Biodiv Sci ›› 2021, Vol. 29 ›› Issue (6): 722-734. DOI: 10.17520/biods.2020484
Special Issue: 物种形成与系统进化
• Original Papers: Plant Diversity • Previous Articles Next Articles
Ting Wang1,2,3, Zengqiang Xia1,2,4, Jiangping Shu1,2,5, Jiao Zhang4, Meina Wang1,2, Jianbing Chen1,2, Kanglin Wang6, Jianying Xiang7,*(), Yuehong Yan1,2,*()
Received:
2020-12-29
Accepted:
2021-04-14
Online:
2021-06-20
Published:
2021-04-22
Contact:
Jianying Xiang,Yuehong Yan
Ting Wang, Zengqiang Xia, Jiangping Shu, Jiao Zhang, Meina Wang, Jianbing Chen, Kanglin Wang, Jianying Xiang, Yuehong Yan. Dating whole-genome duplication reveals the evolutionary retardation of Angiopteris[J]. Biodiv Sci, 2021, 29(6): 722-734.
物种 Species | NCBI登录号 NCBI no. | 转录本Transcript | N50 (bp) | 鸟嘌呤/胞嘧啶 GC (%) | 编码序列数 No. of coding sequence | BUSCO (%) | 文献 References |
---|---|---|---|---|---|---|---|
福建莲座蕨 Angiopteris fokiensis | SRR2103714 | 46,702 | 1,720 | 44.95 | 34,286 | 89.6 | Shen et al, |
福建莲座蕨 Angiopteris fokiensis | SRR5499396 | 62,608 | 2,021 | 44.29 | 39,010 | 95.1 | You et al, |
福建莲座蕨 Angiopteris fokiensis | SRR6920615 | 62,119 | 2,021 | 44.29 | 39,043 | 95.4 | Huang et al, |
披散木贼 Equisetum diffusum | SRR2103706 | 55,430 | 1,537 | 44.93 | 39,399 | 91.4 | Shen et al, |
桂皮紫萁 Osmundastrum cinnamomeum | SRR6727971 | 28,229 | 1,922 | 46.43 | 22,868 | 84.4 | Wolf et al, |
紫萁 Osmunda japonica | SRR2103721 | 42,649 | 2,005 | 46.22 | 31,414 | 92.8 | Huang et al, |
细叶双扇蕨 Dipteris lobbiana | SRR6920640 | 148,711 | 1,085 | 46.09 | 94,834 | 78.4 | Huang et al, |
芒萁 Dicranopteris pedata | SRR5490811 | 62,818 | 1,954 | 45.78 | 40,874 | 97.5 | You et al, |
假芒萁 Sticherus truncatus | SRR6920643 | 74,801 | 1,557 | 44.30 | 50,507 | 88.2 | Huang et al, |
Table 1 Summary of de novo assembly for transcriptome
物种 Species | NCBI登录号 NCBI no. | 转录本Transcript | N50 (bp) | 鸟嘌呤/胞嘧啶 GC (%) | 编码序列数 No. of coding sequence | BUSCO (%) | 文献 References |
---|---|---|---|---|---|---|---|
福建莲座蕨 Angiopteris fokiensis | SRR2103714 | 46,702 | 1,720 | 44.95 | 34,286 | 89.6 | Shen et al, |
福建莲座蕨 Angiopteris fokiensis | SRR5499396 | 62,608 | 2,021 | 44.29 | 39,010 | 95.1 | You et al, |
福建莲座蕨 Angiopteris fokiensis | SRR6920615 | 62,119 | 2,021 | 44.29 | 39,043 | 95.4 | Huang et al, |
披散木贼 Equisetum diffusum | SRR2103706 | 55,430 | 1,537 | 44.93 | 39,399 | 91.4 | Shen et al, |
桂皮紫萁 Osmundastrum cinnamomeum | SRR6727971 | 28,229 | 1,922 | 46.43 | 22,868 | 84.4 | Wolf et al, |
紫萁 Osmunda japonica | SRR2103721 | 42,649 | 2,005 | 46.22 | 31,414 | 92.8 | Huang et al, |
细叶双扇蕨 Dipteris lobbiana | SRR6920640 | 148,711 | 1,085 | 46.09 | 94,834 | 78.4 | Huang et al, |
芒萁 Dicranopteris pedata | SRR5490811 | 62,818 | 1,954 | 45.78 | 40,874 | 97.5 | You et al, |
假芒萁 Sticherus truncatus | SRR6920643 | 74,801 | 1,557 | 44.30 | 50,507 | 88.2 | Huang et al, |
样本 Sample | 采集地 Collection sites | 加倍数目 No. of duplicates | 组件数目 No. of components | 贝叶斯信息标准 Bayesian information criterion | 中值 Median (Ks) | 方差 Variance | 比例 Proportion |
---|---|---|---|---|---|---|---|
福建莲座蕨 Angiopteris fokiensis SRR2103714 | 上海 Shanghai | 3,667 | 6 | ?6,824.9400 | 0.1310 | 0.0005 | 0.0763 |
3,667 | 6 | ?6,824.9400 | 0.2147 | 0.0029 | 0.0577 | ||
3,667 | 6 | ?6,824.9400 | 0.5814 | 0.0200 | 0.2697 | ||
3,667 | 6 | ?6,824.9400 | 0.9172 | 0.0312 | 0.2529 | ||
3,667 | 6 | ?6,824.9400 | 1.3513 | 0.1683 | 0.2040 | ||
3,667 | 6 | ?6,824.9400 | 3.0112 | 0.8830 | 0.1393 | ||
福建莲座蕨 Angiopteris fokiensis SRR5499396 | 广东 Guangdong | 4,238 | 7 | ?7,662.1730 | 0.1241 | 0.0003 | 0.0680 |
4,238 | 7 | ?7,662.1730 | 0.2002 | 0.0023 | 0.0921 | ||
4,238 | 7 | ?7,662.1730 | 0.5856 | 0.0191 | 0.2940 | ||
4,238 | 7 | ?7,662.1730 | 0.9331 | 0.0198 | 0.1781 | ||
4,238 | 7 | ?7,662.1730 | 1.1911 | 0.1116 | 0.1935 | ||
4,238 | 7 | ?7,662.1730 | 2.3596 | 0.4994 | 0.1330 | ||
4,238 | 7 | ?7,662.1730 | 4.1443 | 0.2343 | 0.0412 | ||
福建莲座蕨 Angiopteris fokiensis SRR6920615 | 广西 Guangxi | 4,235 | 6 | ?7,662.1730 | 0.1259 | 0.0003 | 0.0753 |
4,235 | 6 | ?7,662.1730 | 0.1996 | 0.0022 | 0.0834 | ||
4,235 | 6 | ?7,662.1730 | 0.5489 | 0.0148 | 0.2082 | ||
4,235 | 6 | ?7,662.1730 | 0.8841 | 0.0452 | 0.3284 | ||
4,235 | 6 | ?7,662.1730 | 1.3642 | 0.1874 | 0.1606 | ||
4,235 | 6 | ?7,662.1730 | 2.9677 | 0.9873 | 0.1441 |
Table 2 Synonymous substitution rate (Ks) results of three Angiopteris fokiensisbased on mixture modeling (Bold indicates a significant peaks)
样本 Sample | 采集地 Collection sites | 加倍数目 No. of duplicates | 组件数目 No. of components | 贝叶斯信息标准 Bayesian information criterion | 中值 Median (Ks) | 方差 Variance | 比例 Proportion |
---|---|---|---|---|---|---|---|
福建莲座蕨 Angiopteris fokiensis SRR2103714 | 上海 Shanghai | 3,667 | 6 | ?6,824.9400 | 0.1310 | 0.0005 | 0.0763 |
3,667 | 6 | ?6,824.9400 | 0.2147 | 0.0029 | 0.0577 | ||
3,667 | 6 | ?6,824.9400 | 0.5814 | 0.0200 | 0.2697 | ||
3,667 | 6 | ?6,824.9400 | 0.9172 | 0.0312 | 0.2529 | ||
3,667 | 6 | ?6,824.9400 | 1.3513 | 0.1683 | 0.2040 | ||
3,667 | 6 | ?6,824.9400 | 3.0112 | 0.8830 | 0.1393 | ||
福建莲座蕨 Angiopteris fokiensis SRR5499396 | 广东 Guangdong | 4,238 | 7 | ?7,662.1730 | 0.1241 | 0.0003 | 0.0680 |
4,238 | 7 | ?7,662.1730 | 0.2002 | 0.0023 | 0.0921 | ||
4,238 | 7 | ?7,662.1730 | 0.5856 | 0.0191 | 0.2940 | ||
4,238 | 7 | ?7,662.1730 | 0.9331 | 0.0198 | 0.1781 | ||
4,238 | 7 | ?7,662.1730 | 1.1911 | 0.1116 | 0.1935 | ||
4,238 | 7 | ?7,662.1730 | 2.3596 | 0.4994 | 0.1330 | ||
4,238 | 7 | ?7,662.1730 | 4.1443 | 0.2343 | 0.0412 | ||
福建莲座蕨 Angiopteris fokiensis SRR6920615 | 广西 Guangxi | 4,235 | 6 | ?7,662.1730 | 0.1259 | 0.0003 | 0.0753 |
4,235 | 6 | ?7,662.1730 | 0.1996 | 0.0022 | 0.0834 | ||
4,235 | 6 | ?7,662.1730 | 0.5489 | 0.0148 | 0.2082 | ||
4,235 | 6 | ?7,662.1730 | 0.8841 | 0.0452 | 0.3284 | ||
4,235 | 6 | ?7,662.1730 | 1.3642 | 0.1874 | 0.1606 | ||
4,235 | 6 | ?7,662.1730 | 2.9677 | 0.9873 | 0.1441 |
Fig. 5 The number of fossils of species in different geological ages between pteridophytes and gymonsperms (Niklas et al, 1983; Katz, 2018) (A) and a proposed timeline for flowering plants and ferns' origin and exitinction rate of species (Lehtonen et al, 2017, 2020; Clapham & Renne, 2019; Li et al, 2019) (B)
[1] |
Banks JA (1999) Gametophyte development in ferns. Annual Review of Plant Physiology and Plant Molecular Biology, 50,163-186.
PMID |
[2] |
Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: Analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales . Genome Biology Evolution, 1,391-399.
DOI URL |
[3] |
Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell, 16,1667-1678.
DOI URL |
[4] |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30,2114-2120.
DOI URL |
[5] |
Bomfleur B, McLoughlin S, Vajda V (2014) Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal rerns. Science, 343,1376-1377.
DOI URL |
[6] |
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10,e1003537.
DOI URL |
[7] |
Bromham L, Hua X, Lanfear R, Cowman PF (2015) Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. The American Naturalist, 185,507-524.
DOI URL |
[8] |
Bromham L, Penny D (2003) The modern molecular clock. Nature Reviews Genetics, 4,216-224.
DOI URL |
[9] |
Cai LM, Xi ZX, Amorim AM, Sugumaran M, Rest JS, Liu L, Davis CC (2019) Widespread ancient whole-genome duplications in Malpighiales coincide with Eocene global climatic upheaval. New Phytologist, 221,565-576.
DOI URL |
[10] |
Chao DY, Dilkes B, Luo HB, Douglas A, Yakubova E, Lahner B, Salt DE (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis . Science, 341,658-659.
DOI URL |
[11] | Charlesworth B, Smith DB (1982) A computer model of speciation by founder effects . Genetical Research, 39,227-236. |
[12] | Chen WH, Xiao WB (2008) On the development of gametophyte and sporophyte of Ceratopteris thalictroides . Journal of Hunan Agricultural University (Natural Sciences), 34,306-310, 383. (in Chinese with English abstract) |
陈蔚辉, 肖卫彬 (2008) 水蕨配子体和孢子体发育的研究. 湖南农业大学学报(自然科学版), 34,306-310, 383.] | |
[13] |
Clapham ME, Renne PR (2019) Flood basalts and mass extinctions. Annual Review of Earth and Planetary Sciences, 47,275-303.
DOI URL |
[14] |
Clark J, Hidalgo O, Pellicer J, Liu HM, Marquardt J, Robert Y, Christenhusz M, Zhang SZ, Gibby M, Leitch IJ, Schneider H (2016) Genome evolution of ferns: Evidence for relative stasis of genome size across the fern phylogeny. New Phytologist, 210,1072-1082.
DOI URL |
[15] | Collinson ME (1996) What use are fossil ferns?-20 years on: with a review of the fossil history of extant pteridophyte families and genera. In: Pteridology in Perspective: Proceedings of the Holttum Memorial Pteridophyte Symposium, Kew, 1995 (eds Camus JM, Gibby M, Johns RJ), pp. 349-394. Whitstable Litho Ltd., Kent, |
[16] |
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21,3674-3676.
PMID |
[17] |
Cui LY, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Research, 16,738-749.
DOI URL |
[18] |
De La Torre AR Li Z van de Peer Y Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Molecular Biology and Evolution, 34,1363-1377.
DOI URL |
[19] |
Diallo AM, Nielsen LR, Kjær ED, Petersen KK, Ræbild A (2016) Polyploidy can confer superiority to West African Acacia senegal (L.) Willd. trees . Frontiers in Plant Science, 7,821.
DOI PMID |
[20] |
DiMichele WA, Phillips TL, Nelson WJ (2002) Place vs. time and vegetational persistence: A comparison of four tropical mires from the Illinois Basin during the height of the Pennsylvanian Ice Age. International Journal of Coal Geology, 50,43-72.
DOI URL |
[21] |
Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32,1792-1797.
DOI URL |
[22] |
Enright AJ, van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30,1575-1584.
PMID |
[23] | Fawcett JA, Maere S, van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proceedings of the National Academy of Sciences, USA, 106,5737-5742. |
[24] |
Fraley C, Raftery AE (2003) Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST. Journal of Classification, 20,263-286.
DOI URL |
[25] | Futuyma DJ (translated by Ge S, Gu HY, Rao GY, Zhang DX, Yang J, Kong HZ, Wang YF) (2016) Evolution, Higher Education Press, Beijing. (in Chinese) |
葛颂, 顾红雅, 饶广远, 张德兴, 杨继, 孔宏智, 王宇飞(译) (2016) 生物进化, 高等教育出版社, 北京.] | |
[26] | Gaut B, Yang L, Takuno S, Eguiarte LE (2011) The patterns and causes of variation in plant nucleotide substitution rates. Annual Review of Ecology, Evolution & Systematics, 42,245-266. |
[27] | Goldman N, Yang Z (1994) A Codon-based model of nucleotide substitution for protein-coding DNA sequences . Molecular Biology and Evolution,725-736. |
[28] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind Ndi Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29,644-652.
DOI PMID |
[29] |
Hanson L, Leitch IJ (2002) DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Botanical Journal of the Linnean Society, 140,169-173.
DOI URL |
[30] | Harris TM (1961) The Yorkshire Jurassic Flora. I. Thalophyta-Pteridophyta. Trustees of the British Museum (Natural History), India. |
[31] | He ZR (2009) Systematic Study of Angiopteridaceae from China. PhD dissertation, Yunnan University, Kunming. (in Chinese with English abstract) |
和兆荣 (2009) 中国莲座蕨科系统学研究. 博士学位论文, 云南大学, 昆明.] | |
[32] |
Hill CR (1987) Jurassic Angiopteris (Marattiales) from North Yorkshire . Review of Palaeobotany and Palynology, 51,65-93.
DOI URL |
[33] |
Hu SS, Dilcher DL, Schneider H, Jarzen DM (2006) Eusporangiate ferns from the Dakota formation, Minnesota, USA. International Journal of Plant Sciences, 167,579-589.
DOI URL |
[34] |
Huang CH, Qi X, Chen D, Qi J, Ma H (2020) Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. Journal of Integrative Plant Biology, 62,433-455.
DOI URL |
[35] |
Jansa SA, Forsman JF, Voss RS (2006) Different patterns of selection on the nuclear genes IRBP and DMP- 1 affect the efficiency but not the outcome of phylogeny estimation for didelphid marsupials. Molecular Phylogenetics and Evolution, 38,363-380.
DOI URL |
[36] |
Jiao YN, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu XL, Zhang Y, Wang J, Zhang YT, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GKS, Soltis DE, Depamhilis CW (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biology, 13,R3.
DOI URL |
[37] |
Jiao YN, Li JP, Tang HB, Paterson AH (2014) Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. The Plant Cell, 26,2792-2802.
DOI URL |
[38] |
Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30,3059-3066.
DOI URL |
[39] |
Katz O (2018) Extending the scope of Darwin's ‘abominable mystery': Integrative approaches to understanding angiosperm origins and species richness. Annals of Botany, 121,1-8.
DOI URL |
[40] |
Klekowski EJ, Baker HG (1966) Evolutionary significance of polyploidy in the pteridophyta. Science, 153,305-307.
DOI URL |
[41] |
Korall P, Schuettpelz E, Pryer KM (2010) Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Evolution, 64,2786-2792.
DOI PMID |
[42] |
Laird CD, McConaughy BL, McCarthy BJ (1969) Rate of fixation of nucleotide substitutions in evolution. Nature, 224,149-154.
PMID |
[43] |
Lanfear R, Kokko H, Eyre-Walker A (2014) Population size and the rate of evolution. Trends in Ecology & Evolution, 29,33-41.
DOI URL |
[44] |
Lehtonen S, Poczai P, Sablok G, Hyvönen J, Karger DN, Flores J (2020) Exploring the phylogeny of the marattialean ferns. Cladistics, 36,569-593.
DOI URL |
[45] |
Lehtonen S, Silvestro D, Karger DN, Scotese C, Tuomisto H, Kessler M, Peña C, Wahlberg N, Antonelli A (2017) Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports, 7,4831.
DOI PMID |
[46] | Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai J, Luo Y, Wang H, van der Bank M, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu CN, Yang J, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Li DZ, (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5,461-470. |
[47] |
Li WZ, Godzik A (2006) Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22,1658-1659.
DOI URL |
[48] |
Lidgard S, Crane PR (1990) Angiosperm diversification and Cretaceous floristic trends: A comparison of palynofloras and leaf macrofloras. Paleobiology, 16,77-93.
DOI URL |
[49] | Lundblad AB (1950) Studies in the Rhaeto-Liassie Flora of Sweden, 1. Pteridophyta, Pteridospermae and Cycadophyta from the mining district of NW Scania. Kungl Svenska Vetenskap Handl, Fjärde Ser, 1,1-82. |
[50] |
Mandel JR (2019) A Jurassic leap for flowering plants. Nature Plants, 5,455-456.
DOI URL |
[51] | Matasci N, Hung LH, Yan ZX, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M, Burleigh JG, Gitzendanner MA, Wafula E, Der JP, DePamphilis CW, Roure B, Philippe H, Ruhfel BR, Miles NW, Graham SW, Mathews S, Surek B, Melkonian M, Soltis DE, Soltis PS, Rothfels C, Pokorny L, Shaw JA, DeGironimo L, Stevenson DW, Villarreal JC, Chen T, Kutchan TM, Rolf M, Baucom RS, Deyholos MK, Samudrala R, Tian ZJ, Wu XL, Sun X, Zhang Y, Wang J, Leebens-Mack J, Wong GKS (2014) Data access for the 1,000 Plants (1KP) project. GigaScience, 3,2047-217X. |
[52] |
Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science, 333,1257.
DOI URL |
[53] | Morgan J (1959) The morphology and anatomy of American species of the genus Psaronius . Illinois Biological Monographs, 27,1-108. |
[54] |
Murdock AG (2008a) Phylogeny of marattioid ferns (Marattiaceae): Inferring a root in the absence of a closely related outgroup. American Journal of Botany, 95,626-641.
DOI URL |
[55] |
Murdock AG (2008b) A taxonomic revision of the eusporangiate fern family Marattiaceae, with description of a new genus Ptisana . Taxon, 57,737-755.
DOI URL |
[56] |
Nagalingum NS, Drinnan AN, Lupia R, McLoughlin S (2002) Fern spore diversity and abundance in Australia during the Cretaceous. Review of Palaeobotany and Palynology, 119,69-92.
DOI URL |
[57] |
Niklas KJ, Tiffney BH, Knoll AH (1983) Patterns in vascular land plant diversification. Nature, 303,614-616.
DOI URL |
[58] |
Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Review of Genetics, 34,401-437.
DOI URL |
[59] |
PPG I (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54,563-603.
DOI URL |
[60] |
Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91,1582-1598.
DOI URL |
[61] |
Qi XP, Kuo LY, Guo CC, Li H, Li ZY, Qi J, Wang LB, Hu Y, Xiang JY, Zhang CF, Guo J, Huang CH, Ma H (2018) A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Molecular Phylogenetics and Evolution, 127,961-977.
DOI URL |
[62] | Rothwell GW (1996) Phylogenetic relationships of ferns: A palaeobotanical perspective. Royal Botanic Gardens, Kew,395-404. |
[63] |
Rothwell GW, Millay MA, Stockey RA (2018) Resolving the overall pattern of marattialean fern phylogeny. American Journal of Botany, 105,1304-1314.
DOI PMID |
[64] |
Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome, 47,868-876.
PMID |
[65] |
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature, 428,553-557.
PMID |
[66] |
Schuettpelz E, Pryer KM (2006) Reconciling extreme branch length differences: Decoupling time and rate through the evolutionary history of filmy ferns. Systematic Biology, 55,485-502.
DOI URL |
[67] | Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences, USA, 106,11200-11205. |
[68] | Shen H, Jin DM, Shu JP, Zhou XL, Lei M, Wei R, Shang H, Wei HJ, Zhang R, Liu L, Gu YF, Zhang XC, Yan YH (2018) Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. GigaScience, 7, gix116. |
[69] |
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31,3210-3212.
DOI URL |
[70] |
Skog JE (2001) Biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia, 53,236-269.
DOI URL |
[71] | Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG (2002) Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences, USA, 99,4430-4435. |
[72] | Thomas JA, Welch JJ, Woolfit M, Bromham L (2006) There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proceedings of the National Academy of Sciences, USA, 103,7366-7371. |
[73] | Vandepoele K, De Vos W, Taylor JS, Meyer A, van de Peer Y (2004) Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proceedings of the National Academy of Sciences, USA, 101,1638-1643. |
[74] |
Vanneste K, Baele G, Maere S, van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research, 24,1334-1347.
DOI PMID |
[75] |
Vanneste K, Sterck L, Myburg AA, van de Peer Y, Mizrachi E (2015) Horsetails are ancient polyploids: Evidence from Equisetum giganteum . The Plant Cell, 27,1567-1578.
DOI PMID |
[76] | van de Peer Y, Ashman TL, Soltis PS, Soltis DE (2021) Polyploidy: An evolutionary and ecological force in stressful times. The Plant Cell, 33,11-26. |
[77] |
Wang H, Zhang R, Zhang J, Shen H, Dai XL, Yan YH (2019) De novo transcriptome assembly reveals the whole genome duplication events of Didymochlaena trancatula . Biodiversity Science, 27,1221-1227. (in Chinese with English abstract)
DOI |
汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿 (2019) 转录组测序揭示翼盖蕨( Didymochlaena trancatula)的全基因组复制历史 . 生物多样性, 27,1221-1227.]
DOI |
|
[78] |
Wolf PG, Robison TA, Johnson MG, Sundue MA, Testo WL, Rothfels CJ (2018) Target sequence capture of nuclear-encoded genes for phylogenetic analysis in ferns. Applications in Plant Sciences, 6,e01148.
DOI URL |
[79] |
Wu SD, Han BC, Jiao YN (2020) Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant, 13,59-71.
DOI URL |
[80] | Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences, USA, 82,1741-1745. |
[81] | Yan XF, Wang Y, Li YM (2007) Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27,2554-2562. (in Chinese with English abstract) |
阎秀峰, 王洋, 李一蒙 (2007) 植物次生代谢及其与环境的关系. 生态学报, 27,2554-2562.] | |
[82] |
Yang ZH (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24,1586-1591.
DOI URL |
[83] |
You CJ, Cui J, Wang H, Qi XP, Kuo LY, Ma H, Gao L, Mo BX, Chen XM (2017) Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biology, 18,158.
DOI URL |
[84] |
Yu Y, Xiang QY, Manos PS, Soltis DE, Soltis PS, Song BH, Cheng SF, Liu X, Wong G (2017) Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae)—Insights from transcriptome sequences . PLoS ONE, 12,e0171361.
DOI URL |
[85] |
Zhang LS, Chen F, Zhang XT, Li Z, Zhao YY, Lohaus R, Chang XJ, Dong W, Ho SYW, Liu X, Song AX, Chen JH, Guo WL, Wang ZJ, Zhuang YY, Wang HF, Chen XQ, Hu J, Liu YH, Qin Y, Wang K, Dong SS, Liu Y, Zhang SZ, Yu XX, Wu Q, Wang LS, Yan XQ, Jiao YN, Kong HZ, Zhou XF, Yu CW, Chen YC, Li F, Wang JH, Chen W, Chen XL, Jia QD, Zhang C, Jiang YF, Zhang WB, Liu GH, Fu JY, Chen F, Ma H, van de Peer Y, Tang HB (2020a) The water lily genome and the early evolution of flowering plants. Nature, 577,79-84.
DOI URL |
[86] | Zhang LS, Wu SD, Chang XJ, Wang XY, Zhao YP, Xia YP, Trigiano RN, Jiao YN, Chen F (2020b) The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant, Cell & Environment, 43,2847-2856. |
[87] |
Zhang PP, Fu JM, Hu LX (2012) Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Ecotoxicology, 21,1911-1918.
DOI URL |
[88] |
Zhang R, Wang FG, Zhang J, Shang H, Liu L, Wang H, Zhao GH, Shen H, Yan YH (2019) Dating whole genome duplication in Ceratopteris thalictroides and potential adaptive values of retained gene duplicates . International Journal of Molecular Sciences, 20,1926.
DOI URL |
[89] |
Zhong BJ, Fong R, Collins LJ, McLenachan PA, Penny D (2014) Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns. Genome Biology and Evolution, 6,1166-1173.
DOI URL |
[90] |
Zhou N, Wang YD, Ya L, Porter AS, Kürschner WM, Li LQ, Lu N, McElwain JC (2020) An inter-comparison study of three stomatal-proxy methods for CO 2 reconstruction applied to Early Jurassic Ginkgoales plants . Palaeogeography, Palaeoclimatology, Palaeoecology, 542,109547.
DOI URL |
[1] | Zhaoyang Jing, Keguang Cheng, Heng Shu, Yongpeng Ma, Pingli Liu. Whole genome resequencing approach for conservation biology of endangered plants [J]. Biodiv Sci, 2023, 31(5): 22679-. |
[2] | Shumei Zhang, Wei Li, Dingnan Li. Inventory of species diversity of Liaoning higher plants [J]. Biodiv Sci, 2022, 30(6): 22038-. |
[3] | Jun Zhang, Huanwen Peng, Fucai Xia, Wei Wang. A comparison of seed plants’ polyploids between the Qinghai-Tibet Plateau alpine and the Pan-Arctic regions [J]. Biodiv Sci, 2021, 29(11): 1470-1480. |
[4] | Simiao Sun, Jixin Chen, Weiwei Feng, Chang Zhang, Kai Huang, Ming Guan, Jiankun Sun, Mingchao Liu, Yulong Feng. Plant strategies for nitrogen acquisition and their effects on exotic plant invasions [J]. Biodiv Sci, 2021, 29(1): 72-80. |
[5] | Zhen Zhan, Jianfeng Zhang, Jianguo Cao, Xiling Dai. Development of archegonium and oogenesis of the fern Macrothelypteris torresiana [J]. Biodiv Sci, 2019, 27(11): 1236-1244. |
[6] | Xinyu Du, Jinmei Lu, Dezhu Li. Advances in the evolution of plastid genome structure in lycophytes and ferns [J]. Biodiv Sci, 2019, 27(11): 1172-1183. |
[7] | Weibo Du, Yuan Lu. Diversity and distribution of lycophytes and ferns in the Loess Plateau [J]. Biodiv Sci, 2019, 27(11): 1260-1267. |
[8] | Shiyong Dong, Zhengyu Zuo, Yuehong Yan, Jianying Xiang. Red list assessment of lycophytes and ferns in China [J]. Biodiv Sci, 2017, 25(7): 765-773. |
[9] | Yuguo Wang. Natural hybridization and speciation [J]. Biodiv Sci, 2017, 25(6): 565-576. |
[10] | Linfeng Li, Bao Liu. The roles of epigenetic variation in plant hybridization and polyploidization [J]. Biodiv Sci, 2017, 25(6): 600-607. |
[11] | Jiangping Shu, Li Liu, Hui Shen, Xiling Dai, Quanxi Wang, Yuehong Yan. The complex reticulate evolutionary relationships of early terrestrial plants as revealed by phylogenomics analysis [J]. Biodiv Sci, 2017, 25(6): 675-682. |
[12] | Zhenna Qian, Qianwan Meng, Mingxun Ren. Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers [J]. Biodiv Sci, 2016, 24(12): 1364-1372. |
[13] | Li Liu, Jiangping Shu, Hongjin Wei, Rui Zhang, Hui Shen, Yuehong Yan. De novo transcriptome analysis of the rare fern Monachosorum maximowiczii (Dennstaedtiaceae) endemic to East Asia [J]. Biodiv Sci, 2016, 24(12): 1325-1334. |
[14] | Zhenna Qian, Mingxun Ren. Floral evolution and pollination shifts of the “Malpighiaceae route” taxa, a classical model for biogeographical study [J]. Biodiv Sci, 2016, 24(1): 95-101. |
[15] | Qianghua Xu,Zhichao Wu,Liangbiao Chen. Biodiversity and adaptive evolution of Antarctic notothenioid fishes [J]. Biodiv Sci, 2014, 22(1): 80-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn