Biodiv Sci ›› 2022, Vol. 30 ›› Issue (5): 21031. DOI: 10.17520/biods.2021031
• Original Papers: Genetic Diversity • Next Articles
Togtokh Mongke, Dongyi Bai, Tugeqin Bao, Ruoyang Zhao, Tana An, Aertengqimike Tiemuqier, Baoyindeligeer Mongkejargal, Has Soyoltiin, Manglai Dugarjaviin(), Haige Han()
Received:
2021-07-20
Accepted:
2022-04-29
Online:
2022-05-20
Published:
2022-05-20
Contact:
Manglai Dugarjaviin,Haige Han
Togtokh Mongke, Dongyi Bai, Tugeqin Bao, Ruoyang Zhao, Tana An, Aertengqimike Tiemuqier, Baoyindeligeer Mongkejargal, Has Soyoltiin, Manglai Dugarjaviin, Haige Han. Assessment of SNPs-based genomic diversity in different populations of Eastern Asian landrace horses[J]. Biodiv Sci, 2022, 30(5): 21031.
品种/群体 Breed/Population | 样品代号 Code | 采样地 Sampling region | 样本量 Sample size | 近交系数 Inbreeding coefficient (F) | 期望杂合度 Expected heterozygosity (He) | 数据来源 Data source |
---|---|---|---|---|---|---|
藏马 Tibetan horse | TIB | 西藏那曲 Nagqu, Tibet, China | 7 | 0.031 | 0.246 | 本研究 Present study |
河曲马 Hequ horse | HQ | 青海省河南蒙古族自治县 Henan Mongol Autonomous County, Qinghai, China | 6 | 0.045 | 0.239 | 本研究 Present study |
西南马 Southwest horse | SW | 云南丽江 Lijiang, Yunnan, China | 7 | 0.043 | 0.247 | 本研究 Present study |
蒙古马 Mongolian horse | MN | 乌兰巴托市, 蒙古国 Ulaanbaatar, Mongolia | 13 | 0.017 | 0.261 | 本研究 Present study |
乌珠穆沁马 Ujimqin horse | UJM | 内蒙古锡林郭勒盟 Xilingol League, Inner Mongolia, China | 3 21 | 0.029 | 0.266 | 本研究 Present study; Han et al, |
乌审马 Uxin horse | UX | 内蒙古鄂尔多斯市乌审旗 Uxin Banner, Inner Mongolia, China | 3 22 | 0.042 | 0.266 | 本研究 Present study; Han et al, |
百岔铁蹄马 Baicha iron hoof horse | BCIH | 内蒙古赤峰市克什克腾旗 Hexigten Banner, Inner Mongolia, China | 2 19 | 0.019 | 0.264 | 本研究 Present study; Han et al, |
三河马 Sanhe horse | SH | 内蒙古呼伦贝尔市 Hulunbuir, Inner Mongolia, China | 23 | -0.003 | 0.269 | Han et al, |
阿巴嘎黑马 Abag horse | AB | 内蒙古锡林郭勒盟阿巴嘎旗 Abag Banner, Inner Mongolia, China | 15 | 0.027 | 0.251 | Han et al, |
哈萨克马 Kazakh horse | KZ | 新疆塔城地区 Tacheng, Xinjiang, China | 6 | 0.00028 | 0.252 | 本研究 Present study |
阿拉伯马 Arabian horse | ARR | 北京 Beijing, China | 5 | 0.108 | 0.213 | 本研究 Present study |
设特兰矮马 Shetland pony | STL | 内蒙古鄂尔多斯市可汗御马苑 Ordos, Inner Mongolia, China | 5 | 0.120 | 0.221 | 本研究 Present study |
阿哈尔捷金马 Akhal-Teke horse | AKTK | 内蒙古太仆寺旗 Taibus Banner, Inner Mongolia, China | 5 | 0.07 | 0.223 | 本研究 Present study |
克莱斯戴尔马 Clydesdale horse | DRT | 内蒙古鄂尔多斯市可汗御马苑 Ordos, Inner Mongolia, China | 5 | 0.24 | 0.227 | 本研究 Present study |
总计 Total | 14群体 14 populations | 167个体 167 individuals |
Table 1 Information on collection source, inbreeding coefficient (F) and expected heterozygosity (He) of samples used in this study
品种/群体 Breed/Population | 样品代号 Code | 采样地 Sampling region | 样本量 Sample size | 近交系数 Inbreeding coefficient (F) | 期望杂合度 Expected heterozygosity (He) | 数据来源 Data source |
---|---|---|---|---|---|---|
藏马 Tibetan horse | TIB | 西藏那曲 Nagqu, Tibet, China | 7 | 0.031 | 0.246 | 本研究 Present study |
河曲马 Hequ horse | HQ | 青海省河南蒙古族自治县 Henan Mongol Autonomous County, Qinghai, China | 6 | 0.045 | 0.239 | 本研究 Present study |
西南马 Southwest horse | SW | 云南丽江 Lijiang, Yunnan, China | 7 | 0.043 | 0.247 | 本研究 Present study |
蒙古马 Mongolian horse | MN | 乌兰巴托市, 蒙古国 Ulaanbaatar, Mongolia | 13 | 0.017 | 0.261 | 本研究 Present study |
乌珠穆沁马 Ujimqin horse | UJM | 内蒙古锡林郭勒盟 Xilingol League, Inner Mongolia, China | 3 21 | 0.029 | 0.266 | 本研究 Present study; Han et al, |
乌审马 Uxin horse | UX | 内蒙古鄂尔多斯市乌审旗 Uxin Banner, Inner Mongolia, China | 3 22 | 0.042 | 0.266 | 本研究 Present study; Han et al, |
百岔铁蹄马 Baicha iron hoof horse | BCIH | 内蒙古赤峰市克什克腾旗 Hexigten Banner, Inner Mongolia, China | 2 19 | 0.019 | 0.264 | 本研究 Present study; Han et al, |
三河马 Sanhe horse | SH | 内蒙古呼伦贝尔市 Hulunbuir, Inner Mongolia, China | 23 | -0.003 | 0.269 | Han et al, |
阿巴嘎黑马 Abag horse | AB | 内蒙古锡林郭勒盟阿巴嘎旗 Abag Banner, Inner Mongolia, China | 15 | 0.027 | 0.251 | Han et al, |
哈萨克马 Kazakh horse | KZ | 新疆塔城地区 Tacheng, Xinjiang, China | 6 | 0.00028 | 0.252 | 本研究 Present study |
阿拉伯马 Arabian horse | ARR | 北京 Beijing, China | 5 | 0.108 | 0.213 | 本研究 Present study |
设特兰矮马 Shetland pony | STL | 内蒙古鄂尔多斯市可汗御马苑 Ordos, Inner Mongolia, China | 5 | 0.120 | 0.221 | 本研究 Present study |
阿哈尔捷金马 Akhal-Teke horse | AKTK | 内蒙古太仆寺旗 Taibus Banner, Inner Mongolia, China | 5 | 0.07 | 0.223 | 本研究 Present study |
克莱斯戴尔马 Clydesdale horse | DRT | 内蒙古鄂尔多斯市可汗御马苑 Ordos, Inner Mongolia, China | 5 | 0.24 | 0.227 | 本研究 Present study |
总计 Total | 14群体 14 populations | 167个体 167 individuals |
Fig. 1 The sum of ROH length (MB) per individual genome in each population of horse samples. MN, Mongolian horse; STL, Shetland pony; KZ, Kazakh horse; SH, Sanhe horse; BCIH, Baicha iron hoof horse; TIB, Tibetan horse; SW, Southwest horse; HQ, Hequ horse; UX, Uxin horse; UJM, Ujimqin horse; AB, Abag horse; AKTK, Akhal-Teke horse; ARR, Arabian horse; DRT, Clydesdale horse.
Fig. 2 Principal component analysis (PCA) plot for PC1 and PC2 comprising 167 individuals. AB, Abag horse; AKTK, Akhal-Teke horse; ARR, Arabian horse; BCIH, Baicha iron hoof horse; SW, Southwest horse; DRT, Clydesdale horse; HQ, Hequ horse; KZ, Kazakh horse; MN, Mongolian horse; SH, Sanhe horse; STL, Shetland pony; TIB, Tibetan horse; UJM, Ujimqin horse; UX, Uxin horse.
Fig. 3 Phylogenetic tree of 14 horse populations based on maximum likelihood (ML). The scale bar shows 10 times the average standard error of the entries in the sample covariance matrix (10 s.e.).
Fig. 4 Genetic structure of 14 horse populations based on maximum likelihood (ML). HQ, Hequ horse; TIB, Tibetan horse; SW, Southwest horse; MN, Mongolian horse; UX, Uxin horse; UJM, Ujimqin horse; SH, Sanhe horse; AB, Abag horse; BCIH, Baicha iron hoof horse; ARR, Arabian horse; AKTK, Akhal-Teke horse; KZ, Kazakh horse; STL, Shetland pony; DRT, Clydesdale horse.
[1] |
Anthony DW, Brown DR (2000) Eneolithic horse exploitation in the Eurasian steppes: Diet, ritual and riding. Antiquity, 74, 75-86.
DOI URL |
[2] | Anthony DW, Telegin DY, Brown D (1991) The origin of horseback riding. Scientific American, 265, 94-101. |
[3] |
Arbuckle BS (2012) Animals and inequality in Chalcolithic central Anatolia. Journal of Anthropological Archaeology, 31, 302-313.
DOI URL |
[4] |
Bendrey R (2011) Identification of metal residues associated with bit-use on prehistoric horse teeth by scanning electron microscopy with energy dispersive X-ray microanalysis. Journal of Archaeological Science, 38, 2989-2994.
DOI URL |
[5] | Benecke N (2006) On the beginning of horse husbandry in the southern Balkan Peninsula: The horse bones from Kirklareli-Kanhgecit (Turkish Thrace). In: Equids in Time and Space: Papers in Honour of Véra Eisenmann (eds Albarella U, Dobney K, Rowley-Conwy P). Oxbow Books, Oxford. |
[6] |
Berthouly-Salazar C, Thévenon S, Van TN, Nguyen BT, Pham LD, Chi CV, Maillard JC (2012) Uncontrolled admixture and loss of genetic diversity in a local Vietnamese pig breed. Ecology and Evolution, 2, 962-975.
DOI PMID |
[7] | Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, s13742-015. |
[8] | Chysyma RB, Khrabrova LA, Zaitsev АM, Мakarova ЕY, Fedorov YN, Ludu BM (2017) Genetic diversity in Tyva horses derived from polymorphism of blood systems and microsatellite DNA. Agricultural Biology, 52, 679-685. |
[9] |
Cosgrove EJ, Sadeghi R, Schlamp F, Holl HM, Moradi- Shahrbabak M, Miraei-Ashtiani SR, Abdalla S, Shykind B, Troedsson M, Stefaniuk-Szmukier M, Prabhu A, Bucca S, Bugno-Poniewierska M, Wallner B, Malek J, Miller DC, Clark AG, Antczak DF, Brooks SA (2020) Genome diversity and the origin of the Arabian horse. Scientific Reports, 10, 9702.
DOI PMID |
[10] | Cunliffe B, Cunliffe BW (2015) By Steppe, Desert, and Ocean: The Birth of Eurasia. Oxford University Press, New York. |
[11] |
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43, 491-498.
DOI PMID |
[12] |
Erdemsurakh O, Ochirbat K, Gombosuren U, Tserendorj B, Purevdorj B, Vanaabaatar B, Aoshima K, Kobayashi A, Kimura T (2020) Seroprevalence of equine glanders in horses in the central and eastern parts of Mongolia. The Journal of Veterinary Medical Science, 82, 1247-1252.
DOI URL |
[13] |
Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, Constantz CM, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los Ángeles de Chorro y de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, Oom MDM, Dohr A, Ellingvåg S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Viñas E, Germonpré M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, von Lettow-Vorbeck CL, Logvin A, Lõugas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Silva RM, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir AH, Pitulko V, Pitskhelauri K, Pruvost M, Sikanjic PR, Papeša AR, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Seno SS, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Vukičević TT, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram AK, Librado P, Orlando L (2019) Tracking five millennia of horse management with extensive ancient genome time series. Cell, 177, 1419-1435.
DOI URL |
[14] | FAO (2015) The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome. |
[15] |
Felkel S, Vogl C, Rigler D, Jagannathan V, Leeb T, Fries R, Neuditschko M, Rieder S, Velie B, Lindgren G, Rubin CJ, Schlötterer C, Rattei T, Brem G, Wallner B (2018) Asian horses deepen the MSY phylogeny. Animal Genetics, 49, 90-93.
DOI PMID |
[16] |
Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubézy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lõugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, Orlando L (2018) Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science, 360, 111-114.
DOI URL |
[17] |
Guimaraes S, Arbuckle BS, Peters J, Adcock SE, Buitenhuis H, Chazin H, Manaseryan N, Uerpmann HP, Grange T, Geigl EM (2020) Ancient DNA shows domestic horses were introduced in the southern Caucasus and Anatolia during the Bronze Age. Science Advances, 6, eabb0030.
DOI URL |
[18] | Han HG, Bryan K, Shiraigol W, Bai DY, Zhao YP, Bao W, Yang SQ, Zhang WG, MacHugh DE, Dugarjaviin M, Hill EW (2019a) Refinement of global domestic horse biogeography using historic Landrace Chinese Mongolian populations. Journal of Heredity, 110, 769-781. |
[19] |
Han HG, Wallner B, Rigler D, MacHugh DE, Manglai D, Hill EW (2019b) Chinese Mongolian horses may retain early domestic male genetic lineages yet to be discovered. Animal Genetics, 50, 399-402.
DOI URL |
[20] |
Hill EW, Gu JJ, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, Orr N, Katz LM, MacHugh DE (2010) A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS ONE, 5, e8645.
DOI URL |
[21] | Jansen T, Forster P, Levine MA, Oelke H, Hurles M, Renfrew C, Weber J, Olek K (2002) Mitochondrial DNA and the origins of the domestic horse. Proceedings of the National Academy of Sciences, USA, 99, 10905-10910. |
[22] |
Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, Brendan L, Fiddes IT, Vershinina AO, Saremi NF (2018) Improved reference genome for the domestic horse increases assembly contiguity and composition. Communications Biology, 1, 197.
DOI PMID |
[23] |
Khanshour A, Conant E, Juras R, Cothran EG (2013) Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. Journal of Heredity, 104, 386-398.
DOI PMID |
[24] |
Levine MA (1990) Dereivka and the problem of horse domestication. Antiquity, 64, 727-740.
DOI URL |
[25] | Levine MA (2005) Domestication and early history of the horse. In: The Domestic Horse: The Origins, Development, and Management of Its Behaviour (eds Mills DS, McDonnell SM, McDonnell S), pp. 5-22. Cambridge University Press, Cambridge. |
[26] |
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589-595.
DOI URL |
[27] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.
DOI URL |
[28] | Librado P, der Sarkissian C, Ermini L, Schubert M, Jónsson H, Albrechtsen A, Fumagalli M, Yang MA, Gamba C, Seguin-Orlando A, Mortensen CD, Petersen B, Hoover CA, Lorente-Galdos B, Nedoluzhko A, Boulygina E, Tsygankova S, Neuditschko M, Jagannathan V, Thèves C, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Sicheritz-Ponten T, Popov R, Grigoriev S, Alekseev AN, Rubin EM, McCue M, Rieder S, Leeb T, Tikhonov A, Crubézy E, Slatkin M, Marques-Bonet T, Nielsen R, Willerslev E, Kantanen J, Prokhortchouk E, Orlando L (2015) Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences, USA, 112, E6889-E6897. |
[29] |
Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghøj K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA, der Sarkissian C, Schubert M, Orlando L (2016) The evolutionary origin and genetic makeup of domestic horses. Genetics, 204, 423-434.
PMID |
[30] |
Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM et al (2021) The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 598, 634-640.
DOI URL |
[31] |
Liu XX, Zhang YL, Li YF, Pan JF, Wang DD, Chen WH, Zheng ZQ, He XH, Zhao QJ, Pu YB, Guan WJ, Han JL, Orlando L, Ma YH, Jiang L (2019) EPAS 1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Molecular Biology and Evolution, 36, 2591-2603.
DOI URL |
[32] |
Lopes MS, Mendonça D, Cymbron T, Valera M, da Costa-Ferreira J, Machado A (2005) The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation. Animal Genetics, 36, 196-202.
PMID |
[33] |
McCue ME, Valberg SJ, Miller MB, Wade C, DiMauro S, Akman HO, Mickelson JR (2008) Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics, 91, 458-466.
DOI URL |
[34] |
Mileto S, Kaiser E, Rassamakin Y, Evershed RP (2017) New insights into the subsistence economy of the Eneolithic Dereivka culture of the Ukrainian North-Pontic region through lipid residues analysis of pottery vessels. Journal of Archaeological Science: Reports, 13, 67-74.
DOI URL |
[35] |
Orlando L (2020) The evolutionary and historical foundation of the modern horse: Lessons from ancient genomics. Annual Review of Genetics, 54, 563-581.
DOI URL |
[36] |
Orlando L, Ginolhac A, Zhang GJ, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PLF, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas AS, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AMV, Cahill J, Rasmussen M, Wang XL, Min JM, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Røed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KAS, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MTP, Kjær K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499, 74-78.
DOI URL |
[37] |
Orlando L, Librado P (2019) Origin and evolution of deleterious mutations in horses. Genes, 10, 649.
DOI URL |
[38] |
Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, Evershed RP (2009) The earliest horse harnessing and milking. Science, 323, 1332-1335.
DOI PMID |
[39] |
Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Câmara Machado A, Distl O, Felicetti M, Fox-Clipsham L, Graves KT, Guérin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MCT, Piercy RJ, Raekallio M, Rieder S, Røed KH, Silvestrelli M, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME (2013a) Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE, 8, e54997.
DOI URL |
[40] |
Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS (2013b) Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genetics, 9, e1003211.
DOI URL |
[41] |
Pickrell J, Pritchard J (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8, e1002967.
DOI URL |
[42] |
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904-909.
DOI URL |
[43] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, Daly MJ, Sham PC (2007) PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559-575.
DOI PMID |
[44] |
Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197, 573-589.
DOI URL |
[45] |
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science, 298, 2381-2385.
PMID |
[46] |
Sommer RS, Benecke N, Lõugas L, Nelle O, Schmölcke U (2011) Holocene survival of the wild horse in Europe: A matter of open landscape? Journal of Quaternary Science, 26, 805-812.
DOI URL |
[47] |
Srikanth K, Kim NY, Park W, Kim JM, Kim KD, Lee KT, Son JH, Chai HH, Choi JW, Jang GW, Kim H, Ryu YC, Nam JW, Park JE, Kim JM, Lim D (2019) Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Scientific Reports, 9, 16672.
DOI URL |
[48] | Stetter MG, Gates DJ, Mei WB, Ross-Ibarra J (2017) How to make a domesticate. Current Biology, 27, R896-R900. |
[49] |
Tozaki T, Kikuchi M, Kakoi H, Hirota K, Nagata S, Yamashita D, Ohnuma T, Takasu M, Kobayashi I, Hobo S, Manglai D, Petersen JL (2019) Genetic diversity and relationships among native Japanese horse breeds, the Japanese Thoroughbred and horses outside of Japan using genome-wide SNP data. Animal Genetics, 50, 449-459.
DOI PMID |
[50] |
Tozaki T, Takezaki N, Hasegawa T, Ishida N, Kurosawa M, Tomita M, Saitou N, Mukoyama H (2003) Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. Journal of Heredity, 94, 374-380.
PMID |
[51] |
Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schlotterer C, Brem G (2017) Y chromosome uncovers the recent oriental origin of modern stallions. Current Biology, 27, 2029-2035.
DOI URL |
[1] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[2] | Qingduo Li, Dongmei Li. Analysis for the prevalence of global bat-borne Bartonella [J]. Biodiv Sci, 2023, 31(9): 23166-. |
[3] | Chen Feng, Jie Zhang, Hongwen Huang. Parallel situ conservation: A new plant conservation strategy to integrate in situ and ex situ conservation of plants [J]. Biodiv Sci, 2023, 31(9): 23184-. |
[4] | Hailing Qi, Pengzhen Fan, Yuehua Wang, Jie Liu. Genetic diversity and population structure of Juglans regia from six provinces in northern China [J]. Biodiv Sci, 2023, 31(8): 23120-. |
[5] | Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin. Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands [J]. Biodiv Sci, 2023, 31(4): 22585-. |
[6] | Fei Xiong, Hongyan Liu, Dongdong Zhai, Xinbin Duan, Huiwu Tian, Daqing Chen. Population genetic structure of Pelteobagrus vachelli in the upper Yangtze River based on genome re-sequencing [J]. Biodiv Sci, 2023, 31(4): 22391-. |
[7] | Yiyue He, Yuying Liu, Fubin Zhang, Qiang Qin, Yu Zeng, Zhenyu Lü, Kun Yang. Genetic diversity and population structure of Saurogobio dabryi under cascade water conservancy projects in the Jialing River [J]. Biodiv Sci, 2023, 31(11): 23160-. |
[8] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[9] | Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland [J]. Biodiv Sci, 2022, 30(5): 21387-. |
[10] | Jing Cui, Mingfang Xu, Qun Zhang, Yao Li, Xiaoshu Zeng, Sha Li. Differences in genetic diversity of Pleuronichthys cornutus in the coastal water of China and Japan based on three mitochondrial markers [J]. Biodiv Sci, 2022, 30(5): 21485-. |
[11] | Xinyu Cai, Xiaowei Mao, Yiqiang Zhao. Methods and research progress on the origin of animal domestication [J]. Biodiv Sci, 2022, 30(4): 21457-. |
[12] | Jun Sun, Yuyao Song, Yifeng Shi, Jian Zhai, Wenzhuo Yan. Progress of marine biodiversity studies in China seas in the past decade [J]. Biodiv Sci, 2022, 30(10): 22526-. |
[13] | Dongmei Li, Weihong Yang, Qingduo Li, Xi Han, Xiuping Song, Hong Pan, Yun Feng. High prevalence and genetic variation of Bartonella species inhabiting the bats in southwestern Yunnan [J]. Biodiv Sci, 2021, 29(9): 1245-1255. |
[14] | Bo Chen, Lan Jiang, Ziyang Xie, Yangdi Li, Jiaxuan Li, Mengjia Li, Chensi Wei, Cong Xing, Jinfu Liu, Zhongsheng He. Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamiinatural forest [J]. Biodiv Sci, 2021, 29(4): 439-448. |
[15] | Zhi Yao, Jun Guo, Chenzhong Jin, Yongbo Liu. Endangered mechanisms for the first-class protected Wild Plants with Extremely Small Populations in China [J]. Biodiv Sci, 2021, 29(3): 394-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn