Biodiv Sci ›› 2022, Vol. 30 ›› Issue (12): 22208. DOI: 10.17520/biods.2022208
Special Issue: 土壤生物与土壤健康
• Original Papers • Previous Articles Next Articles
Yushan Xiao1, Changrao Yang1, Guo Zheng1, Pengfeng Wu1, Shixiu Zhang2, Shuyan Cui1,*()
Received:
2022-04-21
Accepted:
2022-07-14
Online:
2022-12-20
Published:
2022-08-08
Contact:
*E-mail: cui.shu.yan@163.com
Yushan Xiao, Changrao Yang, Guo Zheng, Pengfeng Wu, Shixiu Zhang, Shuyan Cui. Effects of precipitation regime on the structure of soil micro-food web in the grassland of northern China[J]. Biodiv Sci, 2022, 30(12): 22208.
Fig. 1 Collection site and experimental design in a typical northern grassland (a) and setup of precipitation intensity levels (b). The numbers on clouds represent the frequency of precipitation.
生态系统功能 Ecosystem functions | 单位 Unit | 重要性 Importance |
---|---|---|
地上生物量 Aboveground biomassg/m2 植物丰富度 Plant richness | 为食草动物提供必要的营养 Providing essential nutrients for herbivores (Binder et al, | |
地下生物量 Belowground biomass | g/m2 | 支持地下生态系统过程的关键功能 A key function to support belowground ecosystem processes (Wagg et al, |
土壤有机碳 Soil organic carbon | g/kg | 为植物提供养分、保障土壤肥力水平以及促进团聚体的形成 Providing nutrients for plants, maintaining soil fertility levels and promoting the formation of aggregates (Pan et al, |
土壤总氮 Soil total nitrogen | g/kg | |
土壤总磷 Soil total phosphorus | g/kg | |
土壤微生物量碳 Soil microbial biomass carbon | mg/kg | 反映土壤质量和微生物活动的动态 Reflecting the dynamics of soil quality and microbial activity (Powlson et al, |
土壤微生物量氮 Soil microbial biomass nitrogen | mg/kg | |
碱解氮 Available nitrogen | mg/kg | 衡量土壤供氮能力, 反映土壤氮素有效性 Measuring soil nitrogen supply capacity and reflecting soil nitrogen availability (Huhe et al, |
铵态氮 Ammoniacal nitrogen | mg/kg | |
硝态氮 Nitrate nitrogen | mg/kg |
Table 1 Grassland ecosystem functional indicators and their importance
生态系统功能 Ecosystem functions | 单位 Unit | 重要性 Importance |
---|---|---|
地上生物量 Aboveground biomassg/m2 植物丰富度 Plant richness | 为食草动物提供必要的营养 Providing essential nutrients for herbivores (Binder et al, | |
地下生物量 Belowground biomass | g/m2 | 支持地下生态系统过程的关键功能 A key function to support belowground ecosystem processes (Wagg et al, |
土壤有机碳 Soil organic carbon | g/kg | 为植物提供养分、保障土壤肥力水平以及促进团聚体的形成 Providing nutrients for plants, maintaining soil fertility levels and promoting the formation of aggregates (Pan et al, |
土壤总氮 Soil total nitrogen | g/kg | |
土壤总磷 Soil total phosphorus | g/kg | |
土壤微生物量碳 Soil microbial biomass carbon | mg/kg | 反映土壤质量和微生物活动的动态 Reflecting the dynamics of soil quality and microbial activity (Powlson et al, |
土壤微生物量氮 Soil microbial biomass nitrogen | mg/kg | |
碱解氮 Available nitrogen | mg/kg | 衡量土壤供氮能力, 反映土壤氮素有效性 Measuring soil nitrogen supply capacity and reflecting soil nitrogen availability (Huhe et al, |
铵态氮 Ammoniacal nitrogen | mg/kg | |
硝态氮 Nitrate nitrogen | mg/kg |
Fig. 2 The effects of precipitation intensity on PLFAs and microbial diversity (mean ± SE). Means with different letters indicate significant difference among different precipitation intensities (LSD tests, P < 0.05).
Fig. 3 The effects of precipitation intensity on the abundance and diversity of soil nematodes (mean ± SE). Means with different letters in (a) indicate significant difference of a certain trophic group among different precipitation intensities (LSD tests, P < 0.05). Op, Omnivores/predators; Pp, Plant parasites; Fu, Fungivores; Ba, Bacterivores.
降水强度 Precipitation intensity | |||||
---|---|---|---|---|---|
2 mm | 5 mm | 10 mm | 20 mm | 40 mm | |
生态系统多功能指数 EMF | -0.22 ± 0.21b | 0.26 ± 0.02ab | - 0.81 ± 0.48b | 0.51 ± 0.19a | 0.28 ± 0.30ab |
地上生物量 AGB | 124.67 ± 13.19b | 177.18 ± 17.49a | 162.37 ± 9.64ab | 173.16 ± 14.90a | 195.41 ± 6.89a |
地下生物量 BGB | 222.18 ± 14.57b | 356.76 ± 28.33a | 173.24 ± 33.99b | 279.45 ± 35.81ab | 229.40 ± 33.17b |
植物丰富度 Richness | 6.50 ± 0.07b | 7.56 ± 0.08ab | 7.58 ± 0.11ab | 8.00 ± 0.00a | 8.17 ± 0.87a |
土壤有机碳 SOC | 15.06 ± 0.40a | 15.77 ± 0.25a | 14.05 ± 0.62a | 15.62 ± 0.56a | 15.63 ± 0.71a |
土壤全氮 TN | 1.59 ± 0.05a | 1.67 ± 0.02a | 1.51 ± 0.09a | 1.64 ± 0.06a | 1.66 ± 0.06a |
土壤全磷 TP | 0.18 ± 0.01a | 0.17 ± 0.01a | 0.15 ± 0.01a | 0.17 ± 0.01a | 0.16 ± 0.01a |
土壤微生物量碳 MBC | 177.91 ± 25.26a | 161.99 ± 19.29a | 151.56 ± 0.481a | 181.46 ± 14.80a | 174.46 ± 15.39a |
土壤微生物量氮 MBN | 14.36 ± 2.93a | 11.59 ± 2.12a | 10.06 ± 1.60a | 12.82 ± 2.65a | 10.47 ± 1.55a |
碱解氮 AN | 243.88 ± 35.52a | 200.38 ± 44.57a | 134.31 ± 13.47b | 200.81 ± 22.91a | 181.56 ± 15.18a |
铵态氮 NH4+-N | 5.56 ± 0.29a | 5.55 ± 0.17a | 5.50 ± 0.20a | 6.54 ± 0.61a | 5.71 ± 0.32a |
硝态氮 NO3--N | 2.70 ± 0.65a | 3.91 ± 0.73a | 2.67 ± 0.79a | 1.54 ± 0.35a | 2.42 ± 0.52a |
Table 2 Responses of ecosystem multifunctionality (EMF) and each component of EMF to different precipitation intensities in a typical northern grassland
降水强度 Precipitation intensity | |||||
---|---|---|---|---|---|
2 mm | 5 mm | 10 mm | 20 mm | 40 mm | |
生态系统多功能指数 EMF | -0.22 ± 0.21b | 0.26 ± 0.02ab | - 0.81 ± 0.48b | 0.51 ± 0.19a | 0.28 ± 0.30ab |
地上生物量 AGB | 124.67 ± 13.19b | 177.18 ± 17.49a | 162.37 ± 9.64ab | 173.16 ± 14.90a | 195.41 ± 6.89a |
地下生物量 BGB | 222.18 ± 14.57b | 356.76 ± 28.33a | 173.24 ± 33.99b | 279.45 ± 35.81ab | 229.40 ± 33.17b |
植物丰富度 Richness | 6.50 ± 0.07b | 7.56 ± 0.08ab | 7.58 ± 0.11ab | 8.00 ± 0.00a | 8.17 ± 0.87a |
土壤有机碳 SOC | 15.06 ± 0.40a | 15.77 ± 0.25a | 14.05 ± 0.62a | 15.62 ± 0.56a | 15.63 ± 0.71a |
土壤全氮 TN | 1.59 ± 0.05a | 1.67 ± 0.02a | 1.51 ± 0.09a | 1.64 ± 0.06a | 1.66 ± 0.06a |
土壤全磷 TP | 0.18 ± 0.01a | 0.17 ± 0.01a | 0.15 ± 0.01a | 0.17 ± 0.01a | 0.16 ± 0.01a |
土壤微生物量碳 MBC | 177.91 ± 25.26a | 161.99 ± 19.29a | 151.56 ± 0.481a | 181.46 ± 14.80a | 174.46 ± 15.39a |
土壤微生物量氮 MBN | 14.36 ± 2.93a | 11.59 ± 2.12a | 10.06 ± 1.60a | 12.82 ± 2.65a | 10.47 ± 1.55a |
碱解氮 AN | 243.88 ± 35.52a | 200.38 ± 44.57a | 134.31 ± 13.47b | 200.81 ± 22.91a | 181.56 ± 15.18a |
铵态氮 NH4+-N | 5.56 ± 0.29a | 5.55 ± 0.17a | 5.50 ± 0.20a | 6.54 ± 0.61a | 5.71 ± 0.32a |
硝态氮 NO3--N | 2.70 ± 0.65a | 3.91 ± 0.73a | 2.67 ± 0.79a | 1.54 ± 0.35a | 2.42 ± 0.52a |
Fig. 5 The structural equation modeling for relationships between micro-food web and ecosystem multifunctionality under precipitation regime changes. χ2 = 27.375, df = 21, P = 0.352, CFI = 0.910, GFI = 0.880, RMSEA = 0.054. R2 indicates the variance explained by the model. Numbers on arrows are standardized path coefficients. The solid line arrow indicates that the path is significant at the P < 0.05 level, dashed arrows indicate non-significant paths.
[1] |
Adhikari BN, Wall DH, Adams BJ (2009) Desiccation survival in an Antarctic nematode: Molecular analysis using expressed sequenced tags. BMC Genomics, 10, 1-18.
DOI URL |
[2] | Binder S, Isbell F, Polasky S, Catford J, Tilman D (2018) Grassland biodiversity can pay. Proceedings of the National Academy of Sciences, USA, 115, 3876-3881. |
[3] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[4] |
Chen D, Lan ZC, Hu SJ, Bai YF (2015) Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 89, 99-108.
DOI URL |
[5] |
Chen N, Song CC, Xu XF, Wang XF, Cong N, Jiang PP, Zu JX, Sun L, Song YY, Zuo YJ, Liu JZ, Zhang T, Xu MJ, Jiang P, Wang ZP, Huang K (2021) Divergent impacts of atmospheric water demand on gross primary productivity in three typical ecosystems in China. Agricultural and Forest Meteorology, 307, 108527.
DOI URL |
[6] |
Cherwin K, Knapp A (2012) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia, 169, 845-852.
DOI PMID |
[7] | Coleman DC, Crossley DA, Hendrix PF (2004) Fundamentals of Soil Ecology, 2nd edn. Academic Press, Cambridge. |
[8] | Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012) Timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences, USA, 109, 3401-3405. |
[9] |
Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18, 435-447.
DOI URL |
[10] |
Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil MC, Barnard RL (2018) Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. The ISME Journal, 12, 1061-1071.
DOI URL |
[11] |
Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: Long-term severe drought significantly reduces the dominant species and increases ruderals. Journal of Ecology, 99, 1500-1507.
DOI URL |
[12] |
Ferris H, Bongers T, de Goede R(2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[13] | Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW (2012) Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere, 3, 1-44. |
[14] |
Guo Q, Hu ZM, Li XR, Li SG (2013) Effects of precipitation timing on aboveground net primary productivity in Inner Mongolia temperate steppe. Acta Ecologica Sinica, 33, 4808-4817. (in Chinese with English abstract)
DOI URL |
[ 郭群, 胡中民, 李轩然, 李胜功 (2013) 降水时间对内蒙古温带草原地上净初级生产力的影响. 生态学报, 33, 4808-4817.] | |
[15] | Guo Q, Hu ZM, Li SG, Yu GR, Sun XM, Zhang LM, Mu SL, Zhu XJ, Wang YF, Li YN, Zhao W (2015) Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agricultural and Forest Meteorology, 214/215, 169-177. |
[16] |
Hao GC, Hu ZM, Guo Q, Di K, Li SG (2019) Median to strong rainfall intensity favors carbon sink in a temperate grassland ecosystem in China. Sustainability, 11, 6376.
DOI URL |
[17] | Harris RF (1981) Effect of water potential on microbial growth and activity. In: Water Potential Relations in Soil Microbiology, Vol. 9 (eds Parr JF, Gardner WR, Wilding RE), pp. 23-95. SSSA, Madison, WI. |
[18] |
Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
DOI PMID |
[19] |
Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149.
DOI URL |
[20] |
Hovenden MJ, Newton PCD, Wills KE (2014) Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature, 511, 583-586.
DOI URL |
[21] | Huhe, Borjigin S, Buhebaoyin, Wu YP, Li MQ, Cheng YX(2016) Microbial nitrogen-cycle gene abundance in soil of cropland abandoned for different periods. PLoS ONE, 11, e0154697. |
[22] | IPCC (2013) Climate Change 2013:The Physical Science Basis, Summary for Policymakers. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[23] |
Jax K (2005) Function and “functioning” in ecology: What does it mean? Oikos, 111, 641-648.
DOI URL |
[24] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI PMID |
[25] |
Kardol P, Cregger MA, Campany CE, Classen AT (2010) Soil ecosystem functioning under climate change: Plant species and community effects. Ecology, 91, 767-781.
PMID |
[26] |
Landesman WJ, Treonis AM, Dighton J (2011) Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54, 87-91.
DOI URL |
[27] |
Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 340, 253-264.
DOI URL |
[28] |
Li Q, Liang WJ, Jiang Y (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science, 15, 134-141. (in Chinese with English abstract)
DOI |
[ 李琪, 梁文举, 姜勇 (2007) 农田土壤线虫多样性研究现状及展望. 生物多样性, 15, 134-141.]
DOI |
|
[29] | Lu RK (2000) Analysis Methods of Soil Agro-chemistry. China Agriculture Press, Beijing. (in Chinese) |
[ 鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[30] | Moore JC, de Ruiter PC(2012) Energetic Food Webs: An Analysis of Real and Model Ecosystems. Oxford University Press, Oxford. |
[31] |
Nielsen UN, Ball BA (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407-1421.
DOI PMID |
[32] |
Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011) Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073-1082.
DOI URL |
[33] |
Pan GX, Smith P, Pan WN (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 129, 344-348.
DOI URL |
[34] |
Papatheodorou EM, Papapostolou A, Monokrousos N, Jones D-W, Scullion J, Stamou GP (2020) Crust cover and prior soil moisture status affect the response of soil microbial community and function to extreme rain events in an arid area. European Journal of Soil Biology, 101, 103243.
DOI URL |
[35] |
Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015) Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406.
DOI PMID |
[36] |
Powlson DS, Prookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19, 159-164.
DOI URL |
[37] |
Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology, 90, 649-662.
PMID |
[38] |
Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer- Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426.
DOI PMID |
[39] |
Ruan WB, Sang Y, Chen Q, Zhu X, Lin S, Gao YB (2012) The response of soil nematode community to nitrogen, water, and grazing history in the Inner Mongolian steppe, China. Ecosystems, 15, 1121-1133.
DOI URL |
[40] |
Shao YH, Fu SL (2007) The role of soil nematode diversity in ecosystem. Biodiversity Science, 15, 116-123. (in Chinese with English abstract)
DOI URL |
[ 邵元虎, 傅声雷 (2007) 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 15, 116-123.]
DOI |
|
[41] |
Song WM, Chen SP, Wu B, Zhu YJ, Zhou YD, Li YH, Cao YL, Lu Q, Lin GH (2012) Vegetation cover and rain timing co-regulate the responses of soil CO2 efflux to rain increase in an arid desert ecosystem. Soil Biology and Biochemistry, 49, 114-123.
DOI URL |
[42] | Song M, Liu YZ, Jing SS (2015) Response of soil nematodes to climate change: A review. Acta Ecologica Sinica, 35, 6857-6867. (in Chinese with English abstract) |
[ 宋敏, 刘银占, 井水水 (2015) 土壤线虫对气候变化的响应研究进展. 生态学报, 35, 6857-6867.] | |
[43] |
Song WM, Chen SP, Zhou YD, Lin GH (2020) Rainfall amount and timing jointly regulate the responses of soil nitrogen transformation processes to rainfall increase in an arid desert ecosystem. Geoderma, 364, 114197.
DOI URL |
[44] |
Townshend JL (1963) A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method 1. Nematologica, 9, 106-110.
DOI URL |
[45] |
Treonis AM, Wall DH, Virginia RA (2000) The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Functional Ecology, 14, 460-467.
DOI URL |
[46] | Wang NN, Yang X, Li SL, Sui X, Han SJ, Feng FJ (2013) Distribution patterns of soil fungal diversity driven by precipitation change in Korean pine broad-leaved forest. Journal of Applied Ecology, 24, 1985-1990. (in Chinese with English abstract) |
[ 王楠楠, 杨雪, 李世兰, 隋心, 韩士杰, 冯富娟 (2013) 降水变化驱动下红松阔叶林土壤真菌多样性的分布格局. 应用生态学报, 24, 1985-1990.] | |
[47] | Wagg C, Bender SF, Widmer F, van der Heijden MGA(2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[48] |
Wardle DA (2010) Communications and ecosystems: Linking the aboveground and belowground components. Austral Ecology, 29, 358-359.
DOI URL |
[49] | White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (eds Innis MA, Gelfand DH, Sninsky JJ), pp. 315-322. Academic Press, New York. |
[50] |
Wu QQ, Yue K, Wang XC, Ma YD, Li Y (2020) Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant and Soil, 455, 155-169.
DOI URL |
[51] |
Xia JY, Niu SL, Wan SQ (2009) Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556.
DOI URL |
[52] |
Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011) Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465.
DOI URL |
[53] |
Yeates GW, Bongers T, de Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[54] |
Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29, 111-129.
DOI URL |
[1] | Xin Jing, Shengjing Jiang, Huiying Liu, Yu Li, Jin-Sheng He. Complex relationships and feedback mechanisms between climate change and biodiversity [J]. Biodiv Sci, 2022, 30(10): 22462-. |
[2] | Xiaobo Huang, Xuedong Lang, Shuaifeng Li, Wande Liu, Jianrong Su. Indicator selection and driving factors of ecosystem multifunctionality: Research status and perspectives [J]. Biodiv Sci, 2021, 29(12): 1673-1686. |
[3] | Xueming Lei, Fangfang Shen, Xuechen Lei, Wenfei Liu, Honglang Duan, Houbao Fan, Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971. |
[4] | Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang. The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest [J]. Biodiv Sci, 2017, 25(11): 1182-1191. |
[5] | Lingjie Lei, Deliang Kong, Xiaoming Li, Zhenxing Zhou, Guoyong Li. Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives [J]. Biodiv Sci, 2016, 24(8): 922-931. |
[6] | Xiangzhen Li, Liangdong Guo, Jiabao Li, Minjie Yao. Soil microbial diversity observation in China: current situation and future consideration [J]. Biodiv Sci, 2016, 24(11): 1240-1248. |
[7] | Wei Xu, Xin Jing, Zhiyuan Ma, Jin-Sheng He. A review on the measurement of ecosystem multifunctionality [J]. Biodiv Sci, 2016, 24(1): 72-84. |
[8] | Huaqin Xu, Runlin Xiao, Tongqing Song, Wen Luo, Quan Ren, Yao Huang. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations [J]. Biodiv Sci, 2008, 16(2): 166-174. |
[9] | Lixia Zhou, Mingmao Ding. Soil microbial characteristics as bioindicators of soil health [J]. Biodiv Sci, 2007, 15(2): 162-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn