生物多样性, 2022, 30(7): 22381 doi: 10.17520/biods.2022381

纪念第19届国际植物学大会召开5周年专题

中国石松类和蕨类植物多样性研究进展

王婷,1,#, 舒江平,1,#, 顾钰峰,1, 李艳清,1, 杨拓,1, 徐洲锋3, 向建英,2, 张宪春,,4,*, 严岳鸿,,1,*

1.深圳市兰科植物保护研究中心兰科植物保护与利用国家林业和草原局重点实验室, 广东深圳 518114

2.西南林业大学生物多样性保护学院, 昆明 650224

3.中国科学院华南植物园, 广州 510650

4.中国科学院植物研究所系统与进化植物学国家重点实验室, 北京 100093

Insight into the studies on diversity of lycophytes and ferns in China

Ting Wang,1,#, Jiangping Shu,1,#, Yufeng Gu,1, Yanqing Li,1, Tuo Yang,1, Zhoufeng Xu3, Jianying Xiang,2, Xianchun Zhang,,4,*, Yuehong Yan,,1,*

1. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, Guangdong 518114

2. College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224

3. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650

4. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093

通讯作者: E-mail:yhyan@sibs.ac.cn;zhangxc@ibcas.ac.cn

第一联系人:

# 共同第一作者

编委: 马克平

责任编辑: 闫文杰

收稿日期: 2022-07-7   接受日期: 2022-07-20  

基金资助: 国家自然科学基金(32170216)
广东省基础与应用基础研究基金(2021A1515010920)

Corresponding authors: E-mail:yhyan@sibs.ac.cn;zhangxc@ibcas.ac.cn

First author contact:

# These authors contributed equally to this work

Received: 2022-07-7   Accepted: 2022-07-20  

摘要

石松类和蕨类植物是维管植物的第二大类群, 其起源可追溯到4亿年前。在被子植物出现之前, 石松类和蕨类植物在古地球生态系统中占主导地位, 其重要性一直延续到现在。自20世纪40年代开始, 中国石松类和蕨类植物研究就令世界瞩目, 尤其是2017年第19届国际植物学大会在中国深圳召开后的5年时间里, 中国石松类和蕨类植物研究更是面向世界、走向国际, 研究更为广泛的科学问题, 在物种多样性、保护、系统演化和生态适应性等方面取得了一系列重要研究进展。2017-2022年, 多个中国研究团队利用多组学数据构建了世界石松类和蕨类植物科级水平的生命之树并提出了关键性状孢子囊环带演化的新模式; 解决了石松类和蕨类植物中目级、科级、属级和种级众多关键的系统分类学等问题, 发表了106个新分类群; 开展了大量的植物区系调查和研究, 出版了6部中国石松类和蕨类植物多样性专著和1部世界性专著; 对65种国家重点保护的石松类和蕨类植物进行了迁地保护, 同时实现了桫椤科、水蕨属(Ceratopteris)、观音座莲属(Angiopteris)和鹿角蕨(Platycerium wallichii)等重点保护类群的孢子繁殖; 在系统发育框架下, 研究了石松类和蕨类植物的生态修复功能和生态适应性演化。通过对2017-2022年研究成果的总结和思考, 本文对未来石松类和蕨类植物的发展提出以下建议: (1)提高中国寡型科属以及世界性大科大属的关注力度; (2)加强西藏、四川等薄弱地区石松类和蕨类植物的调查研究, 并结合新技术, 如DNA条形码等以提高区系调查中物种鉴别的效率和准确性; (3)运用多学科交叉的研究方法厘清各科、属、种间系统关系的同时, 还应加强系统和生态适应性演化之间的协同研究; (4)关注石松类和蕨类植物系统位置作为陆生维管植物演化起点的共性科学问题; (5)加强石松类和蕨类植物系统分类学与生态学、植物化学、保护生物学等学科间交叉合作研究。

关键词: 维管植物; 新分类群; 国家重点保护植物; 系统发育

Abstract

Background: Lycophytes and ferns are the second largest group of vascular plants, dating back as far as 400 million years ago. Before the domination of angiosperms, lycophytes and ferns were the key component of ancient terrestrial ecosystems, and are still important to modern ecosystems today. Since the 1940s, the study of lycophytes and ferns in China has attracted worldwide attention. In the past five years since the 19th International Botanical Congress (IBC) held in Shenzhen in 2017, research on lycophytes and ferns in China has expanded internationally and focuses on a wider range of scientific issues. A series of important advances have been made on plant diversity, conservation, phylogeny, and ecological adaptation.
Results: From 2017 to 2022, the tree of life for lycophytes and ferns in the world has been reconstructed by the family level, and a new evolutionary model for the sporangium was proposed. Some of the phylogenetic and taxonomic problems of order, family, genus and species of lycophytes and ferns were solved, meanwhile 106 new taxa were published. A large number of floristic collections and studies have been conducted, and six Chinese plus one worldwide monographs on the diversity of lycophytes and ferns have been published. In addition, 65 species of lycophytes and ferns under state priority conservation have been ex situ protected, and spore reproduction has been achieved in priority conservation groups such as Cyatheaceae, Ceratopteris, Angiopteris and Platycerium wallichiia. The ecological restoration and adaptive evolution of lycophytes and ferns were studied under the phylogeny.
Perspectives: After literature survey on the research of lycophytes and ferns in China from 2017 to 2022, we make the following suggestions for future studies: (1) Focus future research on Chinese oligotypic families/genera and the worldwide mega-diverse families/genera. (2) Prioritize research in under-studied areas, such as Tibet and Sichuan, and utilize new technologies (e.g., DNA barcoding) to improve the efficiency and accuracy of species identification. (3) When clarifying the systematic relationship between families, genera, and species by using multi-disciplinary approaches, it is necessary to conduct research on plant evolutionary history and adaptation mechanisms. (4) Research efforts should focus on the common scientific conjecture of the systematic position of lycophytes and fern as the origin for the evolution of terrestrial vascular plants. (5) Pay more attention to the cooperation among the phylogenetics, ecology, phytochemistry, conservation biology and other subjects of lycophytes and ferns.

Keywords: vascular plants; new taxa; wild plants under state priority conservation; phylogeny

PDF (7257KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王婷, 舒江平, 顾钰峰, 李艳清, 杨拓, 徐洲锋, 向建英, 张宪春, 严岳鸿 (2022) 中国石松类和蕨类植物多样性研究进展. 生物多样性, 30, 22381. doi:10.17520/biods.2022381.

Ting Wang, Jiangping Shu, Yufeng Gu, Yanqing Li, Tuo Yang, Zhoufeng Xu, Jianying Xiang, Xianchun Zhang, Yuehong Yan (2022) Insight into the studies on diversity of lycophytes and ferns in China. Biodiversity Science, 30, 22381. doi:10.17520/biods.2022381.

传统的蕨类植物(pteridophytes)由两个不同的进化谱系, 即石松类(lycophytes)和蕨类植物(ferns)组成(Pryer et al, 2001; Smith et al, 2006; PPG I, 2016), 同时也是高等植物中配子体和孢子体都可以独立生活的植物类群(Haufler et al, 2016)。根据化石记录, 石松类和蕨类植物最早可追溯到4亿年前, 是地球上起源最为古老的维管植物(Qi et al, 2018; Shen et al, 2018; 严岳鸿等, 2019; Huang et al, 2020), 同时也是维管植物中继被子植物之后的第二大类群。虽然被子植物在生态系统中占据了主导地位, 但蕨类植物也演化产生了适应多样化环境的形态和物种多样性, 在各生态系统中仍发挥着重要作用(Schneider et al, 2004; Ranker & Haufler, 2008; Huang et al, 2020; Du et al, 2021)。中国幅员辽阔, 拥有复杂多样的地貌和气候条件, 是世界上石松类和蕨类植物最为丰富的地区之一。根据《中国生物物种名录》2022版(The Biodiversity Committee of Chinese Academy of Sciences, 2022)最新统计, 我国共有石松类3科12属165种4个种下分类群, 蕨类植物38科177属2,215种228个种下分类群, 为植物学家们提供了丰富的研究材料。自20世纪40年代秦仁昌先生发表水龙骨科自然分类系统, 中国石松类和蕨类植物研究就开始令世界瞩目。尤其是2017年第19届国际植物学大会在中国深圳召开后的5年时间里, 中国石松类和蕨类植物研究更是面向世界、走向国际, 研究更为广泛的科学问题, 在物种多样性、植物保护、系统演化和生态适应性等方面取得了一系列重要进展(Qi et al, 2018; Shen et al, 2018; Huang et al, 2020; Du et al, 2021; Wei R et al, 2021; Wang et al, 2022)。本文对2017-2022年中国石松类和蕨类植物的物种多样性、保护、系统演化和生态适应性等研究进展进行综述, 以期为未来中国石松类和蕨类植物的研究提供参考。

1 石松类和蕨类植物多样性

1.1 新分类群的基本情况以及所属科级、命名学者统计

根据International Plant Names Index (IPNI; https://www.ipni.org/)和Chinese Plant Names Index (CPNI; http://cpni.ibiodiversity.net/)数据库, 我们系统检索了2017-2022年中国以及世界石松类和蕨类植物新分类群的条目情况。经过数据汇总、整理和统计(表1, 附录1), 2017-2022年中国境内共发表石松类和蕨类植物新分类群106个, 其中新科1个, 新属3个, 新种101个, 新种下分类群1个; 发表新组合86个, 新名称4个, 中国新记录9个, 新异名17个, 新指定模式20个, 并对1个名称进行了修正。其中牙蕨科(Pteridryaceae)是中国学者在PPG I (2016)后发表的第1个新科(Zhou et al, 2018)。结合2000-2021年IPNI和CPNI的数据(附录2-4), 中国石松类和蕨类植物新分类群数量占世界石松类和蕨类植物新分类群数量的比例在近22年内呈随机波动的状态, 但近5年来大致呈现上升趋势(图1), 从2017年的5.05%增加到2021年的6.34%。虽然中国石松类和蕨类植物发表的新分类群数量显著少于种子植物(杜诚等, 2021), 但在全世界背景下, 中国新发现石松类和蕨类植物的比例并不亚于中国维管植物总体或种子植物新发现类群所占的比例。

表1   2017-2022年中国境内石松类和蕨类植物新分类学材料发表情况

Table 1  New taxonomic materials of lycophytes and ferns published in China from 2017 to 2022

年份
Year
新科
New family
新属
New genus
新种
New
Species
新种下分类群
New infraspecific taxon
新组合
New combination
新名称
New
name
新记录
New
record
新异名
New synonyms
新模式标定
New typification
新订正
New
correction
2017--16-21-11-
20181-19-152264-
2019--18-27-5712-
2020-37191111-
2021--26-33-1221
2022--15-------
汇总 Sum131011864917201

‘-’字符代表空缺; 2022年发表的石松类和蕨类植物新分类学材料的统计截至2022年7月1日。

The ‘-’ character represents the vacancy. Statistics on the new taxonomic materials of lycophytes and ferns published in 2022 are as of July 1, 2022.

新窗口打开| 下载CSV


图1

图1   2000-2021年中国与世界维管植物新分类群的数量及比例

Fig. 1   Number and proportion of new taxa of vascular plants in China and in the world from 2000 to 2021


以PPG I (2016)系统为框架, 对新发表类群所属的科级水平进行归类统计。结果显示, 2017-2022年, 中国新增分类群主要集中在鳞毛蕨科(新增34个新分类群, 下同)、铁角蕨科(13个)、凤尾蕨科(10个)、卷柏科(8个)等物种较多的科中(表2)。根据2017-2022年世界石松类和蕨类植物各科新增物种数目与PPG I (2016)中各科记载的物种数目的比值, 可知各类群近年来在世界范围内的增长情况, 以此比例和《中国生物物种名录》(严岳鸿等, 2016)记载各科物种数目为基准, 可估算中国2017-2022年各类群增长数目的期望值(表2)。结果显示, 中国卷柏科(期望增长3.37个/实际增长8个, 下同)、水韭科(0.44/4)、双扇蕨科(0.45/1)、里白科(0.71/1)、蹄盖蕨科(3.04/5)、肿足蕨科(4.14/7)和叉蕨科(0.17/1) 2017-2022年新增物种的数目均高于期望值, 且近22年在世界新分类群中占较高的比例(图2B)。而以亚洲为主要或部分分布中心的金星蕨科(123.94/2)、水龙骨科(96.00/5)、凤尾蕨科(112.36/10)、碗蕨科(11.60/0)、石松科(7.47/3)实际增长的物种数目则显著小于期望值。此外, 从2000-2022年中国新类群的发现数量以及与世界发现数量比较的情况来看(附录5), 岩蕨科(中国新增2个, 世界新增384个, 下同)、膜蕨科(2/218)、藤蕨科(2/182)、乌毛蕨科(0/303)、瓶尔小草科(2/54)、骨碎补科(1/51)、莎草蕨科(0/43)、木贼科(0/16)、松叶蕨科(0/3)、紫萁科(0/13)、蓧蕨科(0/17)、蘋科(0/6)等类群近22年在中国境内均无较多甚至无新分类群发现。

表2   2017-2022年中国与世界石松类和蕨类植物新物种(含种下分类群)所属科级统计

Table 2  Statistics of new species and infraspecific taxon of lycophytes and ferns in China and the world from 2017 to 2022

科名
Famliy
世界物种数
No. of species in the world (a)
世界新增物种数 No. of new species in the world (b)中国物种数No. of species in China中国新增物种数 No. of new species in China世界新增物种数/世界物种数
b/a
中国期望新增物种数 Expected values of new species in China实际值与期望值的比较 Comparison of actual and expected values
石松科Lycopodiaceae388426930.117.470
卷柏科Selaginellaceae700327380.053.341
水韭科Isoetaceae25022540.090.441
木贼科Equisetaceae1521000.131.330
松叶蕨科Psilotaceae170100.000.000
瓶尔小草科Ophioglossaceae112132200.122.550
合囊蕨科Marattiaceae111193010.175.140
紫萁科Osmundaceae185800.282.220
膜蕨科Hymenophyllaceae434445120.105.170
马通蕨科Matoniaceae40NANA0.00NANA
双扇蕨科Dipteridaceae111510.090.451
里白科Gleicheniaceae15771610.040.711
海金沙科Lygodiaceae400900.000.000
莎草蕨科Schizaeaceae356200.170.340
双穗蕨科Anemiaceae1150NANA0.00NANA
槐叶蘋科Salviniaceae212500.100.480
蘋科Marsileaceae612300.030.100
伞序蕨科Thyrsopteridaceae10NANA0.00NANA
柱囊蕨科Loxsomataceae20NANA0.00NANA
垫囊蕨科Culcitaceae20NANA0.00NANA
瘤足蕨科Plagiogyriaceae150800.000.000
金毛狗科Cibotiaceae90200.000.000
丝囊蕨科Metaxyaceae60NANA0.00NANA
蚌壳蕨科Dicksoniaceae358NANA0.23NANA
桫椤科Cyatheaceae6431271420.202.770
袋囊蕨科Saccolomataceae180NANA0.00NANA
花楸蕨科Cystodiaceae10NANA0.00NANA
番茄蕨科Lonchitidaceae20NANA0.00NANA
鳞始蕨科Lindsaeaceae23401700.000.000
凤尾蕨科Pteridaceae1,211579235100.48112.360
碗蕨科Dennstaedtiaceae265585300.2211.600
冷蕨科Cystopteridaceae3702000.000.000
轴果蕨科Rhachidosoraceae80500.000.000
肠蕨科Diplaziopsidaceae40300.000.000
链脉蕨科Desmophlebiaceae20NANA0.00NANA
半网蕨科Hemidictyaceae10NANA0.00NANA
铁角蕨科Aspleniaceae730153108130.2122.640
岩蕨科Woodsiaceae39862412.2152.920
球子蕨科Onocleaceae50400.000.000
乌毛蕨科Blechnaceae265401400.152.110
蹄盖蕨科Athyriaceae650728250.013.041
金星蕨科Thelypteridaceae1,03464419920.62123.940
翼盖蕨科Didymochlaenaceae10100.000.000
肿足蕨科Hypodematiaceae2271370.324.141
鳞毛蕨科Dryopteridaceae2,115161496340.0837.760
肾蕨科Nephrolepidaceae190500.000.000
藤蕨科Lomariopsidaceae6959420.863.420
三叉蕨科Tectariaceae25014210.000.171
蓧蕨科Oleandraceae154500.271.330
骨碎补科Davalliaceae65101700.152.620
水龙骨科Polypodiaceae1,65259426750.3696.000

NA表示中国没有分布; 世界物种数据来源于PPG I (2016), 中国物种数据来源于《中国生物物种名录》(严岳鸿等, 2016)。表格最后一列数值‘0’代表实际值 < 期望值; 数值‘1’代表实际值 > 期望值。

NA means no distribution in China. The number of species in the world and in China derived from PPG I (2016) and Species Catalogue of China (Yan et al, 2016), respectively. The value ‘0’ in the last column of the Table 2 represents actual value < expected value and the ‘1’ represents actual value > expected value.

新窗口打开| 下载CSV


图2

图2   (A)石松类和蕨类植物的系统结构(PPG I, 2016); (B) 2000-2022年中国及世界石松类和蕨类植物各科级新分类群数量及比例, 其中PPG I记载的物种数量截止到2016年。

Fig.2   (A) The phylogeny of lycophytes and ferns (PPG I, 2016); (B) Number and proportion of new taxa of lycophytes and ferns by family in China and the world from 2000 to 2022, among which the number of species recorded by PPG I was up to 2016.


2017-2022年的106个石松类和蕨类植物新分类群主要由75位中外学者(中国学者65位, 国外学者10位)完成, 其中发表新分类群数量较多的学者依次为张丽兵(Li Bing Zhang, 50个新分类群, 下同)、张良(Liang Zhang, 11)、许可旺(K. W. Xu, 10)、严岳鸿(Y. H. Yan, 9)、张宪春(X. C. Zhang, 8)、刘演(Yan Liu, 8)等; 涉及新类群所属科达5个以上的学者仅有3位, 为张丽兵(涉及9个科, 下同)、张良(5)和严岳鸿(5); 56%的学者在2017-2022年间仅参与过1个物种的命名。另外, 新分类群发表单位共计46家, 主要集中在中国科学院成都生物研究所、密苏里植物园、中国科学院昆明植物研究所、深圳市兰科植物保护研究中心、中国科学院华南植物园和南京林业大学等。根据2017-2022年中国石松类和蕨类植物参与新分类群命名者的人数(共计241人次)与新分类群发表数目(共计106个)的比例可知, 1个新分类群平均需要2.27人参与发表, 其中鳞毛蕨科(期望作者77.30人次/实际作者80人次, 下同)、铁角蕨科(29.56/34)、肿足蕨科(15.92/21)、水韭科(9.09/13)、金星蕨科(4.55/5)、牙蕨科(2.27/4)、合囊蕨科(2.27/3)、岩蕨科(2.27/3)的实际参与人数高于期望参与人数, 可被认为是中国学者广泛关注的类群(图3, 附录6)。

图3

图3   (A)石松类和蕨类植物的系统结构(PPG I, 2016); (B) 2017-2022年发表新分类群所属科级、命名学者和发表单位的对应关系(第一列 ‘—’代表中国没有分布或没有新分类群增加的科; 命名人只显示命名新分类群大于1个的学者)。

Fig. 3   (A) The phylogeny of lycophytes and ferns (PPG I, 2016); (B) The correlation among the family, authors and author affiliation of the new taxa from 2017 to 2022 (The first column ‘—’ represents the families with no distribution or no new taxon addition in China; Authors only show researchers who have named more than one new taxon).


1.2 新分类群的分布格局与调查分布空间

以2017-2022年和2000-2022年为时间界线, 对中国石松类和蕨类植物新物种、新种下分类群和中国新记录所属省份进行统计。结果显示(表3), 我国在这2个时间段发表的石松类和蕨类植物新物种、新种下分类群和国家新记录主要集中分布在某些热点或优先保护区域, 如云南、贵州、广西等地。其中, 云南新类群分布最多, 2000-2022年和2017-2022年共计发表了71和33个新物种、17和0个种下分类群、11和1个中国新记录, 占中国近22年来新发表物种数量的1/4, 是国内外学者广泛关注的区域; 其次为贵州, 2000-2022年和2017-2022年共计发表了59和20个新物种、7和0个新种下分类群、2和0个中国新记录, 占中国近22年来新发表物种数量的1/6。然而, 同样位于生物多样性热点区域的西藏和四川, 近年来在被子植物新发现上存在较高的密度(杜诚等, 2021), 但在石松类和蕨类植物类群上并没有体现, 推测与这些区域石松类和蕨类植物专类调查不充分、研究人员较少具有一定的关系。

表3   中国各省级行政区划新分类群发现的数量和采集空间分布情况

Table 3  The number of new taxa and the spatial distribution of collection in provincial administrative area of China

省级行政区划
Provincial administrative area
2017-2022年2000-2022年
新种
New
species
新种下分类群 New infraspecific taxon新记录
New
record
采集密度
Sampling density
新种
New
species
新种下分类群 New infraspecific taxon新记录
New
record
采集密度
Sampling density
安徽Anhui--22642-3267
澳门Aomen--------
北京Beijing---31-1-52
重庆Chongqing1--11761-142
福建Fujian1--109311174
甘肃Gansu---101--1138
广东Guangdong9--1,943161-3,764
广西Guangxi16--12429-3646
贵州Guizhou20--7865972912
海南Hainan7--10816-2535
河北Hebei---14---21
黑龙江Heilongjiang1---1-1-
河南Henan---26---28
香港Hong Kong1---22--
湖北Hubei---2,40743-3,218
湖南Hunan4--1028-1719
江苏Jiangsu---69---104
江西Jiangxi1--5643111,329
吉林Jilin---2---8
辽宁Liaoning--------
内蒙古Nei Mongol----1-1-
宁夏Ningxia---14----
青海Qinghai---9---11
陕西Shaanxi---923-195
山东Shandong3--565--77
上海Shanghai---1--8
山西Shanxi---371-1-
四川Sichuan5--1751623837
台湾Taiwan13162255107
天津Tianjin---1----
新疆Xinjiang---15--244
西藏Xizang2--2113153999
云南Yunnan33-12,4247117116,826
浙江Zhejiang1--6855--724

‘-’字符代表空缺; 2017-2022年采集密度数据来源于Biotracks; 2000-2022年采集密度数据来源于GBIF和Biotracks.

The ‘-’ character represents the vacancy. The density data of sample collection for 2017-2022 derived from Biotrakcs, and 2000-2022 derived from GBIF and Biotrakcs.

新窗口打开| 下载CSV


Biotracks软件是2016年9月对外上线的一款自然观察类的公众科学应用, 截至目前(2022年7月26日)已有35,953位自然观察者, 累积2,314,943个坐标点, 已被各类科学调查和自然观察项目广泛使用(徐洲锋等, 2021), 在中国采集记录中具有一定参考性。为了解我国石松类和蕨类植物标本的采集状况, 预测可能的采集空缺, 我们调取和整理了Biotracks (http://www.biotracks.cn/) 2017-2022年和Global Biodiversity Information Facility (GBIF; https://www.gbif.org/ ) 2000-2022年关于中国石松类和蕨类植物的采集标本点, 并对各省份进行采集分布空间统计和提取(表3)。2个时间段的采集分布空间结果均显示调查密度总体上与新分类群、新记录发现的数量成正比(表3)。2017-2022年期间, Biotracks分布空间数据显示云南、广东、贵州、大别山区、黄山-怀玉山区、大巴山区、岷山-横断山北段区等地具有较高的采集分布空间, 生物多样性薄弱的西北、华北等地采集密度普遍较低; 而西藏、四川等存在部分采集空缺区域。

1.3 区系地理

植物区系地理研究对了解某一区域的植物种类组成、地理成分以及区系之间亲缘关系具有重要意义(严岳鸿等, 2014)。2017-2022年来, 我国石松类和蕨类植物区系地理研究的报道不胜枚举, 研究地域主要集中在贵州、海南、广东、江西、浙江、云南等省份(陈志红等, 2017; 康婉媚等, 2017; 王倩等,2017; 张潮等, 2017; 张凯等, 2017; 张廷跃和李艳, 2017; 赵清, 2017( 赵清 (2017) 惠东县栋梁嶂森林公园植物区系及资源分析. 硕士学位论文, 仲恺农业工程学院, 广州.); 朱晓峰和徐梅梅, 2017; 丁扬等, 2018; 姬红利等, 2018; 季必浩等, 2018; 孔华清等, 2018; 李冬琳等, 2018; 汤丹丹等, 2018; 王牌等, 2018; 夏顺颖, 2018; 张伟清等, 2018; 陈日红等, 2019; 林汝强等, 2019; 沈秋慧, 2019; 宋佳昱, 2019(② 宋佳昱 (2019) 海南琼海白石岭自然植物群落及野生观赏植物资源调查应用研究. 硕士学位论文, 海南大学, 海口.); 王清隆等, 2019; 王宗琪等, 2019; 陈莉娟等, 2020; 邓夏雨等, 2020; 邓贤兰和徐佳红, 2020; 杜晓洁等, 2020; 侯天文等, 2020; 胡根秀等, 2020; 胡伟等, 2020; 刘政等, 2020; 王梦楠等, 2020; 蔡国俊等, 2021; 胡佳玉等, 2021; 徐国良和曾晓辉, 2021; 杨礼旦, 2021; 代亮亮等, 2022; 黎明等, 2022; 李金亮等, 2022; 王德芬等, 2022; 杨丹等, 2022), 与采集密度数据大体一致(表3)。从这些研究报道来看, 涉及到石松类和蕨类植物的区系研究主要集中在某一个山区或保护区内小范围地开展, 而对于更大范围甚至是全国性的石松类和蕨类植物区系研究鲜有报道。针对某一地区开展的调查研究或某一时期国内石松类和蕨类植物物种统计结果整理成研究报告或者专著, 也是对物种多样性的思考和总结。2017-2022年间, 一系列石松类和蕨类植物调查研究的专著被出版, 如《中国茂兰石松类与蕨类植物》(张宪春和姚正明, 2017)、《梵净山蕨类植物》(苟光前等, 2017)、《海南蕨类植物》(严岳鸿和周喜乐, 2018)、《中国武陵山区蕨类植物》(严岳鸿和周喜乐, 2021)、《华东石松类与蕨类植物多样性编目》(金冬梅和严岳鸿, 2021)、《广州石松类和蕨类植物》(董仕勇, 2022)等。尽管我国石松类和蕨类植物区系调查研究在近年来取得较好的成绩, 但仍存在许多调查空白或薄弱区域, 例如华北地区和西北西区(表3)。

随着我国综合国力的增强和植物学研究的长足发展, 国内研究学者开始走出国门, 联合其他国家的科研院所到国外进行植物考察。在2017-2022年期间, 我国植物学家参与并完成了东非肯尼亚和加那利群岛维管植物的多样性调查和编目, 分别记载2个地区石松类和蕨类植物22科60属140种(周亚东, 2017)和21科30属63种, 并于2021年出版了Flora of Canary Islands (Xin et al, 2021)。Shang等(2018)发表了亚洲太平洋地区的蕨类植物新属卫蕨属(Hiya), 并对马达加斯加(Shang et al, 2020)和亚洲太平洋地区(Shang et al, 2021)翼盖蕨属(Didymochlaena)植物进行修订并发表了多个新分类群; Wei等(2022)对亚洲芒萁属(Dicranopteris)植物进行分类修订并发表了新种巴厘岛芒萁(Dicranopteris baliensis); Zhang MH等(2021)、Wu等(2017)、Dong等(2022)对越南的卷柏科、叉蕨科等植物进行研究, 发表分布于越南的新种Selaginella pseudotamariscinaS. guihaiaTectaria fungii。协助其他国家完成植物调查和编目, 在了解世界生物多样性的同时, 也提高了我国植物研究在世界舞台上的影响力, 并为我国研究院所和高校师生提供了第一手学习资料。

2 国家重点保护石松类和蕨类植物研究进展

2.1 名录变动

经国务院批准, 国家林业和草原局和农业农村部于2021年9月8日正式公布了新版《国家重点保护野生植物名录》(http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm, 以下简称新版名录)。石松类和蕨类植物作为受保护的重要类群之一, 被列入国家重点保护的野生植物有8种和7类。根据《中国生物物种名录》2022版最新统计以及近期正式发表的新物种(Lu et al, 2021; Shu et al, 2022a; Yu et al, 2022), 国家重点保护石松类和蕨类植物总计约128种, 隶属于11科17属(鲁兆莉等, 2021), 其中国家一级重点保护野生植物11种, 国家二级重点保护野生植物117种(附录7)。与第一批名录(1999年)相比, 新版名录增加了石松科石杉属(Huperzia)和马尾杉属(Phlegmariurus)、合囊蕨科观音座莲属(Angiopteris)的所有物种, 以及瓶尔小草科带状瓶尔小草(Ophioderma pendulum)和凤尾蕨科荷叶铁线蕨(Adiantum nelumboides)。同时, 由于物种分布较广、数量多、居群相对稳定而不易遭到破坏, 新版名录删减了6种野生蕨类植物, 即鳞毛蕨科的单叶贯众(Cyrtomium hemionitis)和玉龙蕨(Polystichum glaciale)、桫椤科的小黑桫椤(Alsophila metteniana)和粗齿桫椤(A. denticulata)、凤尾蕨科的中国蕨(Aleuritopteris grevilleoides)和水龙骨科的扇蕨(Neocheiropteris palmatopedata)。

新版名录的一个重要特征是在科级和属级水平对一些重要的类群进行了所有种的保护。在科属级别进行全部保护的石松类和蕨类植物有7个类群, 包括石杉属、马尾杉属、水韭属(Isoetes)、观音座莲属、金毛狗属(Cibotium)、水蕨属(Ceratopteris)和桫椤科(除小黑桫椤和粗齿桫椤)。一方面, 因为这些类群中的绝大多数物种为经济濒危种(严岳鸿等, 2006), 具有重要的药用、食用和观赏价值, 很容易受到人为采挖破坏。例如, 石杉属和马尾杉属植物广布于热带和亚热带地区, 在我国主产西南和华南, 东北、西北及华东也有分布。由于含有治疗阿尔兹海默症的有效成分——石杉碱甲(Ma et al, 2006, 2007), 而被作为重要的传统药材广泛利用(李国树和徐成东, 2009; 赵刚等, 2018)。而且, 由于石杉碱甲的化学合成步骤繁杂、条件苛刻、成本高、收率低等问题, 未能通过人工化学合成而实现量产(Ferreira et al, 2016), 目前仍然主要从植物中提取, 因此对野生石杉属和马尾杉属植物消耗巨大(马小军等, 2009; 赵刚等, 2018; 谢峻等, 2020)。然而, 石杉属和马尾杉属植物的植株生长缓慢、孢子萌发时间长、种群更新能力弱(鞠錾, 2009( 鞠錾 (2009) 四种石杉科植物中产生石杉碱甲的内生真菌的分离、鉴定和其石杉碱甲含量的测定. 硕士学位论文, 复旦大学, 上海.); 齐耀东和王德立, 2017; 肖友利等, 2020), 其中石杉属植物完成一个完整的生活史约需15-20年之久(齐耀东和王德立, 2017), 一旦植物遭到破坏就很难再恢复(陈思思等, 2021)。另一方面, 这些类群中大多数物种为演化濒危种, 即处于演化系统基部类群的孑遗物种(严岳鸿等, 2006)。它们在地理分布区上表现出孑遗性、间断性、边缘性或孤立性; 环境变化或人为活动的长期干扰可能导致其分布区正逐渐缩小, 如桫椤科、莲座蕨属等。另外, 这些类群还存在较强的物种相似性, 即与同属的其他物种容易混淆(鲁兆莉等, 2021), 在整个属级水平进行保护才有可能实现对濒危野生蕨类植物的有效保护, 具有更好的可操作性。

图4

图4   国家重点保护野生石松类和蕨类植物代表。A: 南岭石杉; B: 广东马尾杉; C: 中华水韭; D: 七指蕨; E: 荷叶铁线蕨; F: 光叶蕨; G: 天星蕨; H: 福建观音座莲; I: 带状瓶尔小草; J: 金毛狗; K: 苏铁蕨; L: 海南白桫椤; M: 水蕨; N: 对开蕨; O: 鹿角蕨。

Fig. 4   Representatives of wild lycophytes and ferns under state priority conservation. A, Huperzia nanlingensis; B, Phlegmariurus guangdongensis; C, Isoetes sinensis; D, Helminthostachys zeylanica; E, Adiantum nelumboides; F, Cystopteris chinensis; G, Christensenia aesculifolia; H, Angiopteris fokiensis; I, Ophioderma pendulum; J, Cibotium barometz; K, Brainea insignis; L, Sphaeropteris hainanensis; M, Ceratopteris thalictroides; N, Asplenium komarovii; O, Platycerium wallichii.


2.2 濒危等级评估

物种的濒危等级是制定国家重点保护野生植物名录的重要参考依据。世界自然保护联盟(International Union for Conservation of Nature, IUCN)濒危物种红色名录等级和标准是目前国内外学者普遍采用的一种相对客观的评价标准。近年来, 中国学者根据IUCN等级和标准初步对中国石松类和蕨类植物的濒危等级进行了评估(董仕勇, 2004; 严岳鸿等, 2014; 董仕勇等, 2017), 但由于资料缺乏, 很多物种难以准确评估。2013年, 严岳鸿等对中国2,456种蕨类植物进行IUCN等级评估, 结果显示中国的蕨类植物中, 属于灭绝(EX)的有埃及蘋(Marsilea aegyptiaca)、光叶蕨(Cystoathyrium chinense) 2种, 属于极危(CR)的有荷叶铁线蕨(Adiantum nelumboides)等33种, 属于濒危(EN)的有对开蕨(Asplenium komarovii)等51种, 属于易危(VU)的有雨蕨(Gymnogrammitis dareiformis)等109种, 属于近危(NT)的有阔片乌蕨(Sphenomeris biflora)等158种, 属于无危(LC)的有狗脊(Woodwardia japonica)等845种, 不宜评估(NE)的有细叶满江红(Azolla filiculoides)等3种, 数据缺乏(DD)的有1,255种(严岳鸿等, 2014)。2017年, 董仕勇等对中国2,244种(包括亚种和变种)蕨类植物进行IUCN红色名录等级评估, 结果显示极危物种有43种(其中6种可能已经灭绝)、濒危物种有68种、易危物种有71种、近危物种有66种、无危物种1,124种、数据缺乏的物种有872种(董仕勇等, 2017)。

根据中国石松类和蕨类植物的濒危等级评估结果(严岳鸿等, 2014; 董仕勇等, 2017), 在新版名录收录的128种国家重点保护野生蕨类植物中, 地区灭绝物种有2种, 极危物种有25种, 濒危物种有8种, 易危物种有63种, 近危物种有8种, 无危物种有5种, 数据缺乏的物种有17种(表4)。新版名录中重点保护的受威胁物种(即濒危等级为极危、濒危和易危的物种)约占中国受威胁石松类和蕨类植物物种的54%, 但仍有83种濒危蕨类植物未得到政策保护。

表4   中国石松类和蕨类植物红色名录评估

Table 4  Red list assessment of lycophytes and ferns in China

类别 Classification总数
Total
极危 Critically Endangered濒危Endangered易危Vulnerable近危 Near Threatened无危 Least Concern数据缺乏 Data Deficient
中国石松类和蕨类植物
Lycophytes and ferns in China
2,244436871661,124872
国家重点保护野生石松类和蕨类植物
The wild lycophytes and ferns under state priority conservation
128258638517
国家重点保护野生石松类和蕨类植物中的迁地保护植物 Ex situ conservation of wild lycophytes and ferns under state priority conservation6214427527

新窗口打开| 下载CSV


2.3 保护与繁育现状

植物迁地保护是指将植物种子或活植株移到人工创造的适宜环境中保存, 使其避免受到自然灾害或人为因素的影响(周桔等, 2021)。对于野外原生境遭到破坏、种群存续受到巨大威胁的植物物种而言, 迁地保护是进行抢救性保护的有效手段(周桔等, 2021)。植物园在植物迁地保护中扮演着主要角色, 据全国各大植物园统计, 目前引种保存的石松类和蕨类植物约2,000种(含品种), 其中中国本土石松类和蕨类植物约1,500种(严岳鸿和石雷, 2014)。植物园迁地保护的国家重点保护野生蕨类植物约65种(附录7), 且绝大多数为观赏植物, 如鹿角蕨(Platycerium wallichii)、对开蕨、苏铁蕨(Brainea insignis)、荷叶铁线蕨、马尾杉属、观音座莲属和桫椤科等, 而其他一些濒危石松类和蕨类保护植物, 如石杉属(二级)、水韭属(一级)、水蕨属(二级)和光叶蕨(一级), 迁地保护的种类则相对较少(图5)。一方面, 引种具有观赏价值的植物对于植物园的景观设计和开发应用具有重要作用; 另一方面, 各植物园目前引种保存的石松类和蕨类植物均为容易栽培存活的类群, 而石杉属、天星蕨(Christensenia aesculifolia)等生境地域狭窄且繁育困难的类群, 其迁地保护存活率均较低, 在现阶段应以就地保护为首要的保护措施, 辅以不破坏现有资源的繁育技术研究。

图5

图5   国家重点保护石松类和蕨类植物迁地保护物种数量及其占比

Fig. 5   The number and proportion of ex situ conservation of lycophytes and ferns under state priority conservation


我国对蕨类配子体的研究及繁育最早可以追溯到20世纪80年代的哈尔滨师范大学包文美教授, 其先后对问荆(Equisetum arvense)、卷柏(Selaginella tamariscina)及水龙骨科、岩蕨科、铁角蕨科、紫萁科、(原)中国蕨科、(原)铁线蕨科等蕨类植物进行了繁育研究。随后, 哈尔滨师范大学的刘保东教授和上海师范大学的王全喜教授继续对多种中国产的蕨类植物进行了孢子繁育和系统的配子体发育研究(严岳鸿和石雷, 2014)。近年来随着国家对生态文明建设的逐渐重视, 深圳市中国科学院仙湖植物园、中国科学院上海辰山植物园、中国科学院华南植物园、中国科学院西双版纳植物园、南京林业大学、西南林业大学等研究单位和高校都相继开展了石松类和蕨类植物的繁育工作, 其中孢子繁育研究主要集中在薄囊蕨类, 特别是外形美观、常用来做观赏植物开发的蕨类植物最多, 如凤尾蕨科、水龙骨科和铁角蕨科等, 其次是易于存活适合做园林搭配的蕨类植物, 如蹄盖蕨科、鳞毛蕨科、乌毛蕨科等。国家重点保护石松类和蕨类植物的孢子繁育近年来也取得了一定的研究成果(表5), 特别是桫椤科、水蕨属、鹿角蕨等植物, 这些类群植物的孢子繁育成活率已明显大大提高。另外, 福建观音座莲(Angiopteris fokiensis)的孢子萌发培养体系也在去年得到了新突破(何俊等, 2021), 填补了观音座莲属孢子萌发培养体系长期研究的空白, 为该属其他物种的保护、开发和利用提供了重要的理论基础和技术支持。与此同时, 还有一些演化较为原始或孑遗的石松类和蕨类植物, 如带状瓶尔小草、七指蕨、天星蕨、石杉属、马尾杉属等植物的孢子繁育瓶颈仍没有得到解决, 是后续需要重点关注的类群。

表5   孢子繁殖成功的国家重点保护石松类和蕨类植物

Table 5  Spore reproduction success of lycophytes and ferns under state priority conservation

科 Family种 Species文献 References
石松科 Lycopodiaceae蛇足石杉 Huperzia serrata焦瑜等, 2014
粗糙马尾杉 Phlegmariurus squarrosus唐军等, 2015
水韭科 Isoёtaceae中华水韭 Isoëtes sinensis路靖等, 2013; 邢建娇等, 2013
云贵水韭 Isoëtes yunguiensis焦瑜等, 2014; 骆强等, 2016
瓶尔小草科 Ophioglossaceae七指蕨 Helminthostachys zeylanica宋莉英等, 2015
合囊蕨科 Marattiaceae福建观音座莲 Angiopteris fokiensis曾汉元和丁炳扬, 2003; 何俊等, 2021
秦氏观音座莲 Angiopteris chingii焦瑜等, 2014
相马氏观音座莲 Angiopteris somae焦瑜等, 2014
圆基观音座莲 Angiopteris subrotundata焦瑜等, 2014
河口观音座莲 Angiopteris hokouensis焦瑜等, 2014
披针观音座莲 Angiopteris caudatiformis焦瑜等, 2014
王氏观音座莲 Angiopteris wangii焦瑜等, 2014
天星蕨 Christensenia assamica焦瑜等, 2014
金毛狗科 Cibotiaceae金毛狗 Cibotium barometz张祖荣等, 2010; 邢建娇等, 2012; 王益和, 2012
桫椤科 Cyatheaceae桫椤 Alsophila spinulosa王金娟等, 2007; 王辉等, 2013
中华桫椤 Alsophila costularis王金娟等, 2007; 刘保东等, 2020
粗齿桫椤 Alsophila denticulata曾汉元和丁炳扬, 2003
笔筒树 Sphaeropteris lepifera马洪娜等, 2010
白桫椤 Sphaeropteris brunoniana蒋胜军等, 2002; 王金娟等, 2007; 陈贵菊等, 2008
海南白桫椤 Sphaeropteris hainanensis蒋胜军等, 2002
滇南桫椤 Alsophila austroyunnanensis焦瑜等, 2014
黑桫椤 Alsophila podophylla张祖荣等, 2010; 焦瑜等, 2014
大叶黑桫椤 Alsophila gigantea焦瑜等, 2014; 郎月婷等, 2021
阴生桫椤 Alsophila latebrosa焦瑜等, 2014; 郎月婷等, 2021
凤尾蕨科 Pteridaceae荷叶铁线蕨 Adiantum reniforme黄芳, 2008; 李洪林等, 2008
粗梗水蕨 Ceratopteris pteridoides孙锐等, 2008; 王文明等, 2018
水蕨 Ceratopteris thalictroides戴锡玲等, 2005; 陈蔚辉等, 2008; 陈雨虹等, 2010; 朱晓凤等, 2016
乌毛蕨科 Blechnaceae对开蕨 Asplenium komarovii刘保东等, 1993; 焦瑜等, 2014; 曾汉元和丁炳扬, 2003; 王蕾等, 2009; 韩汶雨等, 2020
苏铁蕨 Brainea insignis王玥等, 2007; 郭建瑞等, 2008; 夏漪, 2014
鹿角蕨科 Platyceriaceae鹿角蕨 Platycerium wallichii王卫清等, 2011; 郭捡等, 2012, 2013; 吴建设等, 2020; 叶秀仙等, 2020

新窗口打开| 下载CSV


3 中国石松类和蕨类植物的系统分类与演化研究进展

石松类和蕨类植物大系统。自1940年中国蕨类植物分类学创始人秦仁昌先生划时代地将传统水龙骨科重新划分以来, 世界石松类和蕨类植物分类系统的研究进入了快速发展阶段, 但很多关键类群的系统位置仍然存在较大争议(Smith et al, 2006; Christenhusz et al, 2011; PPG I, 2016)。2017-2022年来, 中国学者通过系统发育基因组学研究对世界石松类和蕨类植物系统演化框架的重建做出了重要贡献。2018年, 中国两个蕨类研究团队几乎同时基于转录组测序的系统发育基因组学研究重建了世界石松类和蕨类科级的系统发育框架, 解决了数个过往长期存在争议的研究类群的问题, 如木贼目的系统位置、里白科与双扇蕨科的亲缘关系、碗蕨科与凤尾蕨科、水龙骨目的亲缘关系等(Qi et al, 2018; Shen et al, 2018)。同时, 基于构建的世界石松类和蕨类植物的系统演化树, 重建了石松类和蕨类植物关键性状孢子囊环带的演化模式(Shen et al, 2018), 比较分析了石松类和蕨类植物转录因子家族的演化模式(Qi et al, 2018)。然而, 基于质体基因组数据构建的石松类和蕨类植物系统发育关系与基于转录组数据的结果仍然存在较大差异, 特别是木贼目和膜蕨目等的系统位置, 这些差异可能与质体基因组数据集中存在系统发育冲突信号有关(Kuo et al, 2018)。随着研究的深入, 石松类和蕨类植物科级水平的系统框架已基本确定, 然而由于前期研究中缺少多个国外科属的材料, 世界石松类和蕨类植物的完整系统框架仍需要进一步研究。

重要类群的系统演化。以往研究仅基于少数叶绿体基因片段和形态学数据, 很难解决石松类和蕨类植物中疑难类群的系统演化问题, 如铁角蕨科、水龙骨科、卷柏科、碗蕨科等。近年来, 随着测序技术和计算科学的不断发展, 利用质体基因组或转录组测序数据来研究中国石松类和蕨类植物的系统分类与演化呈现爆发式增长的情况(杜新宇等, 2019), 近5年国内学者在石松类和蕨类植物的重要类群中也取得了大量进展。在目级水平上, Shu等(2022b)利用转录组数据重建了早期薄囊蕨类的系统演化关系, 确立了马通蕨目的分类地位,(①夏漪 (2014) 三种观赏蕨类植物配子体发育及卵发生的研究. 硕士学位论文, 上海师范大学, 上海.)该目包括双扇蕨科和马通蕨科, 同时揭示了古多倍化和古杂交事件对于马通蕨目植物在中生代时期辐射演化中起到了重要作用。Du XY等(2021)基于水龙骨目27科100属160种的质体基因组序列, 利用系统发育基因组学方法和多种分析策略解析了水龙骨目深层的系统关系, 同时揭示水龙骨目和被子植物同期多样化的模式, 填补了对陆地植被革命如何塑造现今生态系统的部分认知的空白; Chen等(2022)基于81个质体基因组序列解析了世界石松类的系统发育关系和质体基因组结构变异。

在科级水平上, 卷柏科、凤尾蕨科、碗蕨科、铁角蕨科、叉蕨科、水龙骨科等世界性大科的系统学研究方面取得了一系列重要研究进展。其中卷柏科和铁角蕨科主要基于形态和分子证据来解决科内属/组间的系统发育关系(Zhou et al, 2016, 2022; Xu KW et al, 2018; Xu et al, 2020; Zhang HR et al, 2020; Zhang MH et al, 2022)和厘清各疑难复合类群(如小卷柏复合群(Selaginella helvetica complex)、红枝卷柏复合群(S. sanguinolenta complex)、北京铁角蕨复合群(Asplenium pekinense complex)、变异铁角蕨复合群(A. varians complex)等)的系统分类地位(Liang et al, 2021; Zhang MH et al, 2021, 2022)。同时, 卷柏科特殊质体结构, 如具有标志性同向重复序列(DR)的环形结构、GC含量高、碱基替换速率快等特点也常受到人们的广泛关注(Zhang MH et al, 2021, 2022; Xiang et al, 2022; Zhou et al, 2022)。其他备受关注的类群, 如水龙骨科、凤尾蕨科、碗蕨科和叉蕨科等则着重通过扩大抽样来厘清科间或科下的系统关系和演化历史(Wei R et al, 2017; Zhang et al, 2017a, b; He et al, 2018; Zhang & Zhang, 2018a, b; Wei & Zhang, 2020; Zhao et al, 2020; Du et al, 2021; Zhou et al, 2022)。如Wei R等(2021)通过在全球范围内对水龙骨科关键类群进行取样, 结合高通量测序技术获取了28属78个代表物种的叶绿体全基因组数据, 构建了迄今为止该科最为稳定的系统框架; 并通过根状茎鳞片形态、叶片分裂式样、叶脉类型、孢子囊群类型、隔丝形态以及孢子形态等形态学证据确定了各分支界线。

在属级水平上, Zhao等(2020)基于8个高变异位点的DNA分子序列构建了71种瓦韦属(Lepisorus)及其近缘属的系统发育框架, 结合25个形态数据编码和遗传学证据, 解决了瓦韦属及其近缘类群深层的系统发育关系, 将原先扇蕨属(Neocheiropteris)、盾蕨属(Neolepisorus)、伏石蕨属(Lemmaphyllum)、鳞果星蕨属(Lepidomicrosorium)、毛鳞蕨属(Tricholepidium)等都纳入瓦韦属的范畴; Zhang L等(2017a, b,2018a, b, 2020)采用多个叶绿体片段和核基因数据重建了世界范围内凤尾蕨属(Pteris)、叉蕨属(Tectaria)、鹿角蕨亚科以及瓶尔小草科的系统发育关系并根据形态特征划定属间界线, 促进了蕨类植物的分类学和系统学研究进展; Shang等(2018)利用rbcLatpArps4rpl16 4个叶绿体基因片段重建了世界碗蕨科的系统发育关系和性状演化, 确定了国外产蕨类植物新属卫蕨属的独立地位。

此外, 石松类和蕨类植物的适应性演化也开始受到国内学者的关注。其中, 在全基因组加倍(Zhang R et al, 2019; Huang et al, 2020; 汪浩等, 2019; 王婷等, 2021; Xia et al, 2022b)、自然杂交和基因家族扩张收缩(Zhang J et al, 2019; Xia et al, 2022a)等方面取得了一系列重要进展, 揭示了多倍化和自然杂交事件对于石松类和蕨类植物的适应性演化和物种形成具有重要作用, 这些进化事件也导致石松类和蕨类植物的系统发育网络错综复杂, 增加了系统构建的难度(Shu et al, 2022b)。

在全基因组学研究上, 近5年我国学者公布了卷柏(Selaginella tamariscina) (Xu ZC et al, 2018)和桫椤(Alsophila spinulosa) (Huang et al, 2022) 2个高质量的全基因组序列。基于基因组学和转录组学研究, 揭示了传统中药植物卷柏的物种特异性干旱耐受机制, 为复苏植物的适应性进化提供了新的见解(Xu ZC et al, 2018)。中国学者公布的桫椤基因组是目前蕨类植物中第1个染色体水平的基因组, 其经历过两次全基因组复制事件; 桫椤群体分别在35.6-34.5和2.5-0.7百万年前经历过两次瓶颈事件, 导致了现存桫椤种群数量极少; 此外, 基于基因组、转录组和代谢组等多组学数据分析揭示了桫椤树干发育和木质部合成的机制, 构建了桫椤木质部中以苯丙氨酸为起始的合成木质素、黄酮和聚酮类化合物的代谢途径(Huang et al, 2022)。随着基因组时代的快速发展, 越来越多的石松类和蕨类植物基因组将完成测序和发表, 为解决石松类和蕨类植物的起源、性状演化、发育和生态适应性等重要问题提供新见解。

4 中国石松类和蕨类植物的生态学研究

石松类和蕨类植物广布于世界各地, 多以草本形式生长在林下、林缘或林窗中, 是森林演替早期阶段的先锋植物。蕨类植物对环境的适应和生态学意义一直受到研究人员的关注。但近年来, 我国对蕨类植物的生态学研究进展较少, 主要集中在蕨类植物的生态修复和生态适应上。在生态修复方面, Yang等(2022)研究发现, 先锋蕨类植物芒萁属能在降雨过后通过有性繁殖和克隆繁殖两种方式快速覆盖受损裸地, 形成密集蕨类灌丛, 在忍耐地表高温、贫瘠土壤、强烈光照的同时, 还有利于改善微环境, 促进土壤养分积累和抵御外来种入侵; Yan等(2019)通过三代全长转录组、二代差异转录组和液泡膜蛋白质组的方法揭示了蜈蚣草(Pteris vittata)的砷超富集机理及其调控分子网络, 对利用植物修复治理砷污染土壤具有重要意义。在生态适应上, Jin等(2021)通过测量345种蕨类植物对环境光和水可利用性敏感的功能性状发现, 鳞毛蕨类和水龙骨类的部分物种可以耐受强光和干旱的生境, 这些类群可能是蕨类植物适应干旱和明亮生境的先驱; Liang等(2022)以亚洲温带广布的二倍体同型孢子蕨类——中华蹄盖蕨复合群(Athyrium sinense complex)为研究对象, 通过群体遗传分析和分布区模拟等揭示了蕨类植物孢子强扩散能力下生态适应塑造的遗传分化格局。Dai等(2020)通过比较不同干扰水平下蕨类植物的分类、系统发育和功能多样性, 发现蕨类植物的多样性在很大程度上受到人类干扰水平的影响, 可作为环境胁迫的一个良好指示物种。

5 展望

5.1 提高寡型科属及世界大科大属的关注力度

中国是北半球植物种类最丰富的国家, 目前已记载超过32,500种维管植物(Hong & Blackmore, 2015), 同时也是近年来发现和命名维管植物新物种最多的3个国家之一(RBG Kew, 2016)。从中国石松类和蕨类植物新类群的发现数量、比例以及参与新分类群命名学者的人数来看(表2, 附录5-6), 中国物种数量较少的寡型科属类群的物种多样性常常被忽视, 例如木贼科、乌毛蕨科、瓶尔小草科、合囊蕨科、桫椤科、藤蕨科、条蕨科、骨碎补科、紫萁科; 这些类群实际新增数目均低于期望新增数目。在关注程度上, 除合囊蕨科外, 其余类群的实际关注人次均小于期望关注人数, 反映了过往研究学者们对于寡型科属植物关注力度较低的情况。近年来, 部分研究学者在常见寡型科属植物中发现大量新物种, 例如近期关于芒萁属隐性物种的文章(Wei et al, 2022), 作者对亚洲芒萁属植物进行广泛采样和系统研究, 恢复了芒萁属4个变种(D. inaequalis、D. alternans、D. subspeciosaD. latiloba)的物种地位, 同时描述和命名了2个新物种(D. austrosinensis、D. baliensis)。通过世界新增比例预测, 中国寡型科属可能存在较多的物种多样性, 需在日后受到更多研究学者的关注。

在世界大科大属的研究中, 我国现状如下: 一方面是新分类群新增数量严重低于期望新增数量, 与研究学者关注人次少直接相关(表2, 附录6), 如水龙骨科、石松科和碗蕨科。近几年关于这3个类群的研究更多集中在系统发育、适应性进化或属间关系的处理上(Wei R et al, 2017, 2021; Wei XP et al, 2017; Zhao et al, 2020; Du et al, 2021; Xia et al, 2022b), 而分类学研究相对较少。另一方面是关注人次多但新增分类群数量仍低于期望新增数量, 如凤尾蕨科、金星蕨科、铁角蕨科、鳞毛蕨科等, 均为杂交频繁、疑难类群或复合群较多的大科(Xu KW et al, 2018; Zhang & Zhang, 2018a, b; Xu et al, 2020; Fawcett et al, 2021)。随着分子系统学、细胞学、形态学在蕨类植物分类研究应用上的普遍化, 许多研究学者通过整合分类学的方法处理种间疑难类群或复合群, 例如卷柏属(Selaginella)、铁角蕨属(Asplenium)和鳞毛蕨属(Dryopteris)等(Liang et al, 2021; Zhang MH et al, 2021, 2022; Zuo et al, 2022)。作者们主要通过核质系统关系、物种倍性、性状差异等整合方法来解析复合群内部的物种形成和网状演化关系, 从而厘清常被人们忽略或错误认识的物种地位。蕨类复合群和疑难类群具有较高的物种多样性, 但频繁的自然杂交现象往往会模糊人们对物种间生殖隔离的认识, 从而模糊了物种之间的边界, 导致许多不同支系的类群被看作是相同的物种(严岳鸿等, 2019), 从而降低了物种多样性。Fawcett等(2021)在世界金星蕨科系统发育的研究报道中也提到, 由于狭域分布、标本缺乏、野外形态的细微变化等多种因素综合下, 金星蕨科物种多样性特别是古热带地区的多样性到目前为止仍然知之甚少; 在日后, 需要更多研究学者参与到这项工作中来。

5.2 加强薄弱地区的植物调查, 并结合新技术以提高区系物种调查鉴别的效率和准确性

英国生态学家诺曼•麦尔在1988年提出了生物多样性热点地区(biodiversity hotspots)的概念, 他认识到这些热点生态系统在很小的地域面积内包含了极其丰富的物种多样性。2000年, 国际环保组织根据特有物种数量和受威胁程度两个评定标准确定了全球34个物种最丰富且受到威胁最大的生物多样性热点地区(Myers et al, 2000), 其中涉及中国的区域有3个, 即中国西南山区(Mountains of South-West China)、华南-中南半岛地区(Indo-Burma)和喜马拉雅地区(Himalayan)。2015年, 为贯彻落实国务院批准发布的《中国生物多样性保护战略与行动计划(2011-2030年)》, 国家环境保护部组织开展了生物多样性保护优先区域边界的核定工作, 确定了35个中国生物多样性保护优先区域范围。结合2017-2022年发表的中国石松类和蕨类植物新物种、新种下分类群和国家新记录所在的省份和调查分布空间情况(表3), 可清晰发现西藏、四川为近年来石松类和蕨类植物调查薄弱的生物多样性热点区域。提高野外调查密度、加强学科队伍建设在一定程度上能促进生物多样性热点地区石松类和蕨类植物物种多样性的发现(表3)。中国幅员辽阔, 气候地貌复杂多样, 物种丰富, 开展中国蕨类植物多样性热点区域本底调查和系统分类等工作仍任重道远。

物种多样性丰富的地区常常会因为物种间的形态相似性而带来物种鉴定的困难, 尤其是一些杂交频繁或亲缘关系复杂的复合群。同时, 由于季节或生长阶段的限制, 野外考察所采集的标本有时会存在关键形态性状缺失等情况, 降低了后期物种鉴定的效率和准确性(张宪春和姚正明, 2017)。DNA条形码技术的出现和推广, 加速了地球生物物种识别与鉴定的步伐, 已成为生态学研究的重要工具。《中国茂兰石松类和蕨类植物》首次将DNA条形码与石松类和蕨类植物区系调查相结合(张宪春和姚正明, 2017), 在提高物种鉴定效率和准确性的同时, 也帮助了学者们了解生物之间的亲缘关系, 挖掘更多隐性物种, 让植物区系调查不再单单只是呈现一份植物名录。

同时, 随着“开放、共享”理念的普及, 越来越多的生物资源数据及相关成果已通过网络信息平台向社会免费开放, 例如中国数字植物标本馆(https://www.cvh.ac.cn/)、植物智(http://www.iplant. cn/)和NCBI (https://www.ncbi.nlm.nih.gov/)等, 为学者们提供了丰富的研究资料。然而, 在进行中国采集空缺预测、保护区和非保护区采集情况、各区系植物系统关系等分析时, 我们发现中国境内仍缺少一个与标本信息、物种DNA条形码同步共享的真正数字化、便捷信息提取化的数据平台。诚然, 由于主要标本馆标本采集数据无法便捷提取, 依靠Biotracks和GBIF数据进行分析, 对我们了解实际情况还有一定的影响。另外, 在石松类和蕨类植物专业数据库方面, 国内进展缓慢, 目前仅有iFern蕨类植物数据网站(www.ifern.cn)在线。

5.3 加强石松类和蕨类植物系统发育和生态适应性演化之间的协同研究

系统发育框架是理解植物分类、性状发育、物种形成和生态适应性演化等一系列科学问题的重要基础。近年来, 我国学者利用质体基因组、形态性状和生态学数据等相结合的方法开展了广泛的系统发育学研究, 并提出了运用整合分类学方法开展植物分类和系统演化研究, 解决了各分类群的属间、种间关系, 并且在样本量、样本代表性和分子数据量上均有所提升(Du et al, 2021; Wei R et al, 2021; Xu KW et al, 2018; Zhang L, 2017a; Zhang MH et al, 2021)。然而质体基因存在信息位点少、一般仅反映单亲遗传演化历史且存在大量系统发育冲突信号等局限性, 仍无法解析疑难类群, 例如石松科、木贼科、合囊蕨科、碗蕨科、水龙骨科等科内属间、种间关系以及植物的适应性演化特点, 而且很难进一步分析植物演化过程中的杂交、多倍化和辐射演化等现象。转录组学和基因组学在一定程度上可以解决质体基因数据存在的短板, 是未来系统发育基因组学研究的必然趋势。然而, 与其他陆生植物相比, 石松类和蕨类植物具有基因组大、染色体数目多等特点。其平均基因组大小约为14,320 Mb, 是被子植物的2.85倍, 分布范围从最小的满江红属(Azolla) (0.9-1.5 Gb)到最大的松叶蕨(Psilotum nudum) (142.4 Gb)。由于复杂的基因组和普遍的多倍化, 石松类和蕨类植物中很少开展全基因组的测序(Wang et al, 2022)。与被子植物相比(Guo et al, 2020; Stull et al, 2021; Zhao et al, 2021), 石松类和蕨类植物在系统发育基因组学和生态适应性演化研究仍有较大发展空间。

此外, 目前国内外石松类和蕨类植物的系统发育研究仍然停留在构建系统发育框架、分类修订等基础科学问题上, 很少结合植物的生态学、发育学、生理学和生物地理学等特征探讨植物生态适应性演化、性状演化和发育机制、生理胁迫响应机制等重要的植物演化问题。可喜的是, 我国学者已经开始对石松类和蕨类植物演化问题开展研究, 如通过构建世界石松类和蕨类植物的系统发育框架, 提出了石松类和蕨类植物关键性状孢子囊环带的演化模式(Shen et al, 2018); 通过卷柏科的系统发育基因组学研究解析了卷柏科质体基因组的结构演化历史(Zhang MH et al, 2019; Zhou et al, 2022); 探讨了石松类和蕨类植物的性状演化和谱系地理多样化历史(Wei R et al, 2017; Shang et al, 2018; Kuo et al, 2020; Fan et al, 2022)。然而, 与国外研究相比, 中国学者对于石松类和蕨类植物的生态适应性演化机制和历史仍然研究较少, 例如: 石松类和蕨类植物如何适应阴生环境? 如何演化产生附生习性? 石松类和蕨类植物的世代交替、配子体发育和适应性演化历史如何? 自然杂交和多倍化如何影响石松类和蕨类植物的适应性演化? 石松类和蕨类植物大基因组的维持机制? 这一系列与石松类和蕨类植物系统演化相关的科学问题仍需要进一步研究。

5.4 关注石松类和蕨类植物系统作为陆生维管植物演化起点的共性科学问题

石松类植物是维管植物最早分化的类群, 而蕨类植物与种子植物互为姐妹类群(Pryer et al, 2001)。作为陆生维管植物演化的两个关键类群, 石松类和蕨类植物对于完整理解陆生维管植物的起源和演化历史上重要的共性科学问题具有关键作用, 如根、叶、芽等器官的起源和发育机制、气孔调控的转换机制、光合作用的演化模式、维管组织的起源、演化和发育机制、植物与昆虫和微生物等的协同演化等等, 这些关键共性科学问题的研究应重点关注。植物与昆虫、植物与微生物的协同演化一直以来都是植物科学家高度关注的热点科学问题(Jiang et al, 2017; Li et al, 2022)。在石松类和蕨类植物中, 植物与昆虫的协同演化研究也取得一些重要进展(Shukla et al, 2016; Huang et al, 2021), 在石松类和蕨类植物的系统框架下研究植物与昆虫, 特别是与微生物的协同演化几乎无人问津。

根的出现是维管植物演化过程中适应陆地环境的关键一步, 目前普遍认为根的起源事件发生了两次, 分别产生了石松类植物为代表的二歧根(bifurcating root)和以真叶植物(蕨类植物和种子植物)为代表的多类型根, 如不定根(adventitious root)、内皮层衍生的侧根(endodermis-derived lateral root)、初生根(primary root)中柱鞘衍生的顶端侧根(pericycle-derived acropetal lateral root)和不定侧根(adventitious lateral root)等(Motte et al, 2019)。虽然根的起源和发育已经取得了一定进展(于阳阳等, 2015), 发现了生长素和WOX基因家族在不定根生长和发育中的关键作用(Yu et al, 2020), 但利用石松类和蕨类植物研究整个维管植物框架下根的起源和演化机制仍然较少。同样, 相比于国外研究, 中国学者在石松类和蕨类植物中对维管植物的芽和叶的演化和发育也缺少系统研究(Vasco et al, 2013; Plackett et al, 2015)。

此外, 石松类和蕨类植物对于理解维管植物气孔和光合作用的适应性演化模式非常关键。与种子植物不同, 石松类和蕨类植物的气孔缺少对脱落酸的主动响应, 对于干旱胁迫或气体交换都是处于被动防御状态, 这表明在与石松类和蕨类植物分化后, 植物水分平衡发生了由被动代谢向主动控制的根本转变(Brodribb & McAdam, 2011; McAdam & Brodribb, 2013)。然而, 目前对于气孔起源和演化、气孔开闭方式的转变机制等相关科学问题在石松类和蕨类植物中仍然知之甚少。光合作用是地球上最重要的化学反应, 其起源、演化和分子机制一直以来都是科学家关注的重点科学问题。在维管植物中除了C3光合作用以外, 还演化出了两种重要的碳浓缩机制, 即C4光合作用和CAM光合作用。在种子植物中, C3和C4两种光合作用已经开展了大量的基因组学和生理生态学研究(Yang et al, 2017; Wai et al, 2019; Wang et al, 2019; Schlüter & Weber, 2020; Schiller & Brautigam, 2021), 而在石松类和蕨类植物中, 目前仅发现存在CAM光合作用, 其起源和适应性演化机制研究相当缺乏。在石松类和蕨类植物中CAM光合作用有其特别之处, 如水韭属植物是起源最古老的水生CAM植物(Wickell et al, 2021)、鹿角蕨属植物中孢子叶和营养叶分别执行C3和CAM光合作用(Rut et al, 2008)等。理解石松类和蕨类植物的光合作用演化模式对于陆生维管植物光合作用的起源历史和演化机制非常关键, 但这方面几乎没有学者开展深入的研究。

5.5 加强石松类和蕨类植物系统分类学与生态学、植物化学、保护生物学等学科间交叉合作研究

由于石松类和蕨类植物的物种识别较困难, 科普宣传缺位, 因此石松类与蕨类植物较少为国内其他学科所关注。石松类和蕨类植物是维管植物中的第二大类群, 自4亿年来一直在地球生态系统中扮演着重要角色, 是林下生态系统的主要组成部分, 必然在生态系统中扮演着重要角色。虽然近年来石松类和蕨类植物的生态学研究取得了一定的进展(Jin et al, 2021; Qian et al, 2021; Yang et al, 2022), 但石松类和蕨类植物如何适应林下生态环境? 如何发挥其林下生态功能? 石松类和蕨类植物的系统发育多样性如何? 系统发育多样性结构和驱动因子有哪些? 不同生境条件下石松类和蕨类植物的生态功能性状有何差异? 这一系列生态学问题值得进一步研究。

石松类和蕨类植物是国家重点保护野生植物名录中包含物种数量最多的类群之一, 而且绝大多数石松类和蕨类植物都具有重要的药用和观赏价值(Cao et al, 2017; Xu ZC et al, 2018; Abraham & Thomas, 2022)。近年来, 中国学者开展了少数重点保护的珍稀濒危蕨类植物, 如笔筒树(Sphaeropteris lepifera)、荷叶铁线蕨等相关保护生物学研究(Wei XY et al, 2021; 孙维悦等, 2022), 但绝大多数濒危物种都没有开展相应保护生物学研究, 对于珍稀濒危的石松类和蕨类植物的种群数量和生存现状都不甚清楚。这一方面是由于石松类和蕨类植物缺少类似于兰科植物的全国性大调查而且类群的社会关注度较小, 另一方面是石松类和蕨类植物的研究人员, 特别是青年科研人员较少, 研究力量严重不足。今后应加大专业科研人员的培养, 组织开展石松类和蕨类植物的全国性大普查, 从而进一步完善石松类和蕨类植物名录和濒危等级评估, 为今后《国家重点保护野生植物名录》的修订奠定基础。同时, 积极开展石松类和蕨类植物的孢子繁殖研究, 实现药用、观赏和珍稀濒危植物的大规模繁殖, 从而对重要经济价值的类群实现产业化应用, 而对重点保护野生植物开展迁地保护和野外回归, 进一步提升石松类和蕨类植物的社会关注度。

附录 Supplementary Material

附录1 2017-2022年中国石松类和蕨类植物新分类学材料

Appendix 1 New taxonomic materials of lycophytes and ferns in China from 2017 to 2022

附录2 2000-2022年中国石松类和蕨类植物新分类学材料

Appendix 2 New taxonomic materials of lycophytes and ferns in China from 2000 to 2022

附录3 2000-2022年世界石松类和蕨类植物新分类学材料

Appendix 3 New taxonomic materials of lycophytes and ferns in the world from 2000 to 2022

附录4 2000-2021年中国与世界维管植物新分类群的数量及比例

Appendix 4 Number and proportion of new taxa of vascular plants in China and in the world from 2000 to 2021

附录5 2000-2022年中国与世界石松类和蕨类植物新分类群所属科级统计

Appendix 5 Distribution at family level of new taxa of lycophytes and ferns in China and in the world from 2000 to 2022

附录6 2017-2022年参与中国石松类与蕨类植物新增类群命名的学者和单位情况

Appendix 6 Authors and affiliations involved in nomenclatural novelties of lycophytes and ferns in China from 2017 to 2022

附录7 国家重点保护的野生石松类和蕨类植物名录和迁地保护情况

Appendix 7 List and ex situ conservation of lycophytes and ferns under state priority conservation

参考文献

Abraham S, Thomas T (2022)

Ferns:A potential source of medicine and future prospects

In: Ferns: Biotechnology, Propagation, Medicinal Uses and Environmental Regulation (eds Marimuthu J, Fernández H, Kumar A, Thangaiah S), pp. 345-378. Springer Nature Singapore, Singapore.

[本文引用: 1]

Brodribb TJ, McAdam SAM (2011)

Passive origins of stomatal control in vascular plants

Science, 331, 582-585.

DOI:10.1126/science.1197985      PMID:21163966      [本文引用: 1]

Carbon and water flow between plants and the atmosphere is regulated by the opening and closing of minute stomatal pores in surfaces of leaves. By changing the aperture of stomata, plants regulate water loss and photosynthetic carbon gain in response to many environmental stimuli, but stomatal movements cannot yet be reliably predicted. We found that the complexity that characterizes stomatal control in seed plants is absent in early-diverging vascular plant lineages. Lycophyte and fern stomata are shown to lack key responses to abscisic acid and epidermal cell turgor, making their behavior highly predictable. These results indicate that a fundamental transition from passive to active metabolic control of plant water balance occurred after the divergence of ferns about 360 million years ago.

Cai GJ, Yuan CJ, Zhao Q, Zhou HH, Yang YB, Yan LB, Liu X (2021)

Study on the vascular plants flora in Labahe National Wetland Park in Huichuan, Guizhou, China

Guizhou Science, 39(2), 41-45. (in Chinese with English abstract)

[本文引用: 1]

[ 蔡国俊, 袁丛军, 赵庆, 周宏虹, 杨焱冰, 严令斌, 刘雄 (2021)

贵州汇川喇叭河国家湿地公园维管束植物区系分析

贵州科学, 39(2), 41-45.]

[本文引用: 1]

Chen GJ, Cheng X, Liu BD, Jiao Y (2008)

Gametophyte morphological variations of Sphaeropteris brunoniana (Cyatheaceae) under four culture conditions

Acta Botanica Yunnanica, 30, 430-432. (in Chinese with English abstract)

DOI:10.3724/SP.J.1143.2008.00430      URL     [本文引用: 1]

[ 陈贵菊, 成晓, 刘保东, 焦瑜 (2008)

四种培养条件下白桫椤配子体的形态发育

云南植物研究, 30, 430-432.]

[本文引用: 1]

Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, Wang RB, Yao HK, Cao JG, Cornara L, Burlando B, Wang YT, Xiao JB, Coutinho HDM (2017)

Phytochemicals from fern species:Potential for medicine applications

Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe, 16, 379-440.

[本文引用: 1]

Chen LJ, Xia LM, Zhu ZL, Li MF (2020)

Analysis of fern flora in Wangdongyang and Dayanghu nature reserves of Jingning County

East China Forest Management, 34(2), 63-65. (in Chinese)

[本文引用: 1]

[ 陈莉娟, 夏丽敏, 朱志柳, 李梦斐 (2020)

浙江省景宁县望东垟、大仰湖自然保护区蕨类植物区系分析

华东森林经理, 34(2), 63-65.]

[本文引用: 1]

Chen RH, Jin W, Chen F, Xie WY, Zhang FY, Huang SG (2019)

Study on pteridophyte flora in Jiande

Journal of Zhejiang Forestry Science and Technology, 39(2), 42-49. (in Chinese with English abstract)

[本文引用: 1]

[ 陈日红, 金伟, 陈锋, 谢文远, 张芬耀, 黄世国 (2019)

浙江建德蕨类植物区系研究

浙江林业科技, 39(2), 42-49.]

[本文引用: 1]

Chen SS, Wang T, Shu JP, Xiang QP, Yang T, Zhang XC, Yan YH (2022)

Plastid phylogenomics and plastomic diversity of the extant lycophytes

Genes, 13, 1280.

DOI:10.3390/genes13071280      URL     [本文引用: 1]

Chen SS, Zhang MH, Wang JX, Zhang XC (2021)

Original plant and research progress of the medicinal plant Huperzia javanica

Guihaia, 41, 1794-1809. (in Chinese with English abstract)

[本文引用: 1]

[ 陈思思, 张梦华, 王锦秀, 张宪春 (2021)

药用植物千层塔的基原物种及研究进展

广西植物, 41, 1794-1809.]

[本文引用: 1]

Chen WH, Xiao WB (2008)

On the development of gametophyte and sporophyte of Ceratopteris thalictroides

Journal of Hunan Agricultural University (Natural Sciences), 34, 306-310. (in Chinese with English abstract)

[本文引用: 1]

[ 陈蔚辉, 肖卫彬 (2008)

水蕨配子体和孢子体发育的研究

湖南农业大学学报(自然科学版), 34, 306-310.]

[本文引用: 1]

Chen YH, Xu D, Lin LX, Zhang Y, Wang QX, Dai XL (2010)

Effect of culture medium and spore dimension on spore germination and sex differentiation of Ceratopteris thalictroides (L.) Brongn

Journal of Wuhan Botanical Research, 28, 336-340. (in Chinese with English abstract)

[本文引用: 1]

[ 陈雨虹, 徐丹, 林丽宜, 张莹, 王全喜, 戴锡玲 (2010)

孢子大小和培养基对水蕨孢子萌发及配子体性别分化的影响

武汉植物学研究, 28, 336-340.]

[本文引用: 1]

Chen ZH, Guo XB, Dai WT, Chen WL, Wang HL, Miao SY (2017)

Study on vascular plants flora at Xiaoliukeng-Qingzhangshan Nature Reserve in Nanxiong City

Forestry and Environmental Science, 33(1), 16-23. (in Chinese with English abstract)

[本文引用: 1]

[ 陈志红, 郭绪兵, 戴文坛, 陈伟霖, 王厚麟, 缪绅裕 (2017)

南雄小流坑--青嶂山保护区维管植物区系研究

林业与环境科学, 33(1), 16-23.]

[本文引用: 1]

Christenhusz MJM, Zhang XC, Schneider H (2011)

A linear sequence of extant families and genera of lycophytes and ferns

Phytotaxa, 19, 7.

DOI:10.11646/phytotaxa.19.1.2      URL     [本文引用: 1]

Dai LL, Yuan Q, Liu W, JC, Yuan G (2022)

Flora characteristics and geographical distribution of aquatic plants in Caohai Wetland of Guizhou

Guizhou Science, 40(2), 6-14. (in Chinese with English abstract)

[本文引用: 1]

[ 代亮亮, 袁旗, 刘文, 吕敬才, 袁果 (2022)

贵州高原湿地草海水生植物的区系特征与地理分布

贵州科学, 40(2), 6-14.]

[本文引用: 1]

Dai XL, Jin Q, Wang QX (2005)

Studies on the development of gametophyte of Ceratopteris thalictroides

Bulletin of Botanical Research, 25, 274-276. (in Chinese with English abstract)

[本文引用: 1]

[ 戴锡玲, 金沁, 王全喜 (2005)

水蕨配子体发育的研究

植物研究, 25, 274-276.]

[本文引用: 1]

Dai XH, Chen CF, Li ZY, Wang XX (2020)

Taxonomic, phylogenetic, and functional diversity of ferns at three differently disturbed sites in Longnan County, China

Diversity, 12, 135.

DOI:10.3390/d12040135      URL     [本文引用: 1]

Deng XL, Xu JH (2020)

Plant flora and species diversity of Spiranthes sinensis community in Jinggangshan University

Journal of Jinggangshan University (Natural Sciences Edition), 41(4), 43-46. (in Chinese with English abstract)

[本文引用: 1]

[ 邓贤兰, 徐佳红 (2020)

井冈山大学绶草群落植物区系与物种多样性研究

井冈山大学学报(自然科学版), 41(4), 43-46.]

[本文引用: 1]

Deng XY, Wang W, Pan XK, Huang TX, Ran L, Li TJ (2020)

Analysis of high plant diversity and regional departments of Qiandong Typical Wetland Park

Nong Jia Can Mou, (19), 139, 157. (in Chinese)

[本文引用: 1]

[ 邓夏雨, 王玮, 潘秀奎, 黄腾霄, 冉兰, 李泰君 (2020)

黔东典型湿地公园高等植物多样性及区系分析

农家参谋, (19), 139, 157.]

[本文引用: 1]

Ding Y, Jiang BH, Ding X, Yang F, Sun T (2018)

Species composition, structure characteristics of plant communities in the water-level-fluctuation zone of tropical reservoirs: A case study on the Songtao Reservoir, Hainan

Journal of Lake Sciences, 30, 1745-1754. (in Chinese with English abstract)

DOI:10.18307/2018.0625      URL     [本文引用: 1]

[ 丁扬, 姜百惠, 丁鑫, 杨帆, 孙涛 (2018)

热带水库消落区植物群落物种组成与结构特征--以海南松涛水库为例

湖泊科学, 30, 1745-1754]

[本文引用: 1]

Dong SY (2004)

Classification, Phytogeography and Conservation of the Pteridophytes from Hainan Island

PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)

[本文引用: 1]

[ 董仕勇 (2004)

海南岛蕨类植物的分类、区系地理与保育

博士学位论文, 中国科学院植物研究所, 北京.]

[本文引用: 1]

Dong SY (2022) Flora of Guangzhou:Lycophytes and Ferns. Guangdong Science and Technology Press, Guangzhou. (in Chinese)

[本文引用: 2]

[ 董仕勇 (2022) 广州石松类和蕨类植物. 广东科技出版社, 广州.]

[本文引用: 2]

Dong SY, Li SH, Huang L, Tan SS, Zuo ZY (2022)

A phylogenetic and morphological study of the Tectaria fuscipes group (Tectariaceae), with description of a new species

PhytoKeys, 195, 75-92.

DOI:10.3897/phytokeys.195.80452      URL    

Dong SY, Zuo ZY, Yan YH, Xiang JY (2017)

Red list assessment of lycophytes and ferns in China

Biodiversity Science, 25, 765-773. (in Chinese with English abstract)

DOI:10.17520/biods.2016204      URL     [本文引用: 3]

[ 董仕勇, 左政裕, 严岳鸿, 向建英 (2017)

中国石松类和蕨类植物的红色名录评估

生物多样性, 25, 765-773.]

DOI:10.17520/biods.2016204      [本文引用: 3]

为了解中国现存石松类和蕨类植物的灭绝风险, 我们按照IUCN Red List Categories and Criteria (Version 3.1)首次开展了国家水平上的红色名录评估。三人评估小组通过查阅文献、标本以及向其他30位中国蕨类同行征询物种信息等途径, 历经16个月的时间完成了此次评估。经统计, 中国目前所知的石松类和蕨类植物共计2,244种(包括亚种和变种, 但不包括变型和杂交种)。评估结果为: 极危(CR) 43种(其中6种可能已经灭绝)、濒危(EN) 68种、易危(VU) 71种、近危(NT) 66种、无危(LC) 1,124种、数据缺乏(DD) 872种。受威胁种类(包括VU、EN、CR)共计182种, 其中79种为中国特有或准特有种。特有而又极度濒危的植物有24种, 分别是梅山铁线蕨(Adiantum meishanianum)、荷叶铁线蕨(A. nelumboides)、秦氏莲座蕨(Angiopteris chingii)、壮乡铁角蕨(Asplenium cornutissimum)、海南实蕨(Bolbitis hainanensis)、直叶金发石杉(Huperzia quasipolytrichoides var. rectifolia)、东方水韭(Iso&#x000eb;tes orientalis)、台湾水韭(I. taiwanensis)、云贵水韭(I. yunguiensis)、台湾曲轴蕨(Paesia taiwanensis)、海南金星蕨(Parathelypteris subimmersa)、基羽鞭叶耳蕨(Polystichum basipinnatum)、洞生耳蕨(P. cavernicola)、微小耳蕨(P. minutissimum)、倒披针耳蕨(P. oblanceolatum)、岩穴耳蕨(P. speluncicola)、长柄新月蕨(Pronephrium longipetiolatum)、尾羽假毛蕨(Pseudocyclosorus caudipinnus)、罗浮牙蕨(Pteridrys lofouensis)、细叶凤尾蕨(Pteris angustipinna)、十字假瘤蕨(Selliguea cruciformis)、黑柄叉蕨(Tectaria ebenina)、河口叉蕨(T. hekouensis)和冈本氏岩蕨(Woodsia okamotoi), 它们应予以最优先保护。目前的红色名录只是一个初步评估结果, 若要得到一份更完整更准确的红色名录, 我们还需要做进一步的信息收集和评估工作, 特别要加强中国石松类和蕨类植物的分类学研究。今后评估工作中应重点关注的类群主要有莲座蕨属(Angiopteris)、铁角蕨属(Asplenium)、蹄盖蕨属(Athyrium)、对囊蕨属(Deparia)、鳞毛蕨属(Dryopteris)、石杉属(Huperzia)、耳蕨属(Polystichum)、凤尾蕨属(Pteris)、卷柏属(Selaginella)、水龙骨科(Polypodiaceae)和金星蕨科(Thelypteridaceae), 这些类群的物种分布与生存信息目前最为缺乏。

Du C, Liu J, Ye W, Liao S, Ge BJ, Liu B, Ma JS (2021)

Annual report of new taxa and new names for Chinese plants in 2020

Biodiversity Science,, 29, 1011-1020. (in Chinese with English abstract)

[本文引用: 7]

[ 杜诚, 刘军, 叶文, 廖帅, 葛斌杰, 刘冰, 马金双 (2021)

中国植物新分类群、新名称2020年度报告

生物多样性,, 29, 1011-1020.]

[本文引用: 7]

Du XJ, Xie CL, Yu XL, Deng SW, Yang XD, Chen LB, Wang FG, Xing FW (2020)

Flora characteristics of vascular plants in Qingyunshan Nature Reserve of Wengyuan, Guangdong Province

Chinese Journal of Tropical Crops, 41, 2329-2334. (in Chinese with English abstract)

[本文引用: 1]

[ 杜晓洁, 谢冲林, 余小玲, 邓双文, 杨新东, 陈流保, 王发国, 邢福武 (2020)

翁源青云山自然保护区维管束植物区系特征分析

热带作物学报, 41, 2329-2334.]

[本文引用: 1]

Du XY, Lu JM, Li DZ (2019)

Advances in the evolution of plastid genome structure in lycophytes and ferns

Biodiversity Science, 27, 1172-1183. (in Chinese with English abstract)

DOI:10.17520/biods.2019113      URL     [本文引用: 1]

[ 杜新宇, 卢金梅, 李德铢 (2019)

石松类和蕨类植物质体基因组结构演化研究进展

生物多样性, 27, 1172-1183.]

DOI:10.17520/biods.2019113      [本文引用: 1]

近年来, 随着测序技术的发展, 石松类和蕨类植物的核基因组、质体基因组以及线粒体基因组研究发展迅速, 质体基因组研究工作更是呈爆发式增长。截至2019年3月1日, GenBank公布的石松类和蕨类植物的175个质体基因组中, 约3/4为最近两年新增。研究内容从早期对个别质体基因组结构和序列特征的简单报道, 逐渐发展到综合性的比较基因组学和系统发育基因组学研究。目前已发表的质体基因组覆盖了石松类和蕨类植物的所有目和大部分科, 这两大类群的质体基因组结构变异和系统发育的基本框架已逐渐清晰。这些研究为我们理解维管植物的早期演化提供了重要参考。本文对石松类和蕨类植物的质体基因组结构特征进行了系统梳理, 发现其结构变异主要包括大片段倒位、IR区边界变动、基因或内含子丢失等, 其中一些结构变异可作为较高分类阶元的共衍征。RNA编辑和长片段非编码序列插入普遍存在于石松类和蕨类植物的质体基因组中, 但其起源、演化机制和功能等仍不清楚。我们对质体基因组的应用、系统发育研究中质体和核基因组的优劣性, 以及系统发育基因组学的前景进行了评述。

Du XY, Lu JM, Zhang LB, Wen J, Kuo LY, Mynssen CM, Schneider H, Li DZ (2021)

Simultaneous diversification of Polypodiales and angiosperms in the Mesozoic

Cladistics, 37, 518-539.

DOI:10.1111/cla.12457      URL     [本文引用: 1]

Fan XP, Thi Lu N, Li CX, Knapp R, He H, Zhou XM, Wan X, Zhang L, Gao XF, Zhang LB (2022)

Phylogeny, biogeography, and character evolution in the fern family Hypodematiaceae

Molecular Phylogenetics and Evolution, 166, 107340.

DOI:10.1016/j.ympev.2021.107340      URL     [本文引用: 1]

Fawcett S, Smith AR, Sundue M, Burleigh JG, Sessa EB, Kuo LY, Chen CW, Testo WL, Kessler M, Consortium G, Barrington DS (2021)

A global phylogenomic study of the Thelypteridaceae

Systematic Botany, 46, 891-915.

[本文引用: 2]

Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016)

Huperzine A from Huperzia serrata: A review of its sources, chemistry, pharmacology and toxicology

Phytochemistry Reviews, 15, 51-85.

DOI:10.1007/s11101-014-9384-y      URL     [本文引用: 1]

Gou GQ, Wei Q, Wang H (2017) Ferns of Fanjing Mountain. Guizhou Science and Technology Press, Guizhou. (in Chinese)

[本文引用: 1]

[ 苟光前, 魏奇, 王晖 (2017) 梵净山蕨类植物. 贵州科技出版社, 贵州.]

[本文引用: 1]

Guo J, Xu WB, Hu Y, Huang J, Zhao YY, Zhang L, Huang CH, Ma H (2020)

Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations

Molecular Plant, 13, 1117-1133.

DOI:10.1016/j.molp.2020.05.011      URL     [本文引用: 1]

Guo J, Liu TT, Meng XL, Liu BD (2013)

Spore culture and propagation of Platycerium wallichiii

Acta Horticulturae Sinica, 40, 155-162. (in Chinese with English abstract)

[本文引用: 1]

[ 郭捡, 刘婷婷, 孟宪利, 刘保东 (2013)

鹿角蕨的孢子培养及其繁殖

园艺学报, 40, 155-162.]

[本文引用: 1]

Guo J, Wang Y, Guo MQ, Liu BD (2012)

Study on sexual generation and propagation of Platycerium wallichiii Hook

Chinese Agricultural Science Bulletin, 28(28), 216-219. (in Chinese with English abstract)

[本文引用: 1]

[ 郭捡, 王玥, 郭梦桥, 刘保东 (2012)

鹿角蕨有性世代发育及繁殖技术研究

中国农学通报, 28(28), 216-219.]

[本文引用: 1]

Guo JR, Wu H, Chen X, Li Y (2008)

Studies on the development of gametophyte in Brainea insignis

Journal of Tropical and Subtropical Botany, 16, 160-164. (in Chinese with English abstract)

[本文引用: 1]

[ 郭建瑞, 吴鸿, 陈霞, 李勇 (2008)

苏铁蕨配子体发育的研究

热带亚热带植物学报, 16, 160-164.]

[本文引用: 1]

Han WY, Liu JX, Xu YT, Chen HY, Yu HK, Liu C, Li YX, Jian DF (2020)

Study on in vitro rapid propagation of the spore of Potentilla anserina from Northeast China

Modern Agriculture Research, 26(6), 38-39. (in Chinese with English abstract)

[本文引用: 1]

[ 韩汶雨, 刘建星, 徐钰童, 陈浩宇, 于海阔, 刘畅, 李余先, 建德锋 (2020)

东北对开蕨孢子离体快繁技术研究

现代农业研究, 26(6), 38-39.]

[本文引用: 1]

Haufler CH, Pryer KM, Schuettpelz E, Sessa EB, Farrar DR, Moran R, Schneller JJ, Watkins JE, Windham MD (2016)

Sex and the single gametophyte: Revising the homosporous vascular plant life cycle in light of contemporary research

BioScience, 66, 928-937.

[本文引用: 1]

He LJ, Schneider H, Hovenkamp P, Marquardt J, Wei R, Wei XP, Zhang XC, Xiang QP (2018)

A molecular phylogeny of selligueoid ferns (Polypodiaceae): Implications for a natural delimitation despite homoplasy and rapid radiation

Taxon, 67, 237-249.

DOI:10.12705/672.1      URL     [本文引用: 1]

He J, Li CF, Li CF (2021) Ex vitro preservation medium and preservation method of Angiopteris fokiensis (20201175008.3), China. 2020-10-28. (in Chinese)

[本文引用: 2]

[ 何俊, 李村富, 李春芳 (2021) 一种福建莲座蕨离体保存培养基及离体保存方法(20201175008.3), 中国. 2020-10-28.]

[本文引用: 2]

Hong DY, Blackmore S (2015) Plants of China:A Companion to the Flora of China. Cambridge University Press, Cambridge.

[本文引用: 1]

Hou TW, Ye HH, He XZ, Tan HY (2020)

A preliminary study of the lycophytes and ferns in Guiyang Aha Lake National Wetland Park

Journal of Green Science and Technology, (21), 85-87. (in Chinese with English abstract)

[本文引用: 1]

[ 侯天文, 叶红环, 何选泽, 谈洪英 (2020)

贵阳阿哈湖国家湿地公园石松类和蕨类植物初步研究

绿色科技, (21), 85-87.]

[本文引用: 1]

Hu GX, Zhang WQ, Ge G, Liu YZ, Li EX (2020)

Floristic analysis on vascular plants from the Nanhu Wetland Nature Reserve in Gongqing City, Jiangxi Province

Journal of Nanchang University (Natural Science), 44, 593-597, 609. (in Chinese with English abstract)

[本文引用: 1]

[ 胡根秀, 张伟清, 葛刚, 刘以珍, 李恩香 (2020)

江西共青城南湖湿地自然保护区维管植物区系分析

南昌大学学报(理科版), 44, 593-597, 609.]

[本文引用: 1]

Hu JY, Tan CJ, Yao ZM, Zhang XC (2021)

Floristic characters of the lycophytes and ferns of Maolan National Nature Reserve in Guizhou, Southwestern China

Subtropical Plant Science, 50, 216-221. (in Chinese with English abstract)

[本文引用: 1]

[ 胡佳玉, 谭成江, 姚正明, 张宪春 (2021)

茂兰国家级自然保护区石松类和蕨类植物区系特征

亚热带植物科学, 50, 216-221.]

[本文引用: 1]

Hu W, Qiu JX, Wu B, Lou MH, Li Y (2020)

Flora and geographical compositions in the Liandu Fengyuan Nature Reserve

Journal of Fujian Forestry Science and Technology, 47(2), 89-94. (in Chinese with English abstract)

[本文引用: 1]

[ 胡伟, 仇建习, 吴彬, 娄明华, 李彦 (2020)

莲都峰源自然保护区植物区系和地理成分

福建林业科技, 47(2), 89-94.]

[本文引用: 1]

Huang CH, Qi XP, Chen DY, Qi J, Ma H (2020)

Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns

Journal of Integrative Plant Biology, 62, 433-455.

DOI:10.1111/jipb.12877      URL     [本文引用: 4]

Huang F, Cheng ZY, Long CL (2008)

Tissue culture and rapid propagation of Adiantum reniforme L. var.sinense Y. X. Lin

Plant Physiology Communications, 44, 307-308. (in Chinese)

[本文引用: 1]

[ 黄芳, 程治英, 龙春林 (2008)

荷叶铁线蕨的组织培养与快速繁殖

植物生理学通讯, 44, 307-308.]

[本文引用: 1]

Huang KR, Shang H, Zhou Q, Wang Y, Shen H, Yan YH (2021)

Volatiles induced from Hypolepis punctata (Dennstaedtiaceae) by herbivores attract Sclomina erinacea (Hemiptera: Reduviidae): Clear evidence of indirect defense in fern

Insects, 12, 978.

DOI:10.3390/insects12110978      URL     [本文引用: 1]

Huang X, Wang WL, Gong T, Wickell D, Kuo LY, Zhang XT, Wen JL, Kim H, Lu FC, Zhao HS, Chen S, Li H, Wu WQ, Yu CJ, Chen S, Fan W, Chen S, Bao XQ, Li L, Zhang D, Jiang LY, Yan XJ, Liao ZY, Zhou GK, Guo YL, Ralph J, Sederoff RR, Wei HR, Zhu P, Li FW, Ming R, Li QZ (2022)

The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence

Nature Plants, 8, 500-512.

DOI:10.1038/s41477-022-01146-6      URL     [本文引用: 2]

Ji BH, Chen LJ, Xu HF, Xu DM, Jin MZ, Zhao CG (2018)

The investigation and analysis on wetland plants in Wangdongyang and Dayanghu Nature Reserve of Jingning

Forest Science and Technology, (7), 57-67. (in Chinese with English abstract)

[本文引用: 1]

[ 季必浩, 陈莉娟, 徐洪峰, 徐端妙, 金民忠, 赵昌高 (2018)

景宁望东垟、大仰湖保护区湿地植物调查及分析

林业科技通讯, (7), 57-67.]

[本文引用: 1]

Ji HL, Zhan XH, Peng YS, Gui ZM, Zhang L (2018)

Resources and flora of pteridophytes in Mt. Zhuguangshan of Jiangxi, China

Chinese Wild Plant Resources, 37(5), 49-55. (in Chinese with English abstract)

[本文引用: 1]

[ 姬红利, 詹选怀, 彭焱松, 桂忠明, 张丽 (2018)

诸广山地区石松类和蕨类植物资源及区系研究

中国野生植物资源, 37(5), 49-55.]

[本文引用: 1]

Jiang SJ, Zeng X, Wang SP, Zhuang NS (2002)

Study of tissue culture of Sphaeropteris hainanensis

Chinese Journal of Tropical Agriculture, (6), 9-12. (in Chinese with English abstract)

[本文引用: 2]

[ 蒋胜军, 曾霞, 王胜培, 庄南生 (2002)

海南白桫椤孢子组织培养的研究

热带农业科学, (6), 9-12.]

[本文引用: 2]

Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP, Zhang WX, Yang C, Chen XY, Tang DZ, Wang ET (2017)

Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi

Science, 356, 1172-1175.

DOI:10.1126/science.aam9970      PMID:28596307      [本文引用: 1]

Arbuscular mycorrhizal (AM) fungi facilitate plant uptake of mineral nutrients and draw organic nutrients from the plant. Organic nutrients are thought to be supplied primarily in the form of sugars. Here we show that the AM fungus is a fatty acid auxotroph and that fatty acids synthesized in the host plants are transferred to the fungus to sustain mycorrhizal colonization. The transfer is dependent on RAM2 (REQUIRED FOR ARBUSCULAR MYCORRHIZATION 2) and the ATP binding cassette transporter-mediated plant lipid export pathway. We further show that plant fatty acids can be transferred to the pathogenic fungus and are required for colonization by pathogens. We suggest that the mutualistic mycorrhizal and pathogenic fungi similarly recruit the fatty acid biosynthesis program to facilitate host invasion.Copyright © 2017, American Association for the Advancement of Science.

Jiao Y, Wang H, Zhang SZ (2014) Album of Pteridophytes:Sporophyte and Prothallus. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 14]

[ 焦瑜, 王晖, 张寿洲 (2014) 蕨类植物图谱: 孢子体和原叶体. 中国林业出版社, 北京.]

[本文引用: 14]

Jin D, Yan YH (2022) A Catalog of Lycophytes and Ferns in East China. Zhejiang University Press, Hangzhou. (in Chinese)

[本文引用: 1]

[ 金冬梅, 严岳鸿 (2021) 华东石松类与蕨类植物多样性编目. 浙江大学出版社, 杭州.]

[本文引用: 1]

Jin D, Zhou XL, Schneider H, Wei HJ, Wei HY, Yan YH (2021)

Functional traits: Adaption of ferns in forest

Journal of Systematics and Evolution, 59, 1040-1050.

DOI:10.1111/jse.12669      URL     [本文引用: 2]

Kang WM, Qiu SL, Lin Y, Luo XY, Mo LJ (2017)

Analysis on the geographical elements of the temple Fengshui woods in the northern Guangdong Province-Take Nanhua Temple and Yunmen Temple as examples

Journal of Shaoguan University, 38(6), 64-68. (in Chinese with English abstract)

[本文引用: 1]

[ 康婉媚, 邱淑玲, 林英, 罗晓莹, 莫罗坚 (2017)

粤北地区寺庙风水林植物地理区系成分分析--以南华寺与云门寺为例

韶关学院学报, 38(6), 64-68.]

[本文引用: 1]

Kong HQ, Huang ZP, Deng HR, Qiu YH, Wu LF (2018)

The floristic analysis of Shaoguan National Forest Park

Forestry and Environmental Science, 34(3), 97-102. (in Chinese with English abstract)

[本文引用: 1]

[ 孔华清, 黄章平, 邓焕然, 丘英华, 吴林芳 (2018)

韶关国家森林公园植物区系分析

林业与环境科学, 34(3), 97-102.]

[本文引用: 1]

Kuo LY, Chang YH, Huang YH, Testo W, Ebihara A, Rouhan G, Quintanilla LG, Watkins JE, Huang YM, Li FW (2020)

A global phylogeny of Stegnogramma ferns (Thelypteridaceae): Generic and sectional revision, historical biogeography and evolution of leaf architecture

Cladistics, 36, 164-183.

DOI:10.1111/cla.12399      PMID:34618958      [本文引用: 1]

The thelypteroid fern genus Stegnogramma s.l. contains around 18-35 species and has a global, cross-continental distribution ranging from tropical to temperate regions. Several genera and infrageneric sections have been recognized previously in Stegnogramma s.l., but their phylogenetic relationships are still unclear. In this study, we present a global phylogeny of Stegnogramma s.l. with the most comprehensive sampling to date and aim to pinpoint the phylogenetic positions of biogeographically and taxonomically important taxa. Based on the reconstructed historical biogeography and character evolution, we propose a new (infra)generic classification and discuss the diversification of Stegnogramma s.l. in a biogeographical context. New names or combinations are made for 12 (infra)species, including transferring the monotypic species of Craspedosorus to Leptogramma. Finally, we discuss a possible link between leaf architecture and ecological adaptation, and hypothesize that the increase in leaf dissection and free-vein proportion is an adaptive feature to cool climates in Stegnogramma s.l.© The Willi Hennig Society 2019.

Kuo LY, Qi XP, Ma H, Li FW (2018)

Order-level fern plastome phylogenomics: New insights from Hymenophyllales

American Journal of Botany, 105, 1545-1555.

DOI:10.1002/ajb2.1152      PMID:30168575      [本文引用: 1]

Filmy ferns (Hymenophyllales) are a highly specialized lineage, having mesophyll one-cell layer thick and inhabiting particularly shaded and humid environments. The phylogenetic placement of Hymenophyllales has been inconclusive, and while over 87 whole fern plastomes have been published, none was from Hymenophyllales. To better understand the evolutionary history of filmy ferns, we sequenced the first complete plastome for this order.We compiled a phylogenomic plastome data set encompassing all 11 fern orders, and reconstructed phylogenies using different data types (nucleotides, codons, and amino acids) and partition schemes (codon positions and loci). To infer the evolution of fern plastome organization, we coded plastome features, including inversions, inverted repeat boundary shifts, gene losses, and tRNA anticodon sequences as characters, and reconstructed the ancestral states for these characters.We discovered a suite of novel, Hymenophyllales-specific plastome structures that likely resulted from repeated expansions and contractions of the inverted repeat regions. Our phylogenetic analyses reveal that Hymenophyllales is highly supported as either sister to Gleicheniales or to Gleicheniales + the remaining non-Osmundales leptosporangiates, depending on the data type and partition scheme.Although our analyses could not confidently resolve the phylogenetic position of Hymenophyalles, the results here highlight the danger of drawing conclusions from "all-in" phylogenomic data set without exploring potential inconsistencies in the data. Finally, our first order-level reconstruction of fern plastome structural evolution provides a useful framework for future plastome research.© 2018 Botanical Society of America.

Lang YT, Ma CW, Yu J, Guo R, Yan YH, Yang DM (2021)

Technology for rapid propagation in vitro of two Alsophila species

Chinese Journal of Tropical Crops, 42, 1579-1588. (in Chinese with English abstract)

[本文引用: 2]

[ 郎月婷, 马长旺, 于靖, 郭芮, 严岳鸿, 杨东梅 (2021)

两种桫椤属植物组培快繁技术研究

热带作物学报, 42, 1579-1588.]

[本文引用: 2]

Li DL, Deng SW, Xing FW, Liu DM, Yi QF, Pan WS (2018)

Analysis of the floristic characteristics of vascular plants in Wenchang, Hainan

Plant Science Journal, 36, 309-319. (in Chinese with English abstract)

[本文引用: 1]

[ 李冬琳, 邓双文, 邢福武, 刘东明, 易绮斐, 潘伟韶 (2018)

海南文昌维管植物区系特征分析

植物科学学报, 36, 309-319.]

[本文引用: 1]

Li GS, Xu CD (2009)

A brief review of medical ferns research

Journal of Chuxiong Normal University, 24(9), 66-69. (in Chinese with English abstract)

[本文引用: 1]

[ 李国树, 徐成东 (2009)

药用蕨类植物的研究进展

楚雄师范学院学报, 24(9), 66-69.]

[本文引用: 1]

Li JL, Yang X, Zhang Y, Duan JK (2022)

Plant resources and flora of Dalongtan State-level Nature Reserve in Nanjian County

Protection Forest Science and Technology, (1), 77-80. (in Chinese)

[本文引用: 1]

[ 李金亮, 杨勋, 张羽, 段剑坤 (2022)

南涧大龙潭州级自然保护区植物资源与区系研究

防护林科技, (1), 77-80.]

[本文引用: 1]

Li M, Chen RQ, Guo X, Ma Y, Li YQ, Guo W, Liao WB, Wang LY (2022)

Utilization analysis and characteristics on the lycophytes and ferns flora of Qi’ao Island in Zhuhai City, Guangdong

Forestry and Environmental Science, 38(1), 113-119. (in Chinese with English abstract)

[本文引用: 1]

[ 黎明, 陈日强, 郭兴, 马英, 李永泉, 郭微, 廖文波, 王龙远 (2022)

珠海淇澳岛石松类和蕨类植物区系特点及其资源利用分析

林业与环境科学, 38(1), 113-119.]

[本文引用: 1]

Li MH, Liu KW, Li Z, Lu HC, Ye QL, Zhang DY, Wang JY, Li YF, Zhong ZM, Liu XD, Yu X, Liu DK, Tu XD, Liu B, Hao Y, Liao XY, Jiang YT, Sun WH, Chen JL, Chen YQ, Ai Y, Zhai JW, Wu SS, Zhou Z, Hsiao YY, Wu WL, Chen YY, Lin YF, Hsu JL, Li CY, Wang ZW, Zhao X, Zhong WY, Ma XK, Ma L, Huang J, Chen GZ, Huang MZ, Huang LQ, Peng DH, Luo YB, Zou SQ, Chen SP, Lan SR, Tsai WC, van de Peer Y, Liu ZJ (2022)

Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy

Nature Plants, 8, 373-388.

DOI:10.1038/s41477-022-01127-9      URL     [本文引用: 1]

Li HL, Gao L, Yang B (2008)

In vitro propagation of Adiantum reniforme var. sinense

Subtropical Plant Science, 37, 67. (in Chinese)

[本文引用: 1]

[ 李洪林, 高丽, 杨波 (2008)

荷叶铁线蕨孢子的离体繁殖

亚热带植物科学, 37, 67.]

[本文引用: 1]

Liang SQ, Viane RLL, Zhang XC, Wei R (2021)

Exploring the reticulate evolution in the Asplenium pekinense complex and the A. varians complex (Aspleniaceae)

Journal of Systematics and Evolution, 59, 125-140.

DOI:10.1111/jse.12530      URL     [本文引用: 2]

Liang SQ, Zhang XC, Wei R (2022)

Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity

Molecular Ecology, 31, 2679-2697.

DOI:10.1111/mec.16420      URL     [本文引用: 1]

Lin RQ, Xu MJ, Fang FQ, Yang YS, Fu RY, Cai GX, Xu ZK, Chen SP (2019)

Comparative study on the stone pine and fern flora in the north and south slopes of Wuyi Mountain

Tianjin Agricultural Sciences, 25(3), 56-62. (in Chinese with English abstract)

[本文引用: 1]

[ 林汝强, 徐明杰, 方福清, 杨佑生, 傅锐英, 蔡光贤, 徐自坤, 陈世品 (2019)

武夷山南北坡石松类和蕨类植物区系比较研究

天津农业科学, 25(3), 56-62.]

[本文引用: 1]

Liu BD, Deng LT, Xiao X, Wang ZC (2020) A culture medium and its method and process for propagating Alsophila podophylla (201910819327.4), China. 2019-08-31. (in Chinese)

[本文引用: 1]

[ 刘保东, 邓里涛, 肖湘, 王梓承 (2020) 一种培养基质及使用其繁殖中华桫椤方法与流程. (201910819327.4), 中国. 2019-08-31.]

[本文引用: 1]

Liu BD (1993)

Spore cultivation of Asplenium komarovii

Plants, (3), 27. (in Chinese)

[本文引用: 1]

[ 刘保东 (1993)

对开蕨孢子育苗

植物杂志, (3), 27.]

[本文引用: 1]

Liu Z, Li Y, Zhu P, Chu XD, He GQ, Sun Y (2020)

Diversity and flora of wetland plants of Changxing County, Zhejiang Province

Journal of Zhejiang A&F University, 37, 465-471. (in Chinese with English abstract)

[本文引用: 1]

[ 刘政, 李颖, 朱培, 褚旭东, 何国庆, 孙勇 (2020)

浙江省长兴县湿地维管植物多样性及区系

浙江农林大学学报, 37, 465-471.]

[本文引用: 1]

Lu J, Guan WY, Xu YX, Liu BD (2013)

Preliminary study on the megagametophyte and embryological development of Isoetes sinensis

Plant Science Journal, 31, 353-359. (in Chinese with English abstract)

DOI:10.3724/SP.J.1142.2013.40353      URL     [本文引用: 1]

[ 路靖, 关维元, 徐永星, 刘保东 (2013)

中华水韭雌配子体及胚胎发育的初步研究

植物科学学报, 31, 353-359.]

[本文引用: 1]

Luo Q, Li ZQ (2016) A spore propagation method of extreme endangerous wetland plant Isoetes yunguiensis (201610316311.8), China. 2016-05-14. (in Chinese)

[本文引用: 1]

[ 骆强, 李章取 (2016) 一种湿地极危植物云贵水韭孢子繁殖方法 (201610316311.8), 中国. 2016-05-14.]

[本文引用: 1]

Lu YJ, Gu YF, Yan YH (2021)

Isoetes baodongii (Isoetaceae), a new basic diploid quillwort from China

Novon, 29, 206-210.

DOI:10.3417/2021680      URL     [本文引用: 1]

Lu ZL, Qin HN, Jin XH, Zhang ZX, Yang QW, Hong DY, Li DZ, Li KF, Yuan LC, Zhou ZH (2021)

On the necessity, principle, and process of updating the List of National Key Protected Wild Plants

Biodiversity Science, 29, 1577-1582. (in Chinese with English abstract)

DOI:10.17520/biods.2021394      URL     [本文引用: 2]

[ 鲁兆莉, 覃海宁, 金效华, 张志翔, 杨庆文, 洪德元, 李德铢, 李开凡, 袁良琛, 周志华 (2021)

《国家重点保护野生植物名录》调整的必要性、原则和程序

生物多样性, 29, 1577-1582.]

DOI:10.17520/biods.2021394      [本文引用: 2]

我国是世界上植物多样性最丰富的国家之一, 1999年发布的《国家重点保护野生植物名录》(下称《名录》(第一批))明确了国家重点保护野生植物的范围, 为依法强化保护、规范无序开发利用、提高公众保护意识奠定了基础。20多年来, 我国野生植物多样性保护形势发生了很大变化, 需要对《名录》进行调整。2018年, 国家林业和草原局、农业农村部启动《名录》调整工作, 物种的遴选遵循了5条基本原则和4条补充性原则, 这些原则主要涉及中国珍稀濒危物种, 具有重要经济、文化、科研、生态等价值物种的入选以及部分物种的排除。经国务院批准, 2021年9月7日, 国家林业和草原局、农业农村部发布了调整后的《名录》, 包括真菌类、藻类、苔藓、石松类和蕨类植物、裸子植物和被子植物, 共计约1,101种(455种和40类)野生植物列入其中。本文简要介绍了《名录》调整的必要性、原则和程序及调整后的情况。

Ma HM, Li Y, Tan LY, Liu BD (2010)

Spore propagation and rejuvenation of Sphaeropteris lepifera

Acta Horticulturae Sinica, 37, 1067-1684. (in Chinese with English abstract)

[本文引用: 1]

[ 马洪娜, 李杨, 檀龙颜, 刘保东 (2010)

笔筒树的孢子繁殖及其复壮研究

园艺学报, 37, 1067-1684.]

[本文引用: 1]

Ma XJ, Yan ZG, Tian XH, Yuan JQ, Feng SX (2009)

Research review of rare source plant Huperzia serrata (Qian Ceng Ta)

Lishizhen Medicine and Materia Medica Research, 20, 2858-2860. (in Chinese with English abstract)

[本文引用: 1]

[ 马小军, 闫志刚, 田夏红, 袁经权, 冯世鑫 (2009)

珍稀药源植物蛇足石杉(千层塔)研究进展

时珍国医国药, 20, 2858-2860.]

[本文引用: 1]

Ma XQ, Tan CH, Zhu DY, Gang DR (2006)

A survey of potential huperzine A natural resources in China: The Huperziaceae

Journal of Ethnopharmacology, 104, 54-67.

DOI:10.1016/j.jep.2005.08.042      URL     [本文引用: 1]

Ma XQ, Tan CH, Zhu DY, Gang DR, Xiao PG (2007)

Huperzine A from Huperzia species-An ethnopharmacolgical review

Journal of Ethnopharmacology, 113, 15-34.

DOI:10.1016/j.jep.2007.05.030      URL     [本文引用: 1]

McAdam SAM, Brodribb TJ (2013)

Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought

New Phytologist, 198, 429-441.

DOI:10.1111/nph.12190      PMID:23421706      [本文引用: 1]

Little is known about how a predominantly passive hydraulic stomatal control in ferns and lycophytes might impact water use under stress. Ferns and lycophytes occupy a diverse array of habitats, from deserts to rainforest canopies, raising the question of whether stomatal behaviour is the same under all ecological strategies and imposes ecological or functional constraints on ferns and lycophytes. We examined the stomatal response of a diverse sample of fern and lycophyte species to both soil and atmospheric water stress, assessing the foliar level of the hormone abscisic acid (ABA) over drought and recovery and the critical leaf water potential (Ψl) at which photosynthesis in droughted leaves failed to recover. The stomata of all ferns and lycophytes showed very predictable responses to soil and atmospheric water deficit via Ψl, while stomatal closure was poorly correlated with changes in ABA. We found that all ferns closed stomata at very low levels of water stress and their survival afterwards was limited only by their capacitance and desiccation tolerance. Ferns and lycophytes have constrained stomatal responses to soil and atmospheric water deficit as a consequence of a predominantly passive stomatal regulation. This results in a monotypic strategy in ferns and lycophytes under water stress.© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Motte H, Vanneste S, Beeckman T (2019)

Molecular and environmental regulation of root development

Annual Review of Plant Biology, 70, 465-488.

DOI:10.1146/annurev-arplant-050718-100423      PMID:30822115      [本文引用: 1]

In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000)

Biodiversity hotspots for conservation priorities

Nature, 403, 853-858.

DOI:10.1038/35002501      URL     [本文引用: 1]

Peng Y, Liu L, Li GS (2017)

Effects of Auxin and its transport inhibitors on spore germination in Ceratopteris pteridoides

Journal of Jishou University (Natural Sciences Edition), 38(3), 55-59. (in Chinese with English abstract)

[ 彭溢, 刘璐, 李贵生 (2017)

生长素及其运输抑制剂对粗梗水蕨孢子萌发的影响

吉首大学学报(自然科学版), 38(3), 55-59.]

Plackett ARG, Di Stilio VS, Langdale JA (2015)

Ferns: The missing link in shoot evolution and development

Frontiers in Plant Science, 6, 972.

DOI:10.3389/fpls.2015.00972      PMID:26594222      [本文引用: 1]

Shoot development in land plants is a remarkably complex process that gives rise to an extreme diversity of forms. Our current understanding of shoot developmental mechanisms comes almost entirely from studies of angiosperms (flowering plants), the most recently diverged plant lineage. Shoot development in angiosperms is based around a layered multicellular apical meristem that produces lateral organs and/or secondary meristems from populations of founder cells at its periphery. In contrast, non-seed plant shoots develop from either single apical initials or from a small population of morphologically distinct apical cells. Although developmental and molecular information is becoming available for non-flowering plants, such as the model moss Physcomitrella patens, making valid comparisons between highly divergent lineages is extremely challenging. As sister group to the seed plants, the monilophytes (ferns and relatives) represent an excellent phylogenetic midpoint of comparison for unlocking the evolution of shoot developmental mechanisms, and recent technical advances have finally made transgenic analysis possible in the emerging model fern Ceratopteris richardii. This review compares and contrasts our current understanding of shoot development in different land plant lineages with the aim of highlighting the potential role that the fern C. richardii could play in shedding light on the evolution of underlying genetic regulatory mechanisms.

PPG I (2016)

A community-derived classification for extant lycophytes and ferns

Journal of Systematics and Evolution, 54, 563-603.

DOI:10.1111/jse.12229      URL     [本文引用: 11]

Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001)

Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants

Nature, 409, 618-622.

DOI:10.1038/35054555      URL     [本文引用: 2]

Qi XP, Kuo LY, Guo CC, Li H, Li ZY, Qi J, Wang L, Hu Y, Xiang JY, Zhang CF, Guo J, Huang CH, Ma H (2018)

A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families

Molecular Phylogenetics and Evolution, 127, 961-977.

DOI:10.1016/j.ympev.2018.06.043      URL     [本文引用: 4]

Qi YD, Wang DL (2017)

Population structure and resource reducing factors of Huperzia serrata (Thunb. ex Murray) Ttrevis. in China

Modern Chinese Medicine, 19, 96-102, 106. (in Chinese with English abstract)

[本文引用: 2]

[ 齐耀东, 王德立 (2017)

蛇足石杉的种群结构和致危因素

中国现代中药, 19, 96-102, 106.]

[本文引用: 2]

Qian H, Kessler M, Deng T, Jin Y (2021)

Patterns and drivers of phylogenetic structure of pteridophytes in China

Global Ecology and Biogeography, 30, 1835-1846.

DOI:10.1111/geb.13349      URL     [本文引用: 1]

Ranker TA, Haufler CH (2008) Biology and Evolution of Ferns and Lycophytes. Cambridge University Press, Cambridge.

[本文引用: 1]

Rut G, Krupa J, Miszalski Z, Rzepka A, Ślesak I (2008)

Crassulacean acid metabolism in the epiphytic fern Patycerium bifurcatum

Photosynthetica, 46, 156-160.

[本文引用: 1]

Schiller K, Bräutigam A (2021)

Engineering of crassulacean acid metabolism

Annual Review of Plant Biology, 72, 77-103.

DOI:10.1146/annurev-arplant-071720-104814      URL     [本文引用: 1]

Schlüter U, Weber APM (2020)

Regulation and evolution of C4 photosynthesis

Annual Review of Plant Biology, 71, 183-215.

DOI:10.1146/annurev-arplant-042916-040915      PMID:32131603      [本文引用: 1]

C photosynthesis evolved multiple times independently from ancestral C photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C context. Further, C photosynthesis relies on a distinct leaf anatomy that differs from that of C, requiring a differential regulation of leaf development in C. We summarize recent progress in the understanding of C-specific features in evolution and metabolic regulation in the context of C photosynthesis.

Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004)

Ferns diversified in the shadow of angiosperms

Nature, 428, 553-557.

DOI:10.1038/nature02361      URL     [本文引用: 1]

Shang H, Sundue M, Wei R, Wei XP, Luo JJ, Liu L, Schwartsburd PB, Yan YH, Zhang XC (2018)

Hiya: A new genus segregated from Hypolepis in the fern family Dennstaedtiaceae, based on phylogenetic evidence and character evolution

Molecular Phylogenetics and Evolution, 127, 449-458.

DOI:S1055-7903(17)30907-7      PMID:29723646      [本文引用: 3]

The relationship of Hypolepis brooksiae, H. nigrescens, and H. scabristipes to the remainder of Hypolepis (Dennstaedtiaceae) has been questioned by previous authors based on their unique combination of morphological characters and different base chromosome number. Using four chloroplast genes including rbcL, atpA, rpL6, and rps4-trnS intergenic spacer (IGS) from 32 samples, representing 24 species of Dennstaedtiaceae, we recovered a clade comprising H. brooksiae and H. nigrescens, distinct from the remaining species of Hypolepis. This clade is resolved as sister to the clade comprising Blotiella, Paesia and Histiopteris. We reconstructed ancestral states of 16 morphological characters and found that this clade is distinguished by indeterminate, scandent leaves exhibiting rhythmic growth, provided with recurved black-tipped prickles, and stipule-like pinnules that protect the emerging crosier and pinnae departures, rachis-costa architecture where the adaxial sulcus is confluent with the next lower order, and a base chromosome number of x = 29. In light of this molecular and morphological evidence, we describe a new genus, Hiya, and provide nomenclatural combinations to accommodate the three known species segregated from Hypolepis: Hiya brooksiae, Hiya nigrescens, and Hiya scabristipes.Copyright © 2018 Elsevier Inc. All rights reserved.

Shang H, Liang ZL, Zhang LB (2021)

Taxonomy of the fern genus Didymochlaena (Didymochlaenaceae) from Asia and Pacific islands based on morphological and molecular evidence with the description of four new species and one new status

Phytotaxa, 479, 71-82.

DOI:10.11646/phytotaxa.479.1.5      URL     [本文引用: 1]

Shang H, Xue ZQ, Gu YF, Zhang LB (2020)

Revision of the fern genus Didymochlaena (Didymochlaenaceae) from Madagascar

Phytotaxa, 459, 252-264.

DOI:10.11646/phytotaxa.459.4.1      URL     [本文引用: 1]

Shen H, Jin D, Shu JP, Zhou XL, Lei M, Wei R, Shang H, Wei HJ, Zhang R, Liu L, Gu YF, Zhang XC, Yan YH (2018)

Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

GigaScience, 7, 1-11.

DOI:10.1093/gigascience/gix116      PMID:29186447      [本文引用: 5]

Background: Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results: With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions: Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants.

Shen QH (2019)

Study on flora of Hetou County Nature Reserve in Lianping County

Forest Investigation Design, (2), 109-112. (in Chinese with English abstract)

[本文引用: 1]

[ 沈秋慧 (2019)

连平县河头县级自然保护区植物区系分布现状分析

林业勘查设计, (2), 109-112.]

[本文引用: 1]

Song LY, Li XN, Pan XT (2015)

Study on endangerment mechanisms of the rare plant Helminthostachys zeylanica

Journal of Guangzhou University (Natural Science Edition), 14(6), 31-35. (in Chinese with English abstract)

[本文引用: 1]

[ 宋莉英, 李晓娜, 潘晓婷 (2015)

濒危植物七指蕨的孢子萌发和光合特性研究

广州大学学报(自然科学版), 14(6), 31-35.]

[本文引用: 1]

Shu JP, Gu YF, Ou ZG, Shao W, Yang J, Lu QY, Zhang XC, Liu BD, Wang RJ, Yan YH (2022a)

Two new tetraploid quillworts species, Isoetes longpingii and Ixiangfei from China (Isoetaceae)

Guihaia. doi: 10.11931/guihaia.gxzw202112045.

[本文引用: 1]

Shu JP, Wang H, Shen H, Wang RJ, Fu Q, Wang YD, Jiao YN, Yan YH (2022b)

Phylogenomic analysis reconstructed the order Matoniales from paleopolyploidy veil

Plants, 11, 1529.

DOI:10.3390/plants11121529      URL     [本文引用: 2]

Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H, Thakur N, Rai P, Pandey P, Hans AL, Srivastava S, Rajapure V, Yadav SK, Singh MK, Kumar J, Chandrashekar K, Verma PC, Singh AP, Nair KN, Bhadauria S, Wahajuddin M, Singh S, Sharma S, Omkar, Upadhyay RS, Ranade SA, Tuli R, Singh PK (2016)

Expression of an insecticidal fern protein in cotton protects against whitefly

Nature Biotechnology, 34, 1046-1051.

DOI:10.1038/nbt.3665      PMID:27598229      [本文引用: 1]

Whitefly (Bemisia tabaci) damages field crops by sucking sap and transmitting viral diseases. None of the insecticidal proteins used in genetically modified (GM) crop plants to date are effective against whitefly. We report the identification of a protein (Tma12) from an edible fern, Tectaria macrodonta (Fee) C. Chr., that is insecticidal to whitefly (median lethal concentration = 1.49 μg/ml in in vitro feeding assays) and interferes with its life cycle at sublethal doses. Transgenic cotton lines that express Tma12 at ∼0.01% of total soluble leaf protein were resistant to whitefly infestation in contained field trials, with no detectable yield penalty. The transgenic cotton lines were also protected from whitefly-borne cotton leaf curl viral disease. Rats fed Tma12 showed no detectable histological or biochemical changes, and this, together with the predicted absence of allergenic domains in Tma12, indicates that Tma12 might be well suited for deployment in GM crops to control whitefly and the viruses it carries.

Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006)

A classification for extant ferns

Taxon, 55, 705-731.

DOI:10.2307/25065646      URL     [本文引用: 2]

Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB, Yang ZY, Hu Y, Ma H, Soltis PS, Soltis DE, Li DZ, Smith SA, Yi TS (2021)

Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms

Nature Plants, 7, 1015-1025.

DOI:10.1038/s41477-021-00964-4      URL     [本文引用: 1]

Sun WY, Shu JP, Gu YF, Morigengaowa, Du XJ, Liu BD, Yan YH (2022)

Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides

Biodiversity Science, 30, 21508. (in Chinese with English abstract)

[本文引用: 1]

[ 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿 (2022)

基于保护基因组学揭示荷叶铁线蕨的濒危机制

生物多样性, 30, 21508. ]

DOI:10.17520/biods.2021508      [本文引用: 1]

理解物种的濒危机制对生物多样性的科学保护至关重要。荷叶铁线蕨(Adiantum nelumboides)作为国家一级重点保护野生植物, 其遗传多样性状况和濒危机制一直存在较大争议。本文利用简化基因组测序技术(genotyping by sequencing,GBS)对来自6个居群的28个荷叶铁线蕨样本测序, 共获得29.6 Gb的数据, 并筛选得到9,423个高质量单核苷酸变异位点(SNP), 通过遗传多样性和居群遗传结构分析, 并结合不同气候情景下物种潜在分布区差异, 探讨了荷叶铁线蕨的濒危原因和科学保护策略。结果表明: (1)荷叶铁线蕨具有较低的遗传多样性(H<sub>o </sub>= 0.138、H<sub>e </sub>= 0.232、P<sub>i </sub>= 0.373), 同时种群间具有较低的遗传分化(F<sub>st </sub>= 0.0202)和基因流(N<sub>m </sub>= 1.9613); (2)所有样本均来自2个遗传分组, 基因组大小为 5.01‒5.83 Gb, 且均为四倍体, GC含量约为 39%‒41%; (3)生态位模拟表明, 与现代气候相比, 在未来气候变化下荷叶铁线蕨的潜在分布区面积略有增加, 但高适生区面积减小。其主要适生区向北迁移, 影响其分布的主导因子为昼夜温差月均值和最冷季降水量。正是由于荷叶铁线蕨遗传多样性低, 不同种群间遗传分化较低, 再加上气候条件的变化, 其适生区狭窄, 导致其遗传多样性和种群数量急剧下降。因此, 自身更新能力低以及过度的人为活动干扰可能是导致其濒危的主要原因。建议加强对荷叶铁线蕨的就地保护; 通过生境恢复及自然回归等措施, 增加居群间的基因交流, 防止遗传资源丢失加剧。

Sun Y, Deng ZH, Liu SX, Li XB, Cui H, Li J (2018)

Studies on the spore sterile culture of Ceratopteris pteridoides

Journal of Huazhong Normal University (Natural Science Edition), 42, 620-623. (in Chinese with English abstract)

[本文引用: 1]

[ 孙锐, 邓子厚, 刘胜祥, 李学宝, 崔鸿, 李娟 (2008)

粗梗水蕨孢子无菌繁殖的研究

华中师范大学学报(自然科学版), 42, 620-623.]

[本文引用: 1]

Tang DD, Wu Y, Liu WY, Li DF, Yang GP, Chen Q, Zhang TT (2018)

Diversity and floristic characteristics of vascular epiphytes in montane forests in the Ailao Mountains, Yunnan

Plant Science Journal, 36, 658-666. (in Chinese with English abstract)

[本文引用: 1]

[ 汤丹丹, 吴毅, 刘文耀, 李德飞, 杨国平, 陈泉, 张婷婷 (2018)

云南哀牢山地区森林附生维管植物多样性及区系特征

植物科学学报, 36, 658-666.]

[本文引用: 1]

Tang J, Guo WF, Bi ZQ, Huang SM, Su B (2015)

Acclimating cultivation technology for Phlemariurus squarrosous

Journal of Southern Agriculture, 46, 2180-2184. (in Chinese with English abstract)

[本文引用: 1]

[ 唐军, 郭文锋, 闭志强, 黄素梅, 苏宾 (2015)

粗糙马尾杉的驯化栽培

南方农业学报, 46, 2180-2184.]

[本文引用: 1]

The Biodiversity Committee of Chinese Academy of Sciences(2022) Catalogue of Life China: 2022 Annual Checklist, Beijing, China.

[本文引用: 1]

RBG Kew (2016)

The State of the World’s Plants Report-2016

Royal Botanic Gardens, Kew.

[本文引用: 1]

Vasco A, Moran RC, Ambrose BA (2013)

The evolution, morphology, and development of fern leaves

Frontiers in Plant Science, 4, 345.

[本文引用: 1]

Wai CM, Weise SE, Ozersky P, Mockler TC, Michael TP, VanBuren R (2019)

Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album

PLoS Genetics, 15, e1008209.

DOI:10.1371/journal.pgen.1008209      URL     [本文引用: 1]

Wang DF, Meng GT, Li PR (2022)

Characteristics of the flora of vascular plants in Fuxian Lake National Wetland Park

Journal of Zhejiang Foresty and Technology, 42(1), 76-83. (in Chinese with English abstract)

[本文引用: 2]

[ 王德芬, 孟广涛, 李品荣 (2022)

云南玉溪抚仙湖国家湿地公园维管束植物区系特征分析

浙江林业科技, 42(1), 76-83.]

[本文引用: 2]

Wang FG, Wang AH, Bai CK, Jin D, Nie LY, Harris A, Che L, Wang JJ, Li SY, Xu L, Shen H, Gu YF, Shang H, Duan L, Zhang XC, Chen HF, Yan YH (2022)

Genome size evolution of the extant lycophytes and ferns

Plant Diversity, 44, 141-152.

DOI:10.1016/j.pld.2021.11.007      URL     [本文引用: 1]

Wang H, Qin JR, Zhi S, Tian N, Xiao XJ (2013)

Orthogonal optimized synthesis of prothallus proliferation and young sporophyte formation in Alsophila spinulosa

Technology Development, 27(5), 86-88. (in Chinese with English abstract)

[本文引用: 1]

[ 王辉, 秦建蓉, 植爽, 田娜, 肖小君 (2013)

桫椤原叶体增殖及幼孢子体形成试验

林业工程学报, 27(5), 86-88.]

[本文引用: 1]

Wang H, Zhang R, Zhang J, Shen H, Dai XL, Yan YH (2019)

De novo transcriptome assembly reveals the whole genome duplication events of Didymochlaena trancatula

Biodiversity Science, 27, 1221-1227. (in Chinese with English abstract)

DOI:10.17520/biods.2019236      [本文引用: 1]

Whole genome duplication is an important driving force to speciation and evolution. Moreover, most existing plants and animals have experienced whole genome duplication in their evolutionary history. As the basal group of the Eupolypods I, Didymochlaena trancatula is the single fern species of Didymochlaenaceae. We performed transcriptome sequencing to detect whole genome duplication (WGD) events by analyzing age distributions built from synonymous substitution rates (Ks). We found that D. trancatula has experienced at least two WGDs during its evolutionary history. We dated the two WGDs at 59-62 million years ago (Mya) and 90-94 Mya, corresponding to Cretaceous-Tertiary (C-T) extinction event and the divergence time of D. trancatula, respectively. Annotation and functional enrichment analysis showed most duplicated genes that were retained are related to environmental regulation, further emphasizing the role that WGDs may play in the adaptive evolution of D. trancatula.

[ 汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿 (2019)

转录组测序揭示翼盖蕨(Didymochlaena trancatula)的全基因组复制历史

生物多样性, 27, 1221-1227.]

DOI:10.17520/biods.2019236      [本文引用: 1]

全基因组复制在动植物中普遍存在, 被认为是促进物种进化的重要动力之一。作为蕨类植物的单种科物种, 翼盖蕨(Didymochlaena trancatula)是真水龙骨类I的基部类群, 在蕨类中具有独特的演化地位。本研究基于高通量测序, 通过同义替换率(Ks)分析、相对定年分析揭示翼盖蕨的全基因组复制发生情况。Ks分析表明, 翼盖蕨至少经历了两次全基因组复制事件, 其中一次发生于59-62 million years ago (Mya), 另一次发生于90-94 Mya, 这两次全基因组复制事件分别和白垩纪第三纪的Cretaceous-Tertiary (C-T)大灭绝事件以及翼盖蕨的物种分化时间相吻合。进一步对两次全基因组复制保留的基因进行功能注释和富集分析, 结果显示与转录及代谢调控相关的基因优势被保留。翼盖蕨的全基因组复制事件可能促进了该物种的分化及其对极端环境的适应性。

Wang JJ, Zhang XC, Liu BD, Cheng X (2007)

Gametophyte development of three species in Cyatheaceae

Journal of Tropical and Subtropical Botany, 15, 115-120. (in Chinese with English abstract)

[本文引用: 3]

[ 王金娟, 张宪春, 刘保东, 成晓 (2007)

桫椤科三种植物配子体发育的研究

热带亚热带植物学报, 15, 115-120.]

[本文引用: 3]

Wang L, Ma GL, Wang HL, Cheng C, Mu SY, Quan W, Jiang L, Zhao ZY, Zhang Y, Zhang K, Wang XL, Tian CY, Zhang Y (2019)

A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells

GigaScience, 8, giz116.

[本文引用: 1]

Wang L, Gu DF, Wang HF (2009)

The study on two reproduction techniques of Phyllitis japonica

Chinese Horticulture Abstracts, 25(6), 16-19. (in Chinese with English abstract)

[本文引用: 1]

[ 王蕾, 顾德峰, 王海峰 (2009)

东北对开蕨两种繁殖技术的研究

中国园艺文摘, 25(6), 16-19.]

[本文引用: 1]

Wang MN, Hu XJ, Liang S, Wei BJ, Li RZ (2020)

Fern flora of Guanyindong Nature Reserve in Nanxiong, Shaoguan

Chinese Wild Plant Resources, 39(12), 65-70. (in Chinese with English abstract)

[本文引用: 1]

[ 王梦楠, 胡希军, 梁胜, 韦宝婧, 李芮芝 (2020)

韶关南雄市观音岽自然保护区蕨类植物区系研究

中国野生植物资源, 39(12), 65-70.]

[本文引用: 1]

Wang P, Gou ZH, Nong SQ, Huang CT, Lin L, Yu XB (2018)

Species diversity and floristic components of tropical secondary forests in hilly areas of central Hainan

Chinese Journal of Tropical Crops, 39, 802-808. (in Chinese with English abstract)

[本文引用: 1]

[ 王牌, 苟志辉, 农寿千, 黄川腾, 林玲, 余雪标 (2018)

海南中部丘陵区热带次生林物种多样性及区系分析

热带作物学报, 39, 802-808.]

[本文引用: 1]

Wang Q, Li GH, Huang L, Li J, Qin JL (2017)

Floristic phytogeography of pteridophytes in Naban River Watershed National Nature Reserve of Yunnan

Acta Botanica Boreali-Occidentalia Sinica, 37, 372-378. (in Chinese with English abstract)

[本文引用: 1]

[ 王倩, 李根会, 黄琳, 李娟, 覃家理 (2017)

云南纳板河保护区蕨类植物区系地理研究

西北植物学报, 37, 372-378.]

[本文引用: 1]

Wang QL, Tang H, Wang ZN (2019)

Investigation and evaluation of plant resources diversity of Xisha Islands, China

Chinese Journal of Tropical Agriculture, 39(8), 40-52. (in Chinese with English abstract)

[本文引用: 1]

[ 王清隆, 汤欢, 王祝年 (2019)

西沙群岛植物资源多样性调查与评价

热带农业科学, 39(8), 40-52.]

[本文引用: 1]

Wang T, Xia ZQ, Shu JP, Zhang J, Wang MN, Chen JB, Wang KL, Xiang JY, Yan YH (2021)

Dating whole-genome duplication reveals the evolutionary retardation of Angiopteris

Biodiversity Science, 29, 722-734. (in Chinese with English abstract)

DOI:10.17520/biods.2020484      URL     [本文引用: 1]

[ 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿 (2021)

全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化

生物多样性, 29, 722-734.]

[本文引用: 1]

Wang WM, Wei JX, Yin ZW, Zuo F, Song FM (2018) A spore propagation method of Ceratopteris pteridoides (201810784915.4), China. 2018-07-17. (in Chinese)

[本文引用: 1]

[ 王文明, 危建新, 尹振文, 左锋, 宋凤鸣 (2018) 一种粗梗水蕨的孢子繁殖方法 (201810784915.4), 中国. 2018-07-17.]

[本文引用: 1]

Wang WQ, Cheng X, Jiao Y (2011)

The gametophyte development and endangerment mechanism of Platycerium wallichiii, a tropical epiphytic fern

Journal of Yunnan Agricultural University (Natural Science Edition), 26, 293-297. (in Chinese with English abstract)

[本文引用: 1]

[ 王卫清, 成晓, 焦瑜 (2011)

鹿角蕨(鹿角蕨科)配子体发育及其濒危机制探讨

云南农业大学学报(自然科学版), 26, 293-297.]

[本文引用: 1]

Wang Y, Zhao JB, Wang JJ, Wang XN, Liu BD (2007)

Studies on the development of gametophytes of three species in Blechnaceae

Bulletin of Botanical Research, 27, 269-274. (in Chinese with English abstract)

[本文引用: 1]

[ 王玥, 赵金博, 王金娟, 王晓楠, 刘保东 (2007)

乌毛蕨科3种植物配子体发育的研究

植物研究, 27, 269-274.]

[本文引用: 1]

Wang YH (2012)

The environment regulation function of quasi-sinusoidal spatial channel

Journal of Minxi Vocational and Technical College, 14(1), 87-88, 108. (in Chinese with English abstract)

[本文引用: 1]

[ 王益和 (2012)

金毛狗脊蕨孢子繁殖研究简报

闽西职业技术学院学报, 14(1), 87-88, 108.]

[本文引用: 1]

Wang ZQ, Xu YK, Lin J, Mei XD, Wu DH (2019)

Floristic characteristics of lycophyte and fern flora in Jingning, Zhejiang Province

Subtropical Plant Science, 48, 254-260. (in Chinese with English abstract)

[本文引用: 1]

[ 王宗琪, 许元科, 林坚, 梅旭东, 吴东浩 (2019)

浙江景宁畲族自治县石松类和蕨类植物区系研究

亚热带植物科学, 48, 254-260.]

[本文引用: 1]

Wei R, Yan YH, Harris A, Kang JS, Shen H, Xiang QP, Zhang XC (2017)

Plastid phylogenomics resolve deep relationships among eupolypod II Ferns with rapid radiation and rate heterogeneity

Genome Biology and Evolution, 9, 1646-1657.

DOI:10.1093/gbe/evx107      URL     [本文引用: 3]

Wei R, Yang J, He LJ, Liu HM, Hu JY, Liang SQ, Wei XP, Zhao CF, Zhang XC (2021)

Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae

Cladistics, 37, 717-727.

DOI:10.1111/cla.12461      URL     [本文引用: 4]

Wei R, Zhang XC (2020)

Phylogeny of Diplazium (Athyriaceae) revisited: Resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis

Molecular Phylogenetics and Evolution, 143, 106699.

DOI:10.1016/j.ympev.2019.106699      URL     [本文引用: 1]

Wei XY, Harris AJ, Cui YW, Dai YW, Hu HJ, Yu XL, Jiang RH, Wang FG (2021)

Inferring the potential geographic distribution and reasons for the endangered status of the tree fern, Sphaeropteris lepifera, in Lingnan, China using a small sample size

Horticulturae, 7, 496.

DOI:10.3390/horticulturae7110496      URL     [本文引用: 1]

Wei XP, Qi YD, Zhang XC, Luo L, Shang H, Wei R, Liu HT, Zhang BG (2017)

Phylogeny, historical biogeography and characters evolution of the drought resistant fern Pyrrosia mirbel (Polypodiaceae) inferred from plastid and nuclear markers

Scientific Reports, 7, 12757.

DOI:10.1038/s41598-017-12839-w      URL     [本文引用: 1]

Wei ZY, Gu YF, Xia ZQ, Chen LJ, Wang T, Zhang S, Zhao GH, Chen JB, Cao JG, Yan YH (2021)

Dipteris shenzhenensis, a new endangered species of Dipteridaceae from Shenzhen, southern China

PhytoKeys, 186, 111-120.

DOI:10.3897/phytokeys.186.73739      URL    

Wei ZY, Xia ZQ, Shu JP, Shang H, Maxwell SJ, Chen LJ, Zhou XL, Xi W, Adjie B, Yuan Q, Cao JG, Yan YH (2022)

Phylogeny and taxonomy on cryptic species of forked ferns of Asia

Frontiers in Plant Science, 12, 748562.

DOI:10.3389/fpls.2021.748562      URL     [本文引用: 2]

Wickell D, Kuo LY, Yang HP, Dhabalia Ashok A, Irisarri I, Dadras A, de Vries S, de Vries J, Huang YM, Li Z, Barker MS, Hartwick NT, Michael TP, Li FW (2021)

Underwater CAM photosynthesis elucidated by Isoetes genome

Nature Communications, 12, 6348.

DOI:10.1038/s41467-021-26644-7      PMID:34732722      [本文引用: 1]

To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identify several key differences. Notably, Isoetes may have recruited the lesser-known 'bacterial-type' PEPC, along with the 'plant-type' exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.© 2021. The Author(s).

Wu JS, Ye XX, Lin RY, Fang NY (2020)

Effects of substrate and film mulching on spore sowing and reproduction of Platycerium bifurcatum

Southeast Horticulture, 8(2), 21-24. (in Chinese with English abstract)

[本文引用: 1]

[ 吴建设, 叶秀仙, 林榕燕, 方能炎 (2020)

基质、覆膜对二歧鹿角蕨孢子播种繁殖的影响

东南园艺, 8(2), 21-24.]

[本文引用: 1]

Wu YD, Zhang HR, Zhang XC (2017)

Selaginella guihaia (Selaginellaceae): A new spikemoss species from southern China and northern Vietnam around the Gulf of Tonkin

PhytoKeys. 80, 41-52.

DOI:10.3897/phytokeys.80.11126      URL     [本文引用: 1]

Xia ZQ, Liu L, Wei ZY, Wang FG, Shen H, Yan YH (2022a)

Analysis of comparative transcriptome and positively selected genes reveal adaptive evolution in leaf-less and root-less whisk ferns

Plants, 11, 1198.

DOI:10.3390/plants11091198      URL     [本文引用: 1]

Xia ZQ, Wei ZY, Shen H, Shu JP, Wang T, Gu YF, Jaisi A, Yan YH (2022b)

Lycophyte transcriptomes reveal two whole-genome duplications in Lycopodiaceae: Insights into the polyploidization of Phlegmariurus

Plant Diversity, 44, 262-270.

DOI:10.1016/j.pld.2021.08.004      URL     [本文引用: 2]

Xiang QP, Tang JY, Yu JG, Smith DR, Zhu YM, Wang YR, Kang JS, Yang J, Zhang XC (2022)

The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery

The Plant Journal, TPJ-458.

[本文引用: 1]

Xiao YL, Jess E, Fan Z, Wu SW (2020) The invention relates to a culture method of explants of Phlegmariurus carinatus. 201810715204.1, China. 2020-01-10. (in Chinese)

[本文引用: 1]

[ 肖友利, 杰斯·艾美特, 范震, 吴世文 (2020) 一种龙骨马尾杉外植体培养方法. 201810715204.1, 中国. 2020-01-10.]

[本文引用: 1]

Xie J, Zhang JY, Tang N, Ke JY, Zhao S, Jiang ZH (2020)

Advances in biosynthesis of galanthamine and huperzine A

Chinese Traditional and Herbal Drugs, 51, 812-820. (in Chinese with English abstract)

[本文引用: 1]

[ 谢峻, 张静怡, 汤宁, 柯江英, 赵嵩, 姜泽慧 (2020)

加兰他敏和石杉碱甲生物合成的研究进展

中草药, 51, 812-820.]

[本文引用: 1]

Xing JJ, Lu j, Li F, Liu BD (2013)

Spore seedling cultivation and care of young sporophyte seedling of extreme endangerous wetland plant Isoetes sinensis

Wetland Science, 11, 347-351. (in Chinese with English abstract)

[本文引用: 1]

[ 邢建娇, 路靖, 李范, 刘保东 (2013)

湿地极危植物中华水韭孢子育苗及幼孢苗管护

湿地科学, 11, 347-351.]

[本文引用: 1]

Xing JJ, Sun SH, Meng XL, Liu BD (2012)

New observation of morphological characteristics of Gametophyte in the endangered fern Cibotium barometz

Journal of Tropical Organisms, 3, 357-360. (in Chinese with English abstract)

[本文引用: 1]

[ 邢建娇, 孙淑红, 孟宪利, 刘保东 (2012)

金毛狗配子体形态学特征的观察

热带生物学报, 3, 357-360.]

[本文引用: 1]

Xin FW, Wang FG, Zhou JS, John T (2021) Flora of Canary Islands. Science Press, Beijing.

[本文引用: 1]

Xu GL, Zeng XH (2021)

Investigation and analysis of pteridophytes resources in Jiulianshan Nature Reserve, Jiangxi, China

Chinese Journal of Tropical Crops, 42, 3025-3032. (in Chinese with English abstract)

[本文引用: 1]

[ 徐国良, 曾晓辉 (2021)

江西九连山自然保护区蕨类植物资源调查和分析

热带作物学报, 42, 3025-3032.]

[本文引用: 1]

Xu KW, Zhang L, Rothfels CJ, Smith AR, Viane R, Lorence D, Wood KR, Chen CW, Knapp R, Zhou L, Lu NT, Zhou XM, Wei HJ, Fan Q, Chen SF, Cicuzza D, Gao XF, Liao WB, Zhang LB (2020)

A global plastid phylogeny of the fern genus Asplenium (Aspleniaceae)

Cladistics, 36, 22-71.

DOI:10.1111/cla.12384      URL     [本文引用: 2]

Xu KW, Zhou XM, Yin QY, Zhang L, Lu NT, Knapp R, Luong TT, He H, Fan Q, Zhao WY, Gao XF, Liao WB, Zhang LB (2018)

A global plastid phylogeny uncovers extensive cryptic speciation in the fern genus Hymenasplenium (Aspleniaceae)

Molecular Phylogenetics and Evolution, 127, 203-216.

DOI:10.1016/j.ympev.2018.05.021      URL     [本文引用: 3]

Xu ZC, Xin TY, Bartels D, Li Y, Gu W, Yao H, Liu S, Yu HY, Pu XD, Zhou JG, Xu J, Xi CC, Lei HT, Song JY, Chen SL (2018)

Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance

Molecular Plant, 11, 983-994.

DOI:10.1016/j.molp.2018.05.003      URL     [本文引用: 3]

Xu ZF, Liu ED, Chen JH (2021)

Using the Biotracks platform to collect plant specimens

Guihaia, doi: 10.11931/guihaia.gxzw202102035. (in Chinese with English abstract)

[本文引用: 1]

[ 徐洲锋, 刘恩德, 陈家辉 (2021)

使用Biotracks采集植物标本

广西植物. doi: 10.11931/guihaia. gxzw202102035.]

[本文引用: 1]

Yan H, Gao Y, Wu L, Wang L, Zhang T, Dai C, Xu W, Feng L, Ma M, Zhu YG, He Z (2019)

Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation

Journal of Hazardous Materials, 368, 386-396.

DOI:10.1016/j.jhazmat.2019.01.072      URL     [本文引用: 1]

Yan YH, Shi L (2014) Ex situ Conservation of Ferns Methods and Practice. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 5]

[ 严岳鸿, 石雷 (2014) 蕨类植物迁地保护的方法与实践. 中国林业出版社, 北京.]

[本文引用: 5]

Yan YH, Wei R, Shu JP, Zhang XC (2019)

Insight into evolution of land plants from living ferns and lycopods

Biodiversity Science, 27, 1165-1171. (in Chinese)

DOI:10.17520/biods.2019423      URL     [本文引用: 2]

[ 严岳鸿, 卫然, 舒江平, 张宪春 (2019)

通过现存蕨类植物多样性透视陆生植物的演化

生物多样性, 27, 1165-1171.]

DOI:10.17520/biods.2019423      [本文引用: 2]

Yan YH, Zhang XC, Ma KP (2006) Status and conservation of rare and endangred ferns and ferns allies in China. In: Proceedings of the 7th National Conference on Biodiversity Conservation and Sustainable Utilization, pp. 77-87. In: China Meteorological Press, Beijing. (in Chinese with English abstract)

[本文引用: 2]

[ 严岳鸿, 张宪春, 马克平 (2006) 中国珍稀濒危蕨类植物的现状及保护. 见: 第七届(2006)全国生物多样性保护与持续利用研讨会论文集, 77-87页. 气象出版社, 北京.]

[本文引用: 2]

Yan YH, Zhang XC, Ma KP (2014) Pteridophytes in China:Diversity and Distribution. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[ 严岳鸿, 张宪春, 马克平 (2014) 中国蕨类植物多样性与地理分布. 科学出版社, 北京.]

[本文引用: 1]

Yan YH, Zhang XC, Zhou XL, Sun JQ (2016) Species Catalogue of China (Vol. 1): Plants•Pteridophytes. Science Press, Beijing. (in Chinese)

[本文引用: 2]

[ 严岳鸿, 张宪春, 周喜乐, 孙久琼 (2016) 中国生物物种名录(第一卷): 植物•蕨类植物. 科学出版社, 北京.]

[本文引用: 2]

Yan YH, Zhou XL (2018) Ferns in Hainan. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 1]

[ 严岳鸿, 周喜乐 (2018) 海南蕨类植物. 中国林业出版社, 北京.]

[本文引用: 1]

Yan YH, Zhou XL (2021) Ferns in Wuling Mountains, China. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 1]

[ 严岳鸿, 周喜乐 (2021) 中国武陵山区蕨类植物. 中国林业出版社, 北京.]

[本文引用: 1]

Yang D, Xiang MD, Deng W, Nie XT, Zhang C, Jin Y, Tang XX (2022)

Plant diversity characteristics and zonation analysis of Huaxi drinking water source protection zone

Chinese Wild Plant Resources, 41(1), 82-89. (in Chinese with English abstract)

[本文引用: 3]

[ 杨丹, 相孟达, 邓伟, 聂雪婷, 张潮, 金毅, 汤晓辛 (2022)

花溪饮用水源保护区植物多样性特征及区系分析

中国野生植物资源, 41(1), 82-89.]

[本文引用: 3]

Yang L, Huang Y, Lima LV, Sun Z, Liu M, Wang J, Liu N, Ren H (2021)

Rethinking the ecosystem functions of Dicranopteris, a widespread genus of ferns

Frontiers in Plant Science, 11.

Yang LD (2021)

The investigation on community characteristics of Phoebe bournei in Leigongshan Mountain

Journal of Hunan Ecological Science, 8(1), 49-53. (in Chinese with English abstract)

[本文引用: 1]

[ 杨礼旦 (2021)

贵州雷公山闽楠群落调查分析

湖南生态科学学报, 8(1), 49-53.]

[本文引用: 1]

Yang XH, Hu RB, Yin HF, Jenkins J, Shu SQ, Tang HB, Liu DG, Weighill DA, Cheol Yim W, Ha J, Heyduk K, Goodstein DM, Guo HB, Moseley RC, Fitzek E, Jawdy S, Zhang ZH, Xie M, Hartwell J, Grimwood J, Abraham PE, Mewalal R, Beltrán JD, Boxall SF, Dever LV, Palla KJ, Albion R, Garcia T, Mayer JA, Don Lim S, Man Wai C, Peluso P, van Buren R, de Paoli HC, Borland AM, Guo H, Chen JG, Muchero W, Yin YB, Jacobson DA, Tschaplinski TJ, Hettich RL, Ming R, Winter K, Leebens-Mack JH, Smith JAC, Cushman JC, Schmutz J, Tuskan GA (2017)

The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

Nature Communications, 8, 1899.

DOI:10.1038/s41467-017-01491-7      URL     [本文引用: 1]

Ye XX, Chen YQ, Fang NY, Wu JS, Zhong HQ (2020)

Spore germination and rapid propagation of Platycerium wallichii Hook

Journal of Southern Agriculture, 51, 2773-2780. (in Chinese with English abstract)

[本文引用: 1]

[ 叶秀仙, 陈艺荃, 方能炎, 吴建设, 钟淮钦 (2020)

鹿角蕨孢子萌发与快速繁殖技术研究

南方农业学报, 51, 2773-2780.]

[本文引用: 1]

Yu J, Zhang YY, Liu W, Wang H, Wen ST, Zhang YJ, Xu L (2020)

Molecular evolution of Auxin mediated root initiation in plants

Molecular Biology and Evolution, 37, 1387-1393.

DOI:10.1093/molbev/msz202      URL     [本文引用: 1]

Yu JH, Zhang R, Liu QL, Wang FG, Yu XL, Dai XL, Liu YB, Yan YH (2022)

Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data

Plant Diversity, 44, 300-307.

DOI:10.1016/j.pld.2021.10.002      URL     [本文引用: 1]

Yu YY, Lian YQ, Liu BD (2015)

Research of root system of relict pteridophyte Isoetes sinensis

Acta Botanica Boreali-Occidentalia Sinica, 35, 737-742. (in Chinese with English abstract)

[本文引用: 1]

[ 于阳阳, 连永权, 刘保东 (2015)

孑遗蕨类中华水韭根系发育的研究

西北植物学报, 35, 737-742.]

[本文引用: 1]

Zeng HY, Ding BY (2003)

Studies on the gametophytes development in ferns

Bulletin of Botanical Research, 23, 154-158. (in Chinese with English abstract)

[本文引用: 3]

[ 曾汉元, 丁炳扬 (2003)

蕨类植物配子体发育的研究

植物研究, 23, 154-158.]

[本文引用: 3]

Zhang C, Zhang ZN, Tang XX (2017)

Analysis of vascular plant resources in the Chejia River Wetland Park of Yinjiang

Journal of Guizhou Normal University (Natural Sciences), 35(6), 50-65. (in Chinese with English abstract)

[本文引用: 1]

[ 张潮, 张子楠, 汤晓辛 (2017)

印江车家河湿地公园维管植物资源分析

贵州师范大学学报(自然科学版), 35(6), 50-65.]

[本文引用: 1]

Zhang HR, Wei R, Xiang QP, Zhang XC (2020)

Plastome- based phylogenomics resolves the placement of the sanguinolenta group in the spikemoss of lycophyte (Selaginellaceae)

Molecular Phylogenetics and Evolution, 147, 106788.

DOI:10.1016/j.ympev.2020.106788      URL     [本文引用: 1]

Zhang HR, Xiang QP, Zhang XC (2019)

The unique evolutionary trajectory and dynamic conformations of DR and IR/DR coexisting plastomes of the early vascular plant Selaginellaceae (Lycophyte)

Genome Biology and Evolution, 11, 1258-1274.

DOI:10.1093/gbe/evz073      URL    

Zhang J, Liu L, Shu JP, Jin D, Shen H, Chen HF, Zhang R, Yan YH (2019)

Transcriptomic evidence of adaptive evolution of the epiphytic fern Asplenium nidus

International Journal of Genomics, 2019, 1-9.

[本文引用: 1]

Zhang K, Chen WA, Luo WQ, Wu TT, Li DH, Yang XB (2017)

Lycophytes and ferns flora of Wuzhishan National Nature Reserve in Hainan

Chinese Journal of Tropical Crops, 38, 618-629. (in Chinese with English abstract)

[本文引用: 1]

[ 张凯, 陈伟岸, 罗文启, 吴庭天, 李东海, 杨小波 (2017)

海南五指山国家级自然保护区石松类和蕨类植物区系研究

热带作物学报, 38, 618-629.]

[本文引用: 1]

Zhang L, Fan XP, Petchsri S, Zhou L, Pollawatn R, Zhang X, Zhou XM, Thi Lu N, Knapp R, Chantanaorrapint S, Limpanasittichai P, Sun H, Gao XF, Zhang LB (2020)

Evolutionary relationships of the ancient fern lineage the adder’s tongues (Ophioglossaceae) with description of Sahashia gen

nov. Cladistics, 36, 380-393.

[本文引用: 1]

Zhang L, Zhang LB (2018a)

A classification of the fern genus Tectaria (Tectariaceae: Polypodiales) based on molecular and morphological evidence

Annals of the Missouri Botanical Garden, 103, 188-199.

DOI:10.3417/2017007      URL     [本文引用: 3]

Zhang L, Zhang LB (2018b)

Phylogeny and systematics of the brake fern genus Pteris (Pteridaceae) based on molecular (plastid and nuclear) and morphological evidence

Molecular Phylogenetics and Evolution, 118, 265-285.

DOI:10.1016/j.ympev.2017.09.011      URL     [本文引用: 3]

Zhang L, Zhou XM, Chen DK, Schuettpelz E, Knapp R, Lu NT, Luong TT, Dang MT, Duan YF, He H, Gao XF, Zhang LB (2017a)

A global phylogeny of the fern genus Tectaria (Tectariaceae: Polypodiales) based on plastid and nuclear markers identifies major evolutionary lineages and suggests repeated evolution of free venation from anastomosing venation

Molecular Phylogenetics and Evolution, 114, 295-333.

DOI:10.1016/j.ympev.2017.05.020      URL     [本文引用: 3]

Zhang L, Zhou XM, Lu NT, Zhang LB (2017b)

Phylogeny of the fern subfamily Pteridoideae (Pteridaceae; Pteridophyta), with the description of a new genus: Gastoniella

Molecular Phylogenetics and Evolution, 109, 59-72.

DOI:10.1016/j.ympev.2016.12.037      URL     [本文引用: 2]

Zhang MH, Wei R, Xiang QP, Ebihara A, Zhang XC (2021)

Integrative taxonomy of the Selaginella helvetica group based on morphological, molecular and ecological data

Taxon, 70, 1163-1187.

DOI:10.1002/tax.12565      URL     [本文引用: 4]

Zhang MH, Xiang QP, Zhang XC (2022)

Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing

Molecular Phylogenetics and Evolution, 173, 107507.

DOI:10.1016/j.ympev.2022.107507      URL     [本文引用: 4]

Zhang MH, Yang J, Lu HT, Tran G, Zhang XC (2021)

Selaginella pseudotamariscina (Selaginellaceae), an overlooked rosette-forming resurrection spikemoss from Vietnam

Guihaia, 10.11931/guihaia.gxzw202104055.

[本文引用: 1]

Zhang R, Wang FG, Zhang J, Shang H, Liu L, Wang H, Zhao GH, Shen H, Yan YH (2019)

Dating whole genome duplication in Ceratopteris thalictroides and potential adaptive values of retained gene duplicates

International Journal of Molecular Sciences, 20, 1926.

DOI:10.3390/ijms20081926      URL     [本文引用: 1]

Zhang TY, Li Y (2017)

A preliminary study on ferns in Chishui Podophylla National Nature Reserve, Guizhou Province

Curriculum and Educational Studies, (3), 292-293. (in Chinese)

[本文引用: 1]

[ 张廷跃, 李艳 (2017)

贵州赤水桫椤国家级自然保护区蕨类植物初步研究

课程教育研究, (3), 292-293.]

[本文引用: 1]

Zhang XT, Wang G, Zhang SC, Chen S, Wang YB, Wen P, Ma XK, Shi Y, Qi R, Yang Y, Liao ZY, Lin J, Lin JS, Xu XM, Chen XQ, Xu XD, Deng F, Zhao LH, Ming R (2020)

Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution

Cell, 183, 875-889. e17.

DOI:10.1016/j.cell.2020.09.043      URL    

Zhang XC, Yao ZM (2017) Lycophytes and Ferns of Maolan, China. Science Press, Beijing. (in Chinese)

[本文引用: 3]

[ 张宪春, 姚正明 (2017) 中国茂兰石松类和蕨类植物. 科学出版社, 北京.]

[本文引用: 3]

Zhang WQ, Wu HP, Luo XM, Xiong Y, Guan BC, Li EX (2018)

The flora and resources of lycophytes and ferns in Matoushan Nature Reserve of Jiangxi Province

Journal of Nanchang University (Natural Science), 42, 603-610. (in Chinese with English abstract)

[本文引用: 1]

[ 张伟清, 吴和平, 罗晓敏, 熊宇, 管毕财, 李恩香 (2018)

江西马头山自然保护区石松类和蕨类植物多样性

南昌大学学报(理科版), 42, 603-610.]

[本文引用: 1]

Zhang ZR, Zhang SB (2010)

Exploring on spore breeding techniques of national secondary protected and medicine used ornamental named Cibotium barometz

Northern Horticulture, (13), 203-206. (in Chinese with English abstract)

[本文引用: 2]

[ 张祖荣, 张绍彬 (2010)

国家二级保护药用与观赏植物金毛狗的孢子繁殖技术初探

北方园艺, (13), 203-206.]

[本文引用: 2]

Zhao CF, Wei R, Zhang XC, Xiang QP (2020)

Backbone phylogeny of Lepisorus (Polypodiaceae) and a novel infrageneric classification based on the total evidence from plastid and morphological data

Cladistics, 36, 235-258.

DOI:10.1111/cla.12403      URL     [本文引用: 3]

Zhao G, Hu GM, Wu PG, Liu BW, Wang Q, Zhang QW, Chen FL, Liu SY, Xu CQ, Cai XH (2018)

Research progress on medicinal fern Huperzia serrata (Thunb. ex Murray) Trev

Journal of Shangrao Normal University, 38(6), 67-73. (in Chinese with English abstract)

[本文引用: 2]

[ 赵刚, 胡光明, 吴平华, 刘邦旺, 王钦, 张启薇, 陈芳丽, 刘舒雅, 徐呈琦, 蔡晓华 (2018)

药用蕨类植物蛇足石杉的研究进展

上饶师范学院学报, 38(6), 67-73.]

[本文引用: 2]

Zhao YY, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H (2021)

Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae

Molecular Plant, 14, 748-773.

DOI:10.1016/j.molp.2021.02.006      URL     [本文引用: 1]

Zhou J, Yang M, Wen XY, Li N, Ren H (2021)

Strengthen ex situ conservation of plants and promote protection and utilization of plant resources

Bulletin of Chinese Academy of Sciences, 36, 417-424. (in Chinese with English abstract)

[本文引用: 2]

[ 周桔, 杨明, 文香英, 李楠, 任海 (2021)

加强植物迁地保护, 促进植物资源保护和利用

中国科学院院刊, 36, 417-424.]

[本文引用: 2]

Zhou XM, Rothfels CJ, Zhang L, He ZR, Le Péchon T, He H, Lu NT, Knapp R, Lorence D, He XJ, Gao XF, Zhang LB (2016)

A large-scale phylogeny of the lycophyte genus Selaginella (Selaginellaceae: Lycopodiopsida) based on plastid and nuclear loci

Cladistics, 32, 360-389.

DOI:10.1111/cla.12136      URL     [本文引用: 1]

Zhou XM, Zhang L, Lu NT, Gao XF, Zhang LB (2018)

Pteridryaceae: A new fern family of Polypodiineae (Polypodiales) including taxonomic treatments

Journal of Systematics and Evolution, 56, 148-173.

DOI:10.1111/jse.12305      URL     [本文引用: 1]

Zhou XM, Zhao J, Yang JJ, Péchon TL, Zhang L, He ZR, Zhang LB (2022)

Plastome structure, evolution, and phylogeny of Selaginella

Molecular Phylogenetics and Evolution, 169, 107410.

DOI:10.1016/j.ympev.2022.107410      URL     [本文引用: 4]

Zhou YD (2017)

Inventory and Diversity of Vascular Plants in Mt

Kenya, East Africa. PhD dissertation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract)

[本文引用: 1]

[ 周亚东 (2017)

东非肯尼亚山维管束植物多样性调查和编目

博士学位论文, 中国科学院武汉植物园, 武汉.]

[本文引用: 1]

Zhu XF, Xu MM (2017)

Wetland flora characteristics and conservation strategies in Luozishan Wetland Park, Ji’an City, Jiangxi Province

Chinese Horticulture Abstracts, 33(12), 78-80. (in Chinese)

[本文引用: 1]

[ 朱晓峰, 徐梅梅 (2017)

江西吉安市螺子山湿地公园湿地植物区系特征及保护对策

中国园艺文摘, 33(12), 78-80.]

[本文引用: 1]

Zhu XF, Shen H, Jin D, Zhao GH, Liu BD, Ling TJ, Yan YH (2016)

Spore propagation of four ferns

Bulletin of Botanical Research, 36, 167-176. (in Chinese with English abstract)

[本文引用: 1]

[ 朱晓凤, 沈慧, 金冬梅, 赵国华, 刘保东, 凌铁军, 严岳鸿 (2016)

4种蕨类植物的孢子繁殖研究

植物研究, 36, 167-176.]

[本文引用: 1]

Zuo ZY, Zhao T, Du XY, Xiong Y, Lu JM, Li DZ (2022)

A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species

Plant Diversity, 44, 181-190.

DOI:10.1016/j.pld.2021.09.005      URL     [本文引用: 1]

/