Biodiv Sci ›› 2023, Vol. 31 ›› Issue (11): 23216. DOI: 10.17520/biods.2023216
• Special Feature: Semi-humid Evergreen Broad-leaved Forests • Previous Articles Next Articles
Jiesheng Rao1, Tao Yang1, Xi Tian1, Wencong Liu1, Xiaofeng Wang1, Hengjun Qian1, Zehao Shen1,2,*()
Received:
2023-06-25
Accepted:
2023-08-24
Online:
2023-11-20
Published:
2023-09-18
Contact:
* E-mail: Jiesheng Rao, Tao Yang, Xi Tian, Wencong Liu, Xiaofeng Wang, Hengjun Qian, Zehao Shen. Vertical structural characteristics of a semi-humid evergreen broad-leaved forest and common tree species based on a portable backpack LiDAR[J]. Biodiv Sci, 2023, 31(11): 23216.
Fig. 3 Point cloud data acquisition. (a) A sketch of the sample scan path; (b) The positioning piles in point clouds; (c) The positioning pile in reality.
Fig. 4 Schematic diagram of LiDAR point cloud. (a) Sample point cloud profile before terrain normalization; (b) Sample point cloud profile after terrain normalization; (c) 3D point cloud map of forest community in the forest dynamics plot.
Fig. 5 Spatial pattern and histogram of the canopy height (CH) in the 20.16 ha forest dynamics plot in Jizu Mountains, Yunnan. (a) The horizontal pattern of CH with a 1-m spatial resolution; (b) A histogram of frequency distribution of the CH (mean = 15.84 m) in a grid.
Fig. 6 Horizontal pattern and frequency distribution of leaf area index (LAI) of 20.16 ha forest dynamics plot in Jizu Mountains, Yunnan. (a) Overlay map of LAI of each plot and DEM of the forest dynamics plot, and the bigger the green circle, the greater the LAI; (b) Histogram of LAI frequency distribution (mean = 8.63).
Fig. 7 Vertical variation of leaf area index (LAI) of three community types (Pinus yunnanensis community, Castanopsis delavayi community, and C. orthacantha community) in a 20.16 ha forest dynamics plot in Jizu Mountains, Yunnan.
物种 Species | 生活型 Life form | 胸径 Diameter at breast height (DBH) (cm) | 树高 Tree height (TH) (m) | 枝下高 Crown base height (CBH) (m) | 树冠直径 Crown diameter (m) | 冠幅面积 Crown area (CA) (m2) | 枝下高/树高 CBH/TH (%) | 冠幅/胸径 CA/DBH (m2/cm) |
---|---|---|---|---|---|---|---|---|
元江栲 Castanopsis orthacantha | EBT | 89.3 (47%) | 22.6 (16%) | 5.7 (21%) | 12.3 (38%) | 133.4 (65%) | 25.2 (11%) | 1.39 (13%) |
高山栲 Castanopsis delavayi | EBT | 61.6 (33%) | 21.1 (21%) | 6.7 (44%) | 10.7 (24%) | 93.9 (48%) | 30.6 (21%) | 1.51 (27%) |
黄毛青冈 Cyclobalanopsis delavayi | EBT | 59.0 (42%) | 23.6 (13%) | 9.2 (27%) | 13.7 (38%) | 163.9 (65%) | 38.5 (20%) | 2.54 (40%) |
滇青冈 Cyclobalanopsis glaucoides | EBT | 46.1 (53%) | 20.2 (26%) | 6.6 (17%) | 8.8 (49%) | 72.3 (104%) | 34.1 (29%) | 1.34 (45%) |
白穗石栎 Lithocarpus leucostachyus | EBT | 56.1 (26%) | 21.3 (3%) | 8.6 (26%) | 9.6 (20%) | 74.1 (37%) | 40.1 (26%) | 1.31 (27%) |
银木荷 Schima argentea | EBT | 35.4 (12%) | 25.6 (10%) | 14.0 (36%) | 7.7 (22%) | 47.9 (49%) | 54.2 (31%) | 1.45 (68%) |
云南松 Pinus yunnanensis | ECT | 43.6 (37%) | 20.4 (10%) | 10.4 (11%) | 8.9 (26%) | 65.0 (52%) | 51.1 (13%) | 1.44 (21%) |
华山松 Pinus armandii | ECT | 58.0 (27%) | 22.9 (17%) | 4.4 (33%) | 9.2 (23%) | 69.7 (46%) | 19.6 (35%) | 1.20 (32%) |
尼泊尔桤木 Alnus nepalensis | DBT | 37.3 (26%) | 21.0 (19%) | 8.8 (29%) | 7.5 (23%) | 45.8 (50%) | 42.7 (27%) | 1.19 (27%) |
胡桃 Juglans regia | DBT | 55.2 (20%) | 30.6 (9%) | 13.3 (20%) | 14.3 (20%) | 165.3 (44%) | 43.8 (24%) | 2.93 (24%) |
头状四照花 Dendrobenthamia capitata | EBT | 32.5 (27%) | 18.7 (7%) | 7.8 (20%) | 7.7 (28%) | 49.1 (58%) | 42.0 (21%) | 1.56 (23%) |
野桂花 Osmanthus yunnanensis | EBT | 30.5 (17%) | 15.4 (18%) | 4.2 (15%) | 7.3 (25%) | 44.1 (53%) | 27.7 (20%) | 1.59 (77%) |
Table 1 Morphological and structural parameters of 12 of common trees species in a 20.16 ha forest dynamics plot in Jizu Mountains, Yunnan
物种 Species | 生活型 Life form | 胸径 Diameter at breast height (DBH) (cm) | 树高 Tree height (TH) (m) | 枝下高 Crown base height (CBH) (m) | 树冠直径 Crown diameter (m) | 冠幅面积 Crown area (CA) (m2) | 枝下高/树高 CBH/TH (%) | 冠幅/胸径 CA/DBH (m2/cm) |
---|---|---|---|---|---|---|---|---|
元江栲 Castanopsis orthacantha | EBT | 89.3 (47%) | 22.6 (16%) | 5.7 (21%) | 12.3 (38%) | 133.4 (65%) | 25.2 (11%) | 1.39 (13%) |
高山栲 Castanopsis delavayi | EBT | 61.6 (33%) | 21.1 (21%) | 6.7 (44%) | 10.7 (24%) | 93.9 (48%) | 30.6 (21%) | 1.51 (27%) |
黄毛青冈 Cyclobalanopsis delavayi | EBT | 59.0 (42%) | 23.6 (13%) | 9.2 (27%) | 13.7 (38%) | 163.9 (65%) | 38.5 (20%) | 2.54 (40%) |
滇青冈 Cyclobalanopsis glaucoides | EBT | 46.1 (53%) | 20.2 (26%) | 6.6 (17%) | 8.8 (49%) | 72.3 (104%) | 34.1 (29%) | 1.34 (45%) |
白穗石栎 Lithocarpus leucostachyus | EBT | 56.1 (26%) | 21.3 (3%) | 8.6 (26%) | 9.6 (20%) | 74.1 (37%) | 40.1 (26%) | 1.31 (27%) |
银木荷 Schima argentea | EBT | 35.4 (12%) | 25.6 (10%) | 14.0 (36%) | 7.7 (22%) | 47.9 (49%) | 54.2 (31%) | 1.45 (68%) |
云南松 Pinus yunnanensis | ECT | 43.6 (37%) | 20.4 (10%) | 10.4 (11%) | 8.9 (26%) | 65.0 (52%) | 51.1 (13%) | 1.44 (21%) |
华山松 Pinus armandii | ECT | 58.0 (27%) | 22.9 (17%) | 4.4 (33%) | 9.2 (23%) | 69.7 (46%) | 19.6 (35%) | 1.20 (32%) |
尼泊尔桤木 Alnus nepalensis | DBT | 37.3 (26%) | 21.0 (19%) | 8.8 (29%) | 7.5 (23%) | 45.8 (50%) | 42.7 (27%) | 1.19 (27%) |
胡桃 Juglans regia | DBT | 55.2 (20%) | 30.6 (9%) | 13.3 (20%) | 14.3 (20%) | 165.3 (44%) | 43.8 (24%) | 2.93 (24%) |
头状四照花 Dendrobenthamia capitata | EBT | 32.5 (27%) | 18.7 (7%) | 7.8 (20%) | 7.7 (28%) | 49.1 (58%) | 42.0 (21%) | 1.56 (23%) |
野桂花 Osmanthus yunnanensis | EBT | 30.5 (17%) | 15.4 (18%) | 4.2 (15%) | 7.3 (25%) | 44.1 (53%) | 27.7 (20%) | 1.59 (77%) |
[1] |
Beland M, Parker G, Sparrow B, Harding D, Chasmer L, Phinn S, Antonarakis A, Strahler A (2019) On promoting the use of lidar systems in forest ecosystem research. Forest Ecology and Management, 450, 117484.
DOI URL |
[2] | Bonan GB (1993) Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sensing of Environment, 43, 303-314. |
[3] |
Bongers F (2001) Methods to assess tropical rain forest canopy structure: An overview. Plant Ecology, 153, 263-277.
DOI URL |
[4] |
Cao Y, Wang DY, Wang ZW, Tian LJ, Zheng CG, Tian Y, Liu Y (2021) Research on tree pith location in radial direction based on terrestrial laser scanning. Forests, 12, 671.
DOI URL |
[5] | Chen JM, Black TA (1992) Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15, 421-429. |
[6] |
Dash J, Ogutu BO (2016) Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems. Progress in Physical Geography: Earth and Environment, 40, 322-351.
DOI URL |
[7] |
De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins SAO, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, De Frenne P (2022) Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 233, 219-235.
DOI URL |
[8] |
Dixon SD, Worrall F, Rowson JG, Evans MG (2015) Calluna vulgaris canopy height and blanket peat CO2 flux: Implications for management. Ecological Engineering, 75, 497-505.
DOI URL |
[9] | Ehbrecht M, Seidel D, Annighöfer P, Kreft H, Köhler M, Zemp DC, Puettmann K, Nilus R, Babweteera F, Willim K, Stiers M, Soto D, Boehmer HJ, Fisichelli N, Burnett M, Juday G, Stephens SL, Ammer C (2021) Global patterns and climatic controls of forest structural complexity. Nature Communi- cations, 12, 519. |
[10] |
Gui XJ, Lian JY, Zhang RY, Li YP, Shen H, Ni YL, Ye WH (2019) Vertical structure and its biodiversity in a subtropical evergreen broad-leaved forest at Dinghushan in Guangdong Province, China. Biodiversity Science, 27, 619-629. (in Chinese with English abstract)
DOI URL |
[桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉 (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27, 619-629.]
DOI |
|
[11] |
Guo QH, Liu J, Tao SL, Xue BL, Li L, Xu GC, Li WK, Wu FF, Li YM, Chen LH, Pang SX (2014) Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling. Chinese Science Bulletin, 59, 459-479. (in Chinese with English abstract)
DOI URL |
[郭庆华, 刘瑾, 陶胜利, 薛宝林, 李乐, 徐光彩, 李文楷, 吴芳芳, 李玉美, 陈琳海, 庞树鑫 (2014) 激光雷达在森林生态系统监测模拟中的应用现状与展望. 科学通报, 59, 459-479.] | |
[12] |
Hosoi F, Omasa K (2007) Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging. Journal of Experimental Botany, 58, 3463-3473.
PMID |
[13] |
Kamoske AG, Dahlin KM, Stark SC, Serbin SP (2019) Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem. Forest Ecology and Management, 433, 364-375.
DOI |
[14] |
Kumkar Y, Astrup R, Stordal F, Bright RM (2020) Quantifying regional surface energy responses to forest structural change in Nordic Fennoscandia. Journal of Geophysical Research: Atmospheres, 125, e2019JD032092.
DOI URL |
[15] |
Kunz M, Fichtner A, Härdtle W, Raumonen P, Bruelheide H, von Oheimb G (2019) Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecology Letters, 22, 2130-2140.
DOI PMID |
[16] |
Lalic B, Mihailovic DT (2004) An empirical relation describing leaf-area density inside the forest for environmental modeling. Journal of Applied Meteorology, 43, 641-645.
DOI URL |
[17] |
Lang AC, Härdtle W, Bruelheide H, Geißler C, Nadrowski K, Schuldt A, Yu MJ, von Oheimb G (2010) Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. Forest Ecology and Management, 260, 1708-1715.
DOI URL |
[18] |
Li YM, Guo QH, Tao SL, Zheng GA, Zhao KG, Xue BL, Su YJ (2016) Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index. Canadian Journal of Remote Sensing, 42, 719-729.
DOI URL |
[19] | Liu LX, Pang Y, Li ZY (2016) Individual tree DBH and height estimation using terrestrial laser scanning (TLS) in a subtropical forest. Scientia Silvae Sinicae, 52(2), 26-37. (in Chinese with English abstract) |
[刘鲁霞, 庞勇, 李增元 (2016) 基于地基激光雷达的亚热带森林单木胸径与树高提取. 林业科学, 52(2), 26-37.] | |
[20] |
Liu XQ, Su YJ, Hu TY, Yang QL, Liu BB, Deng YF, Tang H, Tang ZY, Fang JY, Guo QH (2022) Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 269, 112844.
DOI URL |
[21] | Lou YK, Fan Y, Dai QL, Wang ZY, Ku WP, Zhao MS, Yu SQ (2021) Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve. Acta Ecologica Sinica, 41, 8568-8577. (in Chinese with English abstract) |
[楼一恺, 范忆, 戴其林, 王铮屹, 库伟鹏, 赵明水, 余树全 (2021) 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系. 生态学报, 41, 8568-8577.] | |
[22] |
MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology, 42, 594-598.
DOI URL |
[23] |
Parker GG, Russ ME (2004) The canopy surface and stand development: Assessing forest canopy structure and complexity with near-surface altimetry. Forest Ecology and Management, 189, 307-315.
DOI URL |
[24] |
Potapov P, Li XY, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165.
DOI URL |
[25] |
Rasul A, Ibrahim S, Onojeghuo AR, Balzter H (2020) A trend analysis of leaf area index and land surface temperature and their relationship from global to local scale. Land, 9, 388.
DOI URL |
[26] |
Simonson WD, Allen HD, Coomes DA (2014) Applications of airborne lidar for the assessment of animal species diversity. Methods in Ecology and Evolution, 5, 719-729.
DOI URL |
[27] |
Soma M, Pimont F, Durrieu S, Dupuy JL (2018) Enhanced measurements of leaf area density with T-LiDAR: Evaluating and calibrating the effects of vegetation heterogeneity and scanner properties. Remote Sensing, 10, 1580.
DOI URL |
[28] |
Suzuki T, Shiozawa S, Yamaba A, Amano Y, Japan WUT (2021) Forest data collection by UAV lidar-based 3D mapping: Segmentation of individual tree information from 3D point clouds. International Journal of Automation Technology, 15, 313-323.
DOI URL |
[29] | Tang H (2015) Lidar Remote Sensing of Vertical Foliage Profile and Leaf Area Index. PhD dissertation, University of Maryland, College Park, Park, MD. |
[30] |
Thorpe HC, Astrup R, Trowbridge A, Coates KD (2010) Competition and tree crowns: A neighborhood analysis of three boreal tree species. Forest Ecology and Management, 259, 1586-1596.
DOI URL |
[31] | Wang XF, Rao JS, Yang T, Liu WC, Tian X, Chen X, Liu QM, Xu YX, Zhang QY, Zhang HQ, Zhang X, Ou XK, Shen ZH (2023) Spatial variation and determinants of woody plant species diversity in a semi-humid evergreen broad-leaved forest in the Jizu Mountains, Yunnan. Biodiversity Science, 31, 23217. (in Chinese with English abstract) |
[王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊 (2023) 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释. 生物多样性, 31, 23217.]
DOI |
|
[32] |
Xiao ZQ, Song JL, Yang HA, Sun R, Li JA (2022) A 250 m resolution global leaf area index product derived from MODIS surface reflectance data. International Journal of Remote Sensing, 43, 1409-1429.
DOI URL |
[33] | Xie YY, Wang B, Yao Y, Yang L, Gao Y, Zhang ZM, Lin LX (2020) Quantification of vertical community structure of subtropical evergreen broad-leaved forest community using UAV-Lidar data. Acta Ecologica Sinica, 40, 940-951. (in Chinese with English abstract) |
[解宇阳, 王彬, 姚扬, 杨琅, 高媛, 张志明, 林露湘 (2020) 基于无人机激光雷达遥感的亚热带常绿阔叶林群落垂直结构分析. 生态学报, 40, 940-951.] | |
[34] |
Xie YY, Yang T, Wang XF, Chen X, Pang SX, Hu JA, Wang AX, Chen L, Shen ZH (2022) Applying a portable backpack lidar to measure and locate trees in a nature forest plot: Accuracy and error analyses. Remote Sensing, 14, 1806.
DOI URL |
[35] |
Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[36] | Zhao J, Li J, Liu QH (2013) Review of forest vertical structure parameter inversion based on remote sensing technology. Journal of Remote Sensing, 17, 697-716. (in Chinese with English abstract) |
[赵静, 李静, 柳钦火 (2013) 森林垂直结构参数遥感反演综述. 遥感学报, 17, 697-716.] |
[1] | Churan Zhang, Shengfa Li, Fengchang Li, Zhizhong Tang, Huiyan Liu, Lihong Wang, Rong Gu, Yun Deng, Zhiming Zhang, Luxiang Lin. Habitat association and community classification of woody plants in the 20 ha forest dynamics plot of subtropical semi-humid evergreen broad-leaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2024, 32(1): 23393-. |
[2] | Wencong Liu, Xi Tian, Tao Yang, Jiesheng Rao, Xiaofeng Wang, Hengjun Qian, Mengling Tu, Ziming Shan, Xiaokun Ou, Zehao Shen. Population structure and regeneration characteristics of dominant tree species in a semi-humid evergreen broad-leaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2023, 31(11): 23251-. |
[3] | Yanjie Zuo, Mingchun Peng, Chongyun Wang, Zehao Shen, Yongping Li, Xinmao Zhou, Jie Zhou, Guangxin Zhou, Jiaxin Ren, Zhong’an Liu. Islandization and species diversity of semi-humid evergreen broad-leaved forests in the Central Yunnan Plateau [J]. Biodiv Sci, 2023, 31(11): 23252-. |
[4] | Xi Tian, Wencong Liu, Jiesheng Rao, Xiaofeng Wang, Tao Yang, Xi Chen, Qiuyu Zhang, Qiming Liu, Yanxiao Xu, Xu Zhang, Zehao Shen. Patterns and causes of forest gap disturbance in a semi-humid evergreen broadleaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2023, 31(11): 23219-. |
[5] | Tao Yang, Zehao Shen, Xiaofeng Wang, Jiesheng Rao, Wencong Liu, Xi Tian, Xi Chen, Qiuyu Zhang, Qian Liu, Hengjun Qian, Yuyang Xie, Qiming Liu, Yanxiao Xu, Mengling Tu, Ziming Shan, Yukun Zhang, Bo Hou, Jianbin Li, Xiaokun Ou. Characteristics of plant community diversity in a subtropical semi-humid evergreen broad-leaved forest in the Central Yunnan Plateau [J]. Biodiv Sci, 2023, 31(11): 23238-. |
[6] | Caifang Luo, Tao Yang, Qiuyu Zhang, Xinpei Wang, Zehao Shen. Plant functional traits, community functional diversity and their environmental determinants of the semi-humid evergreen broad-leaved forest in the Central Yunnan Plateau [J]. Biodiv Sci, 2023, 31(11): 23215-. |
[7] | Tian Luo, Fangyuan Yu, Juyu Lian, Junjie Wang, Jian Shen, Zhifeng Wu, Wanhui Ye. Impact of canopy vertical height on leaf functional traits in a lower subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2022, 30(5): 21414-. |
[8] | Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn