Biodiv Sci ›› 2024, Vol. 32 ›› Issue (6): 24001. DOI: 10.17520/biods.2024001 cstr: 32101.14.biods.2024001
• Special Feature: Reproductive Biology • Previous Articles Next Articles
Hua Xie1(), Pei Yang2, Zongbo Li1,3,*(
)(
)
Received:
2024-01-04
Accepted:
2024-03-30
Online:
2024-06-20
Published:
2024-06-11
Contact:
* E-mail: lizb@swfu.edu.cnHua Xie, Pei Yang, Zongbo Li. Sexual dimorphism and seasonal variations in cuticular hydrocarbons of the pollinating fig wasp in Ficus semicordata[J]. Biodiv Sci, 2024, 32(6): 24001.
化合物 Compounds | 保留时间Retention time (min) | 雨季 Rainy | 雾凉季 Fog-cool | 干热季 Dry-hot | 平均下降基尼指数 Mean decrease Gini | |||
---|---|---|---|---|---|---|---|---|
雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | |||
正链烷烃 n-Aikanes | ||||||||
n-C7 | 5.361 | - | - | - | - | 0.40 ± 0.02 | 0.50 ± 0.02 | 0.325 |
n-C17 | 42.119 | 0.18 ± 0.03 | - | - | - | - | - | 0.316 |
n-C19 | 45.751 | 0.08 ± 0.04 | - | - | - | - | - | 0.020 |
n-C24 | 52.046 | - | - | - | 0.31 ± 0.03 | - | - | 0.366 |
n-C25 | 52.822 | - | - | - | 0.43 ± 0.05 | - | - | 0.268 |
n-C27 | 55.728 | - | 2.92 ± 0.53 | 1.75 ± 0.11 | 1.58 ± 0.23 | - | - | 0.671 |
n-C29 | 58.596 | 3.18 ± 0.39 | 9.75 ± 1.95 | 1.60 ± 0.19 | 8.28 ± 1.27 | - | - | 1.229 |
n-C31 | 59.328 | - | - | 8.52 ± 0.63 | 9.84 ± 3.41 | 15.36 ± 1.79 | - | 0.678 |
n-C32 | 59.420 | 7.85 ± 1.19 | - | - | - | - | - | 0.349 |
n-C34 | 60.156 | 71.78 ± 8.79 | 61.07 ± 10.85 | 43.55 ± 2.81 | 25.94 ± 3.41 | 75.67 ± 7.20 | 22.31 ± 3.15 | 1.198 |
n-C35 | 60.792 | 27.15 ± 3.2 | 37.40 ± 17.87 | 16.77 ± 1.65 | 9.62 ± 1.50 | 31.08 ± 3.35 | - | 1.291 |
n-C36 | 61.300 | 255.70 ± 30.86 | 251.75 ± 43.70 | 205.34 ± 11.82 | 124.95 ± 16.78 | 436.56 ± 43.08 | 112.51 ± 13.32 | 1.191 |
n-C40 | 62.070 | 15.52 ± 2.06 | - | 11.35 ± 0.62 | 7.79 ± 1.32 | - | - | 0.874 |
n-C42 | 62.367 | 22.10 ± 2.87 | - | 15.74 ± 0.94 | - | 23.56 ± 2.08 | - | 3.279 |
n-C43 | 63.052 | 6.77 ± 1.03 | - | - | - | - | - | 0.417 |
n-C44 | 63.437 | 50.01 ± 6.59 | 62.85 ± 18.48 | 37.36 ± 1.87 | 23.30 ± 3.11 | 67.31 ± 7.24 | 19.82 ± 2.40 | 1.211 |
甲基烷烃 Methylalkanes | ||||||||
2,6-diMe-C17 | 44.110 | 0.09 ± 0.03 | - | - | - | - | - | 0.119 |
3-Me-C21 | 49.391 | - | - | - | - | 2.92 ± 0.64 | - | 0.452 |
2-Me-C22 | 50.344 | - | - | 1.99 ± 0.21 | 5.00 ± 0.69 | - | 4.01 ± 0.96 | 0.750 |
4-Me-C22 | 50.352 | 4.24 ± 0.68 | 7.84 ± 1.48 | - | - | - | - | 0.533 |
2-Me-C24 | 52.448 | - | - | - | 0.82 ± 0.08 | - | - | 0.277 |
2-Me-C26 | 54.807 | - | - | - | 0.80 ± 0.14 | - | - | 0.257 |
2-Me-C28 | 58.124 | 69.67 ± 8.77 | 34.56 ± 7.04 | 58.37 ± 3.06 | 16.63 ± 2.40 | 90.68 ± 9.68 | 9.28 ± 1.27 | 2.119 |
15-Me-C29 | 58.935 | - | 6.03 ± 1.73 | 2.43 ± 0.31 | - | - | - | 0.569 |
烯烃 Alkenes | ||||||||
10-C21:1 | 48.029 | 1.51 ± 0.32 | - | - | - | 0.47 ± 0.18 | - | 0.974 |
(1E,9E,17Z)-C22:3 | 48.471 | - | 0.37 ± 0.10 | - | - | - | - | 0.329 |
(10E)-C22:1 | 49.415 | - | - | 0.78 ± 0.10 | - | - | - | 0.340 |
C23:1 | 50.474 | - | - | - | - | 1.96 ± 0.75 | 0.79 ± 0.38 | 0.073 |
C24:1 | 51.700 | - | - | 1.44 ± 0.15 | - | - | - | 0.391 |
C25:1 | 52.734 | - | - | - | - | - | 1.30 ± 0.41 | 0.122 |
C27:1 | 55.005 | - | - | - | 0.78 ± 0.19 | - | 2.19 ± 0.27 | 0.850 |
C29:1 | 58.322 | - | 6.07 ± 2.39 | - | 3.63 ± 0.70 | - | 4.96 ± 0.70 | 2.126 |
17-C35:1 | 60.301 | - | 33.72 ± 9.9 | 3.82 ± 0.48 | 18.44 ± 2.93 | - | 21.00 ± 3.39 | 2.571 |
甲基烯烃 Methylalkenes | ||||||||
角鲨烯 Squalene | 57.645 | 11.14 ± 1.5 | 62.34 ± 16.01 | 6.67 ± 0.75 | 21.58 ± 3.43 | 6.16 ± 1.64 | 64.62 ± 9.05 | 1.812 |
Table 1 Mean absolute content (mean ± SE, ng/unit) and important appraisal of cuticular hydrocarbons of female and male Ceratosolen gravelyi during three seasons
化合物 Compounds | 保留时间Retention time (min) | 雨季 Rainy | 雾凉季 Fog-cool | 干热季 Dry-hot | 平均下降基尼指数 Mean decrease Gini | |||
---|---|---|---|---|---|---|---|---|
雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | |||
正链烷烃 n-Aikanes | ||||||||
n-C7 | 5.361 | - | - | - | - | 0.40 ± 0.02 | 0.50 ± 0.02 | 0.325 |
n-C17 | 42.119 | 0.18 ± 0.03 | - | - | - | - | - | 0.316 |
n-C19 | 45.751 | 0.08 ± 0.04 | - | - | - | - | - | 0.020 |
n-C24 | 52.046 | - | - | - | 0.31 ± 0.03 | - | - | 0.366 |
n-C25 | 52.822 | - | - | - | 0.43 ± 0.05 | - | - | 0.268 |
n-C27 | 55.728 | - | 2.92 ± 0.53 | 1.75 ± 0.11 | 1.58 ± 0.23 | - | - | 0.671 |
n-C29 | 58.596 | 3.18 ± 0.39 | 9.75 ± 1.95 | 1.60 ± 0.19 | 8.28 ± 1.27 | - | - | 1.229 |
n-C31 | 59.328 | - | - | 8.52 ± 0.63 | 9.84 ± 3.41 | 15.36 ± 1.79 | - | 0.678 |
n-C32 | 59.420 | 7.85 ± 1.19 | - | - | - | - | - | 0.349 |
n-C34 | 60.156 | 71.78 ± 8.79 | 61.07 ± 10.85 | 43.55 ± 2.81 | 25.94 ± 3.41 | 75.67 ± 7.20 | 22.31 ± 3.15 | 1.198 |
n-C35 | 60.792 | 27.15 ± 3.2 | 37.40 ± 17.87 | 16.77 ± 1.65 | 9.62 ± 1.50 | 31.08 ± 3.35 | - | 1.291 |
n-C36 | 61.300 | 255.70 ± 30.86 | 251.75 ± 43.70 | 205.34 ± 11.82 | 124.95 ± 16.78 | 436.56 ± 43.08 | 112.51 ± 13.32 | 1.191 |
n-C40 | 62.070 | 15.52 ± 2.06 | - | 11.35 ± 0.62 | 7.79 ± 1.32 | - | - | 0.874 |
n-C42 | 62.367 | 22.10 ± 2.87 | - | 15.74 ± 0.94 | - | 23.56 ± 2.08 | - | 3.279 |
n-C43 | 63.052 | 6.77 ± 1.03 | - | - | - | - | - | 0.417 |
n-C44 | 63.437 | 50.01 ± 6.59 | 62.85 ± 18.48 | 37.36 ± 1.87 | 23.30 ± 3.11 | 67.31 ± 7.24 | 19.82 ± 2.40 | 1.211 |
甲基烷烃 Methylalkanes | ||||||||
2,6-diMe-C17 | 44.110 | 0.09 ± 0.03 | - | - | - | - | - | 0.119 |
3-Me-C21 | 49.391 | - | - | - | - | 2.92 ± 0.64 | - | 0.452 |
2-Me-C22 | 50.344 | - | - | 1.99 ± 0.21 | 5.00 ± 0.69 | - | 4.01 ± 0.96 | 0.750 |
4-Me-C22 | 50.352 | 4.24 ± 0.68 | 7.84 ± 1.48 | - | - | - | - | 0.533 |
2-Me-C24 | 52.448 | - | - | - | 0.82 ± 0.08 | - | - | 0.277 |
2-Me-C26 | 54.807 | - | - | - | 0.80 ± 0.14 | - | - | 0.257 |
2-Me-C28 | 58.124 | 69.67 ± 8.77 | 34.56 ± 7.04 | 58.37 ± 3.06 | 16.63 ± 2.40 | 90.68 ± 9.68 | 9.28 ± 1.27 | 2.119 |
15-Me-C29 | 58.935 | - | 6.03 ± 1.73 | 2.43 ± 0.31 | - | - | - | 0.569 |
烯烃 Alkenes | ||||||||
10-C21:1 | 48.029 | 1.51 ± 0.32 | - | - | - | 0.47 ± 0.18 | - | 0.974 |
(1E,9E,17Z)-C22:3 | 48.471 | - | 0.37 ± 0.10 | - | - | - | - | 0.329 |
(10E)-C22:1 | 49.415 | - | - | 0.78 ± 0.10 | - | - | - | 0.340 |
C23:1 | 50.474 | - | - | - | - | 1.96 ± 0.75 | 0.79 ± 0.38 | 0.073 |
C24:1 | 51.700 | - | - | 1.44 ± 0.15 | - | - | - | 0.391 |
C25:1 | 52.734 | - | - | - | - | - | 1.30 ± 0.41 | 0.122 |
C27:1 | 55.005 | - | - | - | 0.78 ± 0.19 | - | 2.19 ± 0.27 | 0.850 |
C29:1 | 58.322 | - | 6.07 ± 2.39 | - | 3.63 ± 0.70 | - | 4.96 ± 0.70 | 2.126 |
17-C35:1 | 60.301 | - | 33.72 ± 9.9 | 3.82 ± 0.48 | 18.44 ± 2.93 | - | 21.00 ± 3.39 | 2.571 |
甲基烯烃 Methylalkenes | ||||||||
角鲨烯 Squalene | 57.645 | 11.14 ± 1.5 | 62.34 ± 16.01 | 6.67 ± 0.75 | 21.58 ± 3.43 | 6.16 ± 1.64 | 64.62 ± 9.05 | 1.812 |
Fig. 1 Results of non-metric multidimensional scaling (NMDS) of cuticular hydrocarbon profiles of male and female Ceratosolen gravelyi in three seasons (black dots represent female and white dots represent male)
Fig. 2 Results of non-metric multidimensional scaling (NMDS) of cuticular hydrocarbon profiles of female and male Ceratosolen gravelyi in different seasons
Fig. 3 Effects of different seasons on cuticular hydrocarbons of female and male Ceratosolen gravelyi (mean ± SE). Different letters indicate significant differences between different seasons (P < 0.05).
化合物 Compounds | 环境变量 Environmental variables | 雌性 Female | 雄性 Male | ||
---|---|---|---|---|---|
R2 | P | R2 | P | ||
正链烷烃 n-Aikanes | 温度 Temperature | 0.220 | 0.004 | 0.098 | 0.034 |
降水量 Precipitation | 0.134 | 0.022 | 0.249 | 0.004 | |
甲基烷烃 Methylalkanes | 温度 Temperature | 0.118 | 0.053 | 0.048 | 0.161 |
降水量 Precipitation | 0.131 | 0.042 | 0.349 | 0.001 | |
烯烃 Alkenes | 温度 Temperature | - | - | 0.049 | 0.212 |
降水量 Precipitation | - | - | 0.030 | 0.355 | |
甲基烯烃 Methylalkenes | 温度 Temperature | 0.063 | 0.163 | 0.264 | 0.010 |
降水量 Precipitation | 0.169 | 0.015 | 0.007 | 0.613 | |
总绝对含量 Total absolute content | 温度 Temperature | 0.197 | 0.007 | 0.108 | 0.050 |
降水量 Precipitation | 0.186 | 0.009 | 0.236 | 0.003 |
Table 2 Permutational multivariate analysis of variance (PERMANOVA) assessing the effects of environmental factors on different class of compounds. Significant P values (P < 0.05) are highlighted in bold.
化合物 Compounds | 环境变量 Environmental variables | 雌性 Female | 雄性 Male | ||
---|---|---|---|---|---|
R2 | P | R2 | P | ||
正链烷烃 n-Aikanes | 温度 Temperature | 0.220 | 0.004 | 0.098 | 0.034 |
降水量 Precipitation | 0.134 | 0.022 | 0.249 | 0.004 | |
甲基烷烃 Methylalkanes | 温度 Temperature | 0.118 | 0.053 | 0.048 | 0.161 |
降水量 Precipitation | 0.131 | 0.042 | 0.349 | 0.001 | |
烯烃 Alkenes | 温度 Temperature | - | - | 0.049 | 0.212 |
降水量 Precipitation | - | - | 0.030 | 0.355 | |
甲基烯烃 Methylalkenes | 温度 Temperature | 0.063 | 0.163 | 0.264 | 0.010 |
降水量 Precipitation | 0.169 | 0.015 | 0.007 | 0.613 | |
总绝对含量 Total absolute content | 温度 Temperature | 0.197 | 0.007 | 0.108 | 0.050 |
降水量 Precipitation | 0.186 | 0.009 | 0.236 | 0.003 |
[1] |
Bartelt RJ, Jones RL (1983) (Z)-10-nonadecenal: A pheromonally active air oxidation product of (Z,Z)-9,19 dienes in yellowheaded spruce sawfly. Journal of Chemical Ecology, 9, 1333-1341.
DOI PMID |
[2] | Berson JD, Zuk M, Simmons LW (2019) Natural and sexual selection on cuticular hydrocarbons:A quantitative genetic analysis. Proceedings of the Royal Society B: Biological Sciences, 286, 20190677. |
[3] | Billeter JC, Wolfner MF (2018) Chemical cues that guide female reproduction in Drosophila melanogaster. Journal of Chemical Ecology, 44, 750-769. |
[4] | Blomquist GJ, Bagnères AG (2010) Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge. |
[5] |
Blomquist GJ, Ginzel MD (2021) Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annual Review of Entomology, 66, 45-60.
DOI PMID |
[6] | Blows MW (2002) Interaction between natural and sexual selection during the evolution of mate recognition. Proceedings of the Royal Society B: Biological Sciences, 269, 1113-1118. |
[7] | Boff S, Ayasse M (2023) Exposure to sublethal concentration of flupyradifurone alters sexual behavior and cuticular hydrocarbon profile in Heriades truncorum, an oligolectic solitary bee. Insect Science, 31, 1-11. |
[8] | Brooks R (2000) Negative genetic correlation between male sexual attractiveness and survival. Nature, 406, 67-70. |
[9] | Buellesbach J, Diao WW, Schmitt T, Beukeboom LW (2022) Micro-climate correlations and conserved sexual dimorphism of cuticular hydrocarbons in European populations of the jewel wasp Nasonia vitripennis. Ecological Entomology, 47, 38-51. |
[10] | Capodeanu-Nägler A, Rapkin J, Sakaluk SK, Hunt J, Steiger S (2014) Self-recognition in crickets via on-line processing. Current Biology, 24, R1117-R1118. |
[11] |
Carlson DA, Mayer MS, Silhacek DL, James JD, Beroza M, Bierl BA (1971) Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science, 174, 76-78.
PMID |
[12] |
Chenoweth SF, Rundle HD, Blows MW (2008) Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. The American Naturalist, 171, 22-34.
DOI PMID |
[13] |
Chown SL, Sørensen JG, Terblanche JS (2011) Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 57, 1070-1084.
DOI PMID |
[14] |
Chung H, Carroll SB (2015) Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays, 37, 822-830.
DOI PMID |
[15] | Chung H, Loehlin DW, Dufour HD, Vaccarro K, Millar JG, Carroll SB (2014) A single gene affects both ecological divergence and mate choice in Drosophila. Science, 343, 1148-1151. |
[16] | Cook JM, Rasplus JY (2003) Mutualists with attitude: Coevolving fig wasps and figs. Trends in Ecology & Evolution, 18, 241-248. |
[17] | Cook JM, Segar ST (2010) Speciation in fig wasps. Ecological Entomology, 35, 54-66. |
[18] |
Ercit K, Gwynne DT (2015) Darwinian balancing selection: Predation counters sexual selection in a wild insect. Evolution, 69, 419-430.
DOI PMID |
[19] | Everaerts C, Farine JP, Cobb M, Ferveur JF (2010) Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS ONE, 5, e9607. |
[20] | Gefen E, Talal S, Brendzel O, Dror A, Fishman A (2015) Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 182, 58-63. |
[21] | Gibbs A, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112, 243-249. |
[22] | Gibbs AG (1998) Water-proofing properties of cuticular lipids. American Zoologist, 38, 471-482. |
[23] |
Gibbs AG (2002) Lipid melting and cuticular permeability: New insights into an old problem. Journal of Insect Physiology, 48, 391-400.
PMID |
[24] | Hadley NF (1977) Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: Seasonal and acclimatory effects on composition. Insect Biochemistry, 7, 277-283. |
[25] | Hay-Roe MM, Lamas G, Nation JL (2007) Pre- and postzygotic isolation and Haldane rule effects in reciprocal crosses of Danaus erippus and Danaus plexippus (Lepidoptera: Danainae), supported by differentiation of cuticular hydrocarbons, establish their status as separate species. Biological Journal of the Linnean Society, 91, 445-453. |
[26] | Hebets EA, Papaj DR (2005) Complex signal function: Developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57, 197-214. |
[27] |
Hendry CR, Guiher TJ, Pyron RA (2014) Ecological divergence and sexual selection drive sexual size dimorphism in new world pitvipers (Serpentes: Viperidae). Journal of Evolutionary Biology, 27, 760-771.
DOI PMID |
[28] |
Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371-393.
PMID |
[29] |
Kárpáti Z, Deutsch F, Kiss B, Schmitt T (2023) Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii. Scientific Reports, 13, 5649.
DOI PMID |
[30] |
Kather R, Martin SJ (2015) Evolution of cuticular hydrocarbons in the Hymenoptera: A meta-analysis. Journal of Chemical Ecology, 41, 871-883.
DOI PMID |
[31] | Kokko H, Brooks R (2003) Sexy to die for? Sexual selection and the risk of extinction. Annales Zoologici Fennici, 40, 207-219. |
[32] | Kováts ES (1965) Gas chromatographic characterization of organic substances in the retention index system. Advances in Chromatography, 1, 229-247. |
[33] | Krishnan A, Joshi KA, Abraham A, Ayyub S, Lahiry M, Mukherjee R, Javadekar SM, Narayan V, Borges RM (2014) Finding hidden females in a crowd: Mate recognition in fig wasps. Acta Oecologica, 57, 80-87. |
[34] | Lacey ES, Ginzel MD, Millar JG, Hanks LM (2008) 7-methylheptacosane is a major component of the contact sex pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. Physiological Entomology, 33, 209-216. |
[35] | Li CX, Liu ZX, Yang P, Li ZB (2020) Ultramorphology, distribution and ecological significance of antennal sensilla of female and male Sycoscapter trifemmensis (Hymenoptera: Pteromalidae). Journal of Environmental Entomology, 42, 400-409. (in Chinese with English abstract) |
[李成星, 刘志祥, 杨培, 李宗波 (2020) 伪鞘榕小蜂雌雄成虫触角感器的超微形态、分布及适生意义. 环境昆虫学报, 42, 400-409.] | |
[36] | Li ZB, Yang P, Peng YQ, Yang DR (2012) Distribution and ultramorphology of antennal sensilla in female Ceratosolen emarginatus Mayr (Hymenoptera: Agaonidae), a specific pollinator of Ficus auriculata. Acta Entomologica Sinica, 55, 1272-1281. (in Chinese with English abstract) |
[李宗波, 杨培, 彭艳琼, 杨大荣 (2012) 木瓜榕传粉榕小蜂雌蜂触角感器的分布和超微形态. 昆虫学报, 55, 1272-1281.] | |
[37] | Liu ZX, Yang P, Zhang Y, Li ZB, Kjellberg F (2019) Antennae and the role of olfaction and contact stimulation in mate recognition by males of the pollinating fig wasp Ceratosolen gravelyi (Hymenoptera: Agaonidae). Journal of Natural History, 53, 779-795. |
[38] | Liu ZX, Yang P, Li ZB (2021) Antennal sensilla and ecological adaptations of female symbiotic fig wasps in Ficus semicordata. Chinese Journal of Applied Entomology, 58, 736-746. (in Chinese with English abstract) |
[刘志祥, 杨培, 李宗波 (2021) 鸡嗉子榕蜂群落中雌蜂触角感器及适生意义. 应用昆虫学报, 58, 736-746.] | |
[39] | Mair MM, Kmezic V, Huber S, Pannebakker BA, Ruther J (2017) The chemical basis of mate recognition in two parasitoid wasp species of the genus Nasonia. Entomologia Experimentalis et Applicata, 164, 1-15. |
[40] | Menzel F, Zumbusch M, Feldmeyer B (2018) How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile. Functional Ecology, 32, 657-666. |
[41] |
Michelutti KB, Soares ERP, Sguarizi-Antonio D, Piva RC, Súarez YR, Cardoso CAL, Antonialli-Junior WF (2018) Influence of temperature on survival and cuticular chemical profile of social wasps. Journal of Thermal Biology, 71, 221-231.
DOI PMID |
[42] |
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J (2023) Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. Journal of Evolutionary Biology, 36, 1266-1281.
DOI PMID |
[43] |
Otte T, Hilker M, Geiselhardt S (2018) Phenotypic plasticity of cuticular hydrocarbon profiles in insects. Journal of Chemical Ecology, 44, 235-247.
DOI PMID |
[44] |
Partan SR, Marler P (2005) Issues in the classification of multimodal communication signals. The American Naturalist, 166, 231-245.
DOI PMID |
[45] | Pei XJ, Fan YL, Bai Y, Bai TT, Schal C, Zhang ZF, Chen N, Li S, Liu TX (2021) Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biology, 19, e3001330. |
[46] | Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution, 25, 459-467. |
[47] | Podos J (2022) Costs, constraints and sexual trait elaboration. Animal Behaviour, 184, 209-214. |
[48] | Pu YC, Xiang HJ, Huang B, Hou YM (2020) Categories and dynamics of cuticular hydrocarbons in Octodonta nipae adults with different ages and sexes. Journal of Environmental Entomology, 42, 838-846. (in Chinese with English abstract) |
[蒲宇辰, 向海军, 黄斌, 侯有明 (2020) 水椰八角铁甲不同日龄和性别成虫表皮碳氢化合物的种类及动态. 环境昆虫学报, 42, 838-846.] | |
[49] |
Rajpurohit S, Vrkoslav V, Hanus R, Gibbs AG, Cvačka J, Schmidt PS (2021) Post-eclosion temperature effects on insect cuticular hydrocarbon profiles. Ecology and Evolution, 11, 352-364.
DOI PMID |
[50] | Rourke BC, Gibbs AG (1999) Effects of lipid phase transitions on cuticular permeability: Model membrane and in situ studies. Journal of Experimental Biology, 202, 3255-3262. |
[51] |
Sakata I, Hayashi M, Nakamuta K (2017) Tetramorium tsushimae ants use methyl branched hydrocarbons of aphids for partner recognition. Journal of Chemical Ecology, 43, 966-970.
DOI PMID |
[52] | Scott D (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proceedings of the National Academy of Sciences, USA, 83, 8429-8433. |
[53] | Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘Magic’ but not rare? Trends in Ecology & Evolution, 26, 389-397. |
[54] | Simmons LW, Lovegrove M, Du XB, Ren YL, Thomas ML (2022) Ontogeny can provide insight into the roles of natural and sexual selection in cricket cuticular hydrocarbon evolution. Journal of Experimental Biology, 225, jeb244375. |
[55] | Sprenger PP, Burkert LH, Abou B, Federle W, Menzel F (2018) Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. Journal of Experimental Biology, 221, jeb171488. |
[56] |
Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell, 149, 1140-1151.
DOI PMID |
[57] | Thomas ML, Simmons LW (2008) Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae). Journal of Insect Physiology, 54, 1081-1089. |
[58] | Wang ZN, Receveur JP, Pu J, Cong HS, Richards C, Liang MX, Chung H (2022) Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife, 11, e80859. |
[59] |
Weiblen GD, Bush GL (2002) Speciation in fig pollinators and parasites. Molecular Ecology, 11, 1573-1578.
PMID |
[60] | Wicker-Thomas C, Chertemps T (2010) Molecular biology and genetics of hydrocarbon production. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (eds Bagnères AG, Blomquist GJ), pp. 53-74. Cambridge University Press, Cambridge. |
[61] | Xu ZF (1994) Ficus: A keystone plant species in the tropical rain forest ecosystem of South Yunnan. Chinese Biodiversity, 2, 21-23. (in Chinese) |
[许再富 (1994) 榕树——滇南热带雨林生态系统中的一类关键植物. 生物多样性, 2, 21-23.] | |
[62] | Yang DR, Peng YQ, Zhang GM, Song QS, Zhao TZ, Wang QY (2002) Relationship between population variation of fig trees and environment in the tropical rainforests of Xishuangbanna. Chinese Journal of Environmental Science, 23(5), 29-35. (in Chinese with English abstract) |
[杨大荣, 彭艳琼, 张光明, 宋启示, 赵庭周, 王秋艳 (2002) 西双版纳热带雨林榕树种群变化与环境的关系. 环境科学, 23(5), 29-35.] | |
[63] |
Zhang B, Xue HJ, Song KQ, Liu J, Li WZ, Nie RE, Yang XK (2014) Male mate recognition via cuticular hydrocarbons facilitates sexual isolation between sympatric leaf beetle sister species. Journal of Insect Physiology, 70, 15-21.
DOI PMID |
[1] | Jianfeng Huang, Rui Xu, Yanqiong Peng. Research progress of interspecific hybridization in genus Ficus [J]. Biodiv Sci, 2019, 27(4): 457-467. |
[2] | Yan Chen, Hongqing Li, Min Liu, Xiaoyong Chen. Species-specificity and coevolution of figs and their pollinating wasps [J]. Biodiv Sci, 2010, 18(1): 1-10. |
[3] | Lifen Bai, Darong Yang, Zhanghong Shi, Yanqiong Peng, Shuwei Zhai. Community structure of fig wasp in Ficus benjamina in different habitats [J]. Biodiv Sci, 2006, 14(4): 340-344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn