Biodiv Sci ›› 2021, Vol. 29 ›› Issue (6): 746-758. DOI: 10.17520/biods.2020368
• Original Papers: Plant Diversity • Previous Articles Next Articles
Yuanli Ouyang1,2,3, Cancan Zhang1,2, Xiaofan Lin1,2, Lixin Tian2, Hanjiao Gu1,2, Fusheng Chen1,2,3, Wensheng Bu1,2,3,*()
Received:
2020-09-17
Accepted:
2020-11-17
Online:
2021-06-20
Published:
2020-12-11
Contact:
Wensheng Bu
Yuanli Ouyang, Cancan Zhang, Xiaofan Lin, Lixin Tian, Hanjiao Gu, Fusheng Chen, Wensheng Bu. Growth differences and characteristics of root and leaf morphological traits for different mycorrhizal tree species in the subtropical China: A case study of Xingangshan, Jiangxi Province[J]. Biodiv Sci, 2021, 29(6): 746-758.
树种 Tree species | 菌根类型 Mycorrhiza type | |
---|---|---|
白栎 | Quercus fabri | 外生菌根 EM |
青冈 | Cyclobalanopsis glauca | 外生菌根 EM |
短柄枹栎 | Quercus serrata | 外生菌根 EM |
苦槠 | Castanopsis sclerophylla | 外生菌根 EM |
细叶青冈 | Cyclobalanopsis myrsinifolia | 外生菌根 EM |
石栎 | Lithocarpus glaber | 外生菌根 EM |
锥栗 | Castanea henryi | 外生菌根 EM |
无患子 | Sapindus saponaria | 丛枝菌根 AM |
枫香 | Liquidambar formosana | 丛枝菌根 AM |
复羽叶栾 | Koelreuteria bipinnata | 丛枝菌根 AM |
乌桕 | Triadica sebifera | 丛枝菌根 AM |
蓝果树 | Nyssa sinensis | 丛枝菌根 AM |
木荷 | Schima superba | 丛枝菌根 AM |
南酸枣 | Choerospondias axillaris | 丛枝菌根 AM |
Table 1 Basic characteristics of 14 tree species in this study
树种 Tree species | 菌根类型 Mycorrhiza type | |
---|---|---|
白栎 | Quercus fabri | 外生菌根 EM |
青冈 | Cyclobalanopsis glauca | 外生菌根 EM |
短柄枹栎 | Quercus serrata | 外生菌根 EM |
苦槠 | Castanopsis sclerophylla | 外生菌根 EM |
细叶青冈 | Cyclobalanopsis myrsinifolia | 外生菌根 EM |
石栎 | Lithocarpus glaber | 外生菌根 EM |
锥栗 | Castanea henryi | 外生菌根 EM |
无患子 | Sapindus saponaria | 丛枝菌根 AM |
枫香 | Liquidambar formosana | 丛枝菌根 AM |
复羽叶栾 | Koelreuteria bipinnata | 丛枝菌根 AM |
乌桕 | Triadica sebifera | 丛枝菌根 AM |
蓝果树 | Nyssa sinensis | 丛枝菌根 AM |
木荷 | Schima superba | 丛枝菌根 AM |
南酸枣 | Choerospondias axillaris | 丛枝菌根 AM |
叶功能性状及生长指标 Leaf functional traits and growth indices | 树种 Tree species | 菌根类型 Mycorrhizal type | 树种 × 菌根类型 Tree species × mycorrhizal type |
---|---|---|---|
比叶面积 Specific leaf area | 12.03*** | 113.47*** | 30.23*** |
叶干物质含量 Leaf dry matter content | 32.04*** | 155.43*** | 81.65*** |
树高生长速率 The growth rate of height | 21.21*** | 29.37*** | 26.77*** |
地径生长速率 The growth rate of basal diameter | 6.27*** | 32.78*** | 9.74*** |
细根生物量 Fine root biomass | 29.85*** | 3.78* | 28.75*** |
Table 2 Two-way ANOVA of the effects of tree species and mycorrhizal type on leaf functional traits and growth indices (Fvalue)
叶功能性状及生长指标 Leaf functional traits and growth indices | 树种 Tree species | 菌根类型 Mycorrhizal type | 树种 × 菌根类型 Tree species × mycorrhizal type |
---|---|---|---|
比叶面积 Specific leaf area | 12.03*** | 113.47*** | 30.23*** |
叶干物质含量 Leaf dry matter content | 32.04*** | 155.43*** | 81.65*** |
树高生长速率 The growth rate of height | 21.21*** | 29.37*** | 26.77*** |
地径生长速率 The growth rate of basal diameter | 6.27*** | 32.78*** | 9.74*** |
细根生物量 Fine root biomass | 29.85*** | 3.78* | 28.75*** |
Fig. 1 Variations in leaf functional traits with 14 tree species. Different lowercase letters represent significant differences between different tree species for leaf functional traits at P< 0.05.
Fig. 2 Variations in leaf and root functional traits, above- and belowground growth indices with different mycorrhizal tree species, different lowercase letters represent significant differences of leaf and root functional traits, above- and belowground growth indices between different tree species at P< 0.05.
因素类型 Factor type | 比根长 Specific root length | 平均直径 Average diameter |
---|---|---|
树种 Tree species | 10.80*** | 14.05*** |
根功能类型 Root functional type | 683.40*** | 1,462.96*** |
菌根类型 Mycorrhizal type | 2.06* | 3.37* |
树种 × 根功能类型 Tree species × root functional type | 15.12** | 79.10*** |
树种 × 菌根类型 Tree species × mycorrhizal type | 2.54** | 1.91* |
根功能类型 × 菌根类型 Root functional type × mycorrhizal type | 156.42*** | 293.21*** |
树种 × 根功能类型 × 菌根类型 Tree species × root functional type × mycorrhizal type | 64.47*** | 79.11*** |
Table 3 Multifactor analysis of variance of the effects of tree species, root functional type, mycorrhizal type on root functional traits (Fvalue)
因素类型 Factor type | 比根长 Specific root length | 平均直径 Average diameter |
---|---|---|
树种 Tree species | 10.80*** | 14.05*** |
根功能类型 Root functional type | 683.40*** | 1,462.96*** |
菌根类型 Mycorrhizal type | 2.06* | 3.37* |
树种 × 根功能类型 Tree species × root functional type | 15.12** | 79.10*** |
树种 × 菌根类型 Tree species × mycorrhizal type | 2.54** | 1.91* |
根功能类型 × 菌根类型 Root functional type × mycorrhizal type | 156.42*** | 293.21*** |
树种 × 根功能类型 × 菌根类型 Tree species × root functional type × mycorrhizal type | 64.47*** | 79.11*** |
Fig. 3 Variations in root traits with 14 tree species. Different lowercase letters represent significant differences of root traits between different tree species at P< 0.05. * Significant differences between different root function types of the same tree species atP< 0.05.
Fig. 4 Variations in above- and belowground growth indices of 14 tree species. Different lowercase letters represent significant differences of above- and belowground growth indices between different tree species at P< 0.05.
随机效应 Random effects | 因变量 Dependent variables | 截距 Intercept | 固定效应 Fixed effects | 条件决定 系数 Conditional R2 | 边际决定 系数 Marginal R2 | ||
---|---|---|---|---|---|---|---|
叶干物质含量 LDMC | 吸收根比根长 SRL of absorbing root | 运输根平均直径 Average diameter of transporting root | |||||
EM树种 Ectomycorrhizal tree | 树高生长速率 Growth rate of height | ?0.23 | ?0.11 | - | 0.40 | 0.69 | 0.67 |
地径生长速率 Growth rate of basal diameter | 0.29 | - | - | 0.30 | 0.97 | 0.96 | |
AM树种 Arbuscular mycorrhizal tree | 细根生物量 Fine root biomass | ?0.12 | - | ?0.21 | - | 0.93 | 0.35 |
树高生长速率 Growth rate of height | 0.22 | ?0.21 | 0.09 | - | 0.65 | 0.25 | |
地径生长速率 Growth rate of basal diameter | 0.56 | ?0.13 | 0.07 | - | 0.44 | 0.24 | |
细根生物量 Fine root biomass | ?0.21 | ?0.18 | 0.94 | 0.34 |
Table 4 Mixed linear models of the relationship between leaf, root functional traits and growth indices of different mycorrhizal trees
随机效应 Random effects | 因变量 Dependent variables | 截距 Intercept | 固定效应 Fixed effects | 条件决定 系数 Conditional R2 | 边际决定 系数 Marginal R2 | ||
---|---|---|---|---|---|---|---|
叶干物质含量 LDMC | 吸收根比根长 SRL of absorbing root | 运输根平均直径 Average diameter of transporting root | |||||
EM树种 Ectomycorrhizal tree | 树高生长速率 Growth rate of height | ?0.23 | ?0.11 | - | 0.40 | 0.69 | 0.67 |
地径生长速率 Growth rate of basal diameter | 0.29 | - | - | 0.30 | 0.97 | 0.96 | |
AM树种 Arbuscular mycorrhizal tree | 细根生物量 Fine root biomass | ?0.12 | - | ?0.21 | - | 0.93 | 0.35 |
树高生长速率 Growth rate of height | 0.22 | ?0.21 | 0.09 | - | 0.65 | 0.25 | |
地径生长速率 Growth rate of basal diameter | 0.56 | ?0.13 | 0.07 | - | 0.44 | 0.24 | |
细根生物量 Fine root biomass | ?0.21 | ?0.18 | 0.94 | 0.34 |
[1] |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- versus interspecific variability in plant traits. Functional Ecology, 24,1192-1201.
DOI URL |
[2] |
Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24,419-428.
DOI URL |
[3] | Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences, USA, 116,23163-23168. |
[4] |
Bu WS, Schmid B, Liu XJ, Li Y, Hrdtle W, Von Oheimb G, Liang Y, Sun ZK, Huang YY, Bruelheide H, Ma KP (2017) Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology, 10,158-169.
DOI URL |
[5] |
Comas LH, Callahan HS, Midford PE (2014) Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies. Ecology and Evolution, 4,2979-2990.
DOI URL |
[6] |
Cornelissen J, Aerts R, Cerabolini B, Werger M, Heijden M (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129,611-619.
DOI PMID |
[7] |
De la Riva EG, Maranon T, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Villar R (2018) Root traits across environmental gradients in Mediterranean woody communities: Are they aligned along the root economics spectrum?. Plant and Soil, 424,35-48.
DOI URL |
[8] |
Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15,295-304.
DOI URL |
[9] | Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32,992-1003. |
[10] |
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant and Soil, 366,1-27.
DOI URL |
[11] |
Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Functional Ecology, 19,369-377.
DOI URL |
[12] |
Fordyce JA (2006) The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. The Journal of Experimental Biology, 209,2377-2383.
DOI URL |
[13] | Geng Y, Ma WH, Wang L, Baumann F, Kuhn P, Scholten T, He JS (2017) Linking above- and belowground traits to soil and climate variables: An integrated database on China's grassland species. Ecology, 98, 1471. |
[14] |
Heijden M, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 157,569-578.
DOI URL |
[15] |
Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99,954-963.
DOI URL |
[16] |
Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. Journal of Ecology, 98,1134-1140.
DOI URL |
[17] |
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333,880-882.
DOI URL |
[18] |
Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, Bodegom PM (2012) Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21,224-235.
DOI URL |
[19] |
Laforest-Lapointe I, Martínez-Vilalta J, Retana J (2014) Intraspecific variability in functional traits matters: Case study of Scots pine. Oecologia, 175,1337-1348.
DOI PMID |
[20] | Liu NN, Tian QY, Zhang WH (2014) Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol . Chinese Journal of Plant Ecology (Chinese version), 38,905-915. (in Chinese with English abstract) |
刘娜娜, 田秋英, 张文浩 (2014) 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较. 植物生态学报, 38,905-915.]
DOI |
|
[21] |
Liu XJ, Ma KP (2015) Plant functional traits—Concepts, applications and future directions. Scientia Sinica Vitae, 45,325-339. (in Chinese with English abstract)
DOI URL |
刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45,325-339.] | |
[22] | Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21,390-391. (in Chinese) |
马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21,390-391.] | |
[23] |
Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13,838-848.
DOI PMID |
[24] |
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models . Methods in Ecology and Evolution, 4,133-142.
DOI URL |
[25] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine north American trees. Ecological Monographs, 72,293-309.
DOI URL |
[26] | Prinzing A, Durka W, Klotz S, Brand R (2001) The niche of higher plants: Evidence for phylogenetic conservatism. Proceedings of the Royal Society B-Biological Sciences, 268,2383-2389. |
[27] |
Reich PB (2014) The world-wide ‘fast-slow' plant economics spectrum: A traits manifesto. Journal of Ecology, 102,275-301.
DOI URL |
[28] | Segnitz RM, Russo SE, Davies SJ, Peay KG (2020) Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology, 101,e03083. |
[29] | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008) Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology (Chinese version), 32,1217-1226. (in Chinese with English abstract) |
师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008) 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32,1217-1226.]
DOI |
|
[30] |
Shipley B (2002) Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecology, 16,682-689.
DOI URL |
[31] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016) Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24,262-270. (in Chinese with English abstract)
DOI URL |
唐青青, 黄永涛, 丁易, 臧润国 (2016) 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24,262-270.]
DOI |
|
[32] |
Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: Life in the real world. Mycologist, 19,102-112.
DOI URL |
[33] |
Turrini A, Bedini A, Loor MB, Santini G, Sbrana C, Giovannetti M, Avio L (2018) Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Biology and Fertility of Soils, 54,203-217.
DOI URL |
[34] |
Twieg BD, Durall DM, Simard SW (2010) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist, 176,437-447.
DOI URL |
[35] |
Wells CE, Eissenstat DM (2002) Beyond the roots of young seedlings: The influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21,324-334.
DOI URL |
[36] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33,125-159.
DOI URL |
[37] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99,1003-1015.
DOI URL |
[38] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytologist, 166,485-496.
PMID |
[39] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428,821-827.
PMID |
[40] |
Zi HB, Chen Y, Hu L, Wang CT (2018) Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 42,38-49. (in Chinese with English abstract)
DOI URL |
字洪标, 陈焱, 胡雷, 王长庭 (2018) 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 42,38-49.]
DOI |
[1] | Fei Luo, Ya Wang, Qinggui Zeng, Riming Yan, Zhibin Zhang, Du Zhu. Diversity and plant growth promoting activities of the cultivable rhizobacteria of Dongxiang wild rice (Oryza rufipogon) [J]. Biodiv Sci, 2011, 19(4): 476-484. |
[2] | Liu Lin, Sun Lei, Zhang Ruiying, Yao Na, Li Lubin. Diversity of IAA-producing endophytic bacteria isolated from the roots of Cymbidium goeringii [J]. Biodiv Sci, 2010, 18(2): 182-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn