Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
25 Kitajima K (1992) The importance of cotyledon functional morphology and patterns of seed reserve utilization for the physiological ecology of neotropcial tree seedling. PhD dissertation, Illinois Urbana-Champaign, Illinois.
26 Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419-428.
27 Kitajima K, Fenner M (2000) Ecology of seedling regeneration. In: Seeds: the Ecology of Regeneration in Plant Communities (ed. Fenner M), pp. 331-359.CABI, Oxon & New York.
28 Kobe RK, Pacala SW, Silander JA, Canham CD (1995) Juvenile tree survivorship as a component of shade tolerance. Ecological Applications, 5, 517-532.
29 Kobe RK, Vriesendorp CF (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecology Letters, 14, 503-510.
30 Kochummen KM, LaFrankie JV, Manokaran N (1990) Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Science, 3, 1-13.
31 Ley-López JM, Ávalos G, Chacón-Madrigal E (2016) Seedling growth and survival of five tree species in secondary forests and adjacent pastures in the montane rain forests of southern Costa Rica. Revista de Biología Tropical, 64, 1565-1583.
32 Lin F, Comita LS, Wang XG, Bai XJ, Yuan ZQ, Xing DL, Hao ZQ (2014) The contribution of understory light availability and biotic neighborhood to seedling survival in secondary versus old-growth temperate forest. Plant Ecology, 215, 795-807.
33 Lin LX, Comita LS, Zheng Z, Cao M (2012) Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905-914.
34 Liu HM, Yang QS, Fang XF, Ma ZP, Shen GC Zhang ZG, Wang ZH, Wang XH (2015) Influences on gap species richness in a subtropical evergreen broadleaved forest. Biodiversity Science, 23, 149-156. (in Chinese with English abstract)
[刘何铭, 杨庆松, 方晓峰, 马遵平, 沈国春, 张志国, 王樟华, 王希华 (2015) 亚热带常绿阔叶林林窗物种丰富度的影响因素. 生物多样性, 23, 149-156.]
35 Lu JM, Johnson DJ, Qiao XJ, Lu ZJ, Wang QG, Jiang MX (2015) Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. Journal of Plant Ecology, 8, 568-577.
36 McCarthy-Neumann S, Kobe RK (2010) Conspecific and heterospecific plant-soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology, 98, 408-418.
37 Peters HA (2003) Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765.
38 Song YC, Wang XR (1995)Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province. Shanghai Science and Technology Literature Press, Shanghai. (in Chinese with English summary)
[宋永昌, 王祥荣(1995) 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海.]
39 Tanouchi H, Sato T, Takeshita K (1994) Comparative studies on acorn and seedling dynamics of four Quercus species in an evergreen broad-leaved forest. Journal of Plant Research, 107, 153-159.
40 Turner IM (1990) Tree seedling growth and survival in a Malaysian rain forest. Biotropica, 22, 146-154.
41 von-Arnim A, Deng XW (1996) Light control of seedling development. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 215-243.
42 Walters MB, Kruger EL, Reich PB (1993) Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia, 94, 7-16.
43 Walters MB, Reich PB (1996) Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology, 77, 841-853.
44 Wills C (1996) Safety in diversity. New Scientist, 149, 38-42.
45 Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 87, 85-97.
46 Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
47 Xie YB, Ma ZP, Yang QS, Fang XF, Zhang ZG, Yan ER, Wang XH (2012) Coexistence mechanisms of evergreen and deciduous trees based on topographic factors in Tiantong region, Zhejiang Province, eastern China. Biodiversity Science, 20, 159-167. (in Chinese with English abstract)
[谢玉彬, 马遵平, 杨庆松, 方晓峰, 张志国, 阎恩荣, 王希华 (2012) 基于地形因子的天童地区常绿树种和落叶树种共存机制研究. 生物多样性, 20, 159-167.]
48 Xiong S, Nilsson C (1997) Dynamics of leaf litter accumulation and its effects on riparian vegetation: a review. Botanical Review, 63, 240-264.
49 Yan ER, Wang XH, Huang JJ (2006) Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil, 289, 187-197.
50 Yang QS, Ma ZP, Xie YB, Zhang ZG, Wang ZH, Liu HM, Li P, Zhang N, Wang DL, Yang HB, Fang XF, Yan ER, Wang XH (2011) Community structure and species composition of an evergreen broadleaved forest in Tiantong’s 20 ha dynamics plot, Zhejiang Province, eastern China. Biodiversity Science, 19, 215-223. (in Chinese with English abstract)
[杨庆松, 马遵平, 谢玉彬, 张志国, 王樟华, 刘何铭, 李萍, 张娜, 王达力, 杨海波, 方晓峰, 阎恩荣, 王希华 (2011) 浙江天童20 ha常绿阔叶林动态监测样地的群落特征. 生物多样性, 19, 215-223.]
51 Zahawi RA, Eckert C, Chaves-Fallas JM, Schwanitz L, Rosales JA, Holl KD (2015) The effect of restoration treatment soils and parent tree on tropical forest tree seedling growth. Open Journal of Forestry, 5, 154.
52 Zhang N, Wang XH, Zheng ZM, Ma ZP, Yang QS, Fang XF, Xie YB (2012) Spatial heterogeneity of soil properties and its relationships with terrain factors in broadleaved forest in Tiantong of Zhejiang Province, East China.Chinese Journal of Applied Ecology, 23, 2361-2369. (in Chinese with English abstract)
[张娜, 王希华, 郑泽梅, 马遵平, 杨庆松, 方晓峰, 谢玉彬 (2012) 浙江天童常绿阔叶林土壤的空间异质性及其与地形的关系. 应用生态学报, 23, 2361-2369.]
53 Zhu Y, Mi XC, Ma KP (2009) A mechanism of plant species coexistence: the negative density-dependent hypothesis. Biodiversity Science, 17, 594-604. (in Chinese with English abstract)
[祝燕, 米湘成, 马克平 (2009) 植物群落物种共存机制: 负密度制约假说. 生物多样性, 17, 594-604.]
54 Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer Science & Business Media, New York.
55 ЯрошенкоПД (translated by Fu ZZ) (1966) Geobotany, pp. 408. Science Press, Beijing.
(in Chinese) [傅子桢 (译) (1966) 地植物学, pp. 408. 科学出版社, 北京.]
[1] 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662.
[2] 谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10): 1054-1064.
[3] 刘帅, 廖嘉星, 肖翠, 范秀华. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7): 711-722.
[4] 刘晓静, 任思远, 李鹿鑫, 叶永忠, 袁志良, 王婷. 宝天曼国家级自然保护区落叶阔叶林密度制约效应对树木存活的影响[J]. 生物多样性, 2016, 24(6): 639-657.
[5] 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-.
[6] 陈云, 王婷, 李培坤, 姚成亮, 袁志良, 叶永忠. 河南木札岭温带落叶阔叶林群落特征及主要乔木空间分布格局[J]. 植物生态学报, 2016, 40(11): 1179-1188.
[7] 仲磊, 张杨家豪, 卢品, 顾雪萍, 雷祖培, 蔡延奔, 郑方东, 孙义方, 于明坚. 次生常绿阔叶林的群落结构与物种组成:基于浙江乌岩岭9 ha森林动态样地[J]. 生物多样性, 2015, 23(5): 619-629.
[8] 刘燕山, 郭栋, 张沛东, 张秀梅, 曾星, 张莹. 北方澙湖大叶藻植株枚订移植法的效果评估与适宜性分析[J]. 植物生态学报, 2015, 39(2): 176-183.
[9] 宋玉成, 李鹏飞, 杨道德, 温华军, 张玉铭, 蒋志刚. 湖北石首散养麋鹿种群的调控机制: 密度制约下种群产仔率下降[J]. 生物多样性, 2015, 23(1): 33-40.
[10] 苏嫄, 焦菊英, 王志杰. 陕北黄土丘陵沟壑区坡沟立地环境下幼苗的存活特征[J]. 植物生态学报, 2014, 38(7): 694-709.
[11] 李嵩, 郑新军, 唐立松, 李彦. 基于异速生长理论的准噶尔盆地荒漠灌丛形态研究[J]. 植物生态学报, 2011, 35(5): 471-479.
[12] 汪殷华, 米湘成, 陈声文, 李铭红, 于明坚. 古田山常绿阔叶林主要树种2002–2007年间更新动态[J]. 生物多样性, 2011, 19(2): 178-189.
[13] 张磊, 王晓荷, 米湘成, 陈建华, 于明坚. 古田山常绿阔叶林凋落量时间动态及冰雪灾害的影响[J]. 生物多样性, 2011, 19(2): 206-214.
[14] 穆宏平, 陈贻竹, 曹洪麟, 叶万辉. 不同来源AM真菌对朱砂根生长和生理特征的影响[J]. 生物多样性, 2010, 18(1): 83-89.
[15] 王瑾芳, 高贤明, 党伟光. 不同生境条件下紫茎泽兰实生幼苗的生存特性比较[J]. 生物多样性, 2008, 16(4): 346-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed