Biodiv Sci ›› 2010, Vol. 18 ›› Issue (3): 300-311. DOI: 10.3724/SP.J.1003.2010.300
• Special Issue • Previous Articles Next Articles
Rui Xue1,2, Shuxia Zheng1, Yongfei Bai1,*()
Received:
2009-10-19
Accepted:
2010-04-30
Online:
2010-05-20
Published:
2012-02-08
Contact:
Yongfei Bai
Rui Xue, Shuxia Zheng, Yongfei Bai. Impacts of grazing intensity and management regimes on aboveground primary productivity and compensatory growth of grassland ecosystems in Inner Mongolia[J]. Biodiv Sci, 2010, 18(3): 300-311.
SR | RSR1 | RSR2 | |
---|---|---|---|
DM1 | 方法 a: SR-DM1 | 方法 g: RSR1-DM1 | 方法 k: RSR2-DM1 |
DM2 | 方法 b: SR-DM2 | 方法 h: RSR1-DM2 | 方法 l: RSR2-DM2 |
RDM1 | 方法 c: SR-RDM1 | 方法 i: RSR1-RDM1 | |
RDM2 | 方法 d: SR-RDM2 | 方法 j: RSR1-RDM2 | |
RDM3 | 方法 e: SR-RDM3 | 方法 m: RSR2-RDM3 | |
RDM4 | 方法 f : SR-RDM4 | 方法 n: RSR2-RDM4 |
Table 1 Match methods for the relationship between stocking rate (SR), relative stocking rate (RSR), aboveground net productivity (DM) and relative aboveground net productivity (RDM)
SR | RSR1 | RSR2 | |
---|---|---|---|
DM1 | 方法 a: SR-DM1 | 方法 g: RSR1-DM1 | 方法 k: RSR2-DM1 |
DM2 | 方法 b: SR-DM2 | 方法 h: RSR1-DM2 | 方法 l: RSR2-DM2 |
RDM1 | 方法 c: SR-RDM1 | 方法 i: RSR1-RDM1 | |
RDM2 | 方法 d: SR-RDM2 | 方法 j: RSR1-RDM2 | |
RDM3 | 方法 e: SR-RDM3 | 方法 m: RSR2-RDM3 | |
RDM4 | 方法 f : SR-RDM4 | 方法 n: RSR2-RDM4 |
因素 Factor | 自由度 df | 均方值 Mean square | F | P |
---|---|---|---|---|
载畜率 Stocking rate (SR) | 6 | 22445.970 | 11.412 | 0.0000 |
放牧制度 Grazing system (GS) | 1 | 1683.411 | 0.856 | 0.3582 |
地形 Topographic position (TP) | 1 | 248.6485 | 0.126 | 0.7233 |
载畜率×放牧制度 SR × GS | 6 | 2022.704 | 1.028 | 0.4148 |
载畜率×地形 SR × TP | 6 | 939.0434 | 0.477 | 0.8228 |
放牧制度×地形 GS × TP | 1 | 25405.280 | 12.917 | 0.0006 |
载畜率×放牧制度×地形 SR×GS×TP | 6 | 2472.729 | 1.257 | 0.2891 |
Table 2 Effects of stocking rate, grazing system and topography on the remained aboveground biomass of Leymus chinensis community
因素 Factor | 自由度 df | 均方值 Mean square | F | P |
---|---|---|---|---|
载畜率 Stocking rate (SR) | 6 | 22445.970 | 11.412 | 0.0000 |
放牧制度 Grazing system (GS) | 1 | 1683.411 | 0.856 | 0.3582 |
地形 Topographic position (TP) | 1 | 248.6485 | 0.126 | 0.7233 |
载畜率×放牧制度 SR × GS | 6 | 2022.704 | 1.028 | 0.4148 |
载畜率×地形 SR × TP | 6 | 939.0434 | 0.477 | 0.8228 |
放牧制度×地形 GS × TP | 1 | 25405.280 | 12.917 | 0.0006 |
载畜率×放牧制度×地形 SR×GS×TP | 6 | 2472.729 | 1.257 | 0.2891 |
Fig. 1 Remained aboveground biomass of Leymus chinensis community at different stocking rates in traditional and mixed grazing systems. Different lowercase letters denote significant difference among different stocking rates at P< 0.05. TGF, Traditional grazing flat system; TGS, Traditional grazing slope system; MGF, Mixed grazing flat system; MGS, Mixed grazing slope system.
Fig. 2 Aboveground net primary productivity (ANPP) of Leymus chinensis community in traditional grazing, traditional hay and mixed grazing systems at the stocking rate of 9.0 sheep/ha in (A) flat and (B) slope blocks. Different lowercase letters denote significant difference among different grassland management types at P< 0.05. TG, Traditional grazing system; TH, Traditional haymaking system; MG, Mixed grazing system.
Fig. 3 Aboveground net productivity (A: Method a, b) and relative aboveground net productivity (B: Method c, d; C: Method e, f) of Leymus chinensis community at different stocking rates in traditional and mixed grazing systems. The abbreviations denote the same grazing systems as Fig. 1.
方法 Method | 载畜率 Stocking rate | 传统放牧平地系统TGF | 传统放牧坡地系统TGS | 混合利用平地系统MGF | 混合利用坡地系统MGS |
---|---|---|---|---|---|
Method b | 0 | 151.05a | 153.54a | 171.77a | 188.63ab |
1.5 | 212.55a | 138.19ab | 95.93bcd | 241.38a | |
3.0 | 178.95a | 137.86ab | 112.26b | 128.2b | |
4.5 | 145.5a | 151.55ab | 108.98bc | 109.21b | |
6.0 | 163.65a | 122.02ab | 104.74bcd | 155.52b | |
7.5 | 130.03a | 128.27ab | 51.14d | 121.43b | |
9.0 | 118.05a | 78.67b | 56.69cd | 142.33b | |
Method d | 0 | 1ab | 1a | 1a | 1ab |
1.5 | 1.14a | 0.89a | 0.67ab | 1.18a | |
3.0 | 0.53b | 0.92a | 0.61bc | 0.68bc | |
4.5 | 0.66ab | 0.8a | 0.4bc | 0.481c | |
6.0 | 0.69ab | 0.65a | 0.54bc | 0.51c | |
7.5 | 0.57ab | 0.62a | 0.31c | 0.77bc | |
9.0 | 0.57ab | 0.51a | 0.31c | 0.64bc | |
Method f | 0 | 1a | 1ab | 1a | 1b |
1.5 | 1.18a | 1.02ab | 0.82a | 1.59a | |
3.0 | 1.39a | 1.06ab | 0.78a | 0.83bc | |
4.5 | 0.82a | 1.34b | 0.79a | 0.74bc | |
6.0 | 0.7a | 1.15ab | 0.76a | 0.64c | |
7.5 | 0.98a | 1.1ab | 0.31b | 0.95b | |
9.0 | 1.01a | 0.48a | 0.22b | 0.56c |
Table 3 Aboveground net productivity (using Method b) and relative aboveground net productivity (using Method d and f) of Leymus chinensis community at different stocking rates in traditional and mixed grazing systems
方法 Method | 载畜率 Stocking rate | 传统放牧平地系统TGF | 传统放牧坡地系统TGS | 混合利用平地系统MGF | 混合利用坡地系统MGS |
---|---|---|---|---|---|
Method b | 0 | 151.05a | 153.54a | 171.77a | 188.63ab |
1.5 | 212.55a | 138.19ab | 95.93bcd | 241.38a | |
3.0 | 178.95a | 137.86ab | 112.26b | 128.2b | |
4.5 | 145.5a | 151.55ab | 108.98bc | 109.21b | |
6.0 | 163.65a | 122.02ab | 104.74bcd | 155.52b | |
7.5 | 130.03a | 128.27ab | 51.14d | 121.43b | |
9.0 | 118.05a | 78.67b | 56.69cd | 142.33b | |
Method d | 0 | 1ab | 1a | 1a | 1ab |
1.5 | 1.14a | 0.89a | 0.67ab | 1.18a | |
3.0 | 0.53b | 0.92a | 0.61bc | 0.68bc | |
4.5 | 0.66ab | 0.8a | 0.4bc | 0.481c | |
6.0 | 0.69ab | 0.65a | 0.54bc | 0.51c | |
7.5 | 0.57ab | 0.62a | 0.31c | 0.77bc | |
9.0 | 0.57ab | 0.51a | 0.31c | 0.64bc | |
Method f | 0 | 1a | 1ab | 1a | 1b |
1.5 | 1.18a | 1.02ab | 0.82a | 1.59a | |
3.0 | 1.39a | 1.06ab | 0.78a | 0.83bc | |
4.5 | 0.82a | 1.34b | 0.79a | 0.74bc | |
6.0 | 0.7a | 1.15ab | 0.76a | 0.64c | |
7.5 | 0.98a | 1.1ab | 0.31b | 0.95b | |
9.0 | 1.01a | 0.48a | 0.22b | 0.56c |
Fig. 4 Aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method h). The abbreviations denote the same grazing systems as Fig. 1.
Fig.5 Relative aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method j). The abbreviations denote the same grazing systems as Fig. 1.
Fig. 6 Aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method l). The abbreviations denote the same grazing systems as Fig. 1.
Fig. 7 Relative aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method n). The abbreviations denote the same grazing systems as Fig. 1.
[1] | An Y (安渊), Li B (李博), Yang C (杨持), Xu Z (徐柱), Yan ZJ (阎志坚), Han GD (韩国栋) (2000) Research on the grassland production and its sustainable use on Neimongol steppe dominated by Stipa grandis III―Research on plant compensatory growth. Acta Scientiarum Naturalium Universitatis NeiMongol (内蒙古大学学报), 31, 608-612. (in Chinese with English abstract) |
[2] | Augustine DJ, McNaughton SJ (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems, 9, 1242-1256. |
[3] | Bai HS (白哈斯) (2007) Influence of different stocking rates on herbage regeneration and net primary productivity in lowland meadow. Arid Zone Research (干旱区研究), 24, 826-829. (in Chinese with English abstract) |
[4] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[5] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034. |
[6] | Bossuyt B, De Fre B, Hoffmann M (2005) Abundance and flowering success patterns in a short-term grazed grassland: early evidence of facilitation. Journal of Ecology, 93, 1104-1114. |
[7] | Chen ZH (陈佐忠), Wang SP (汪诗平) (2000) Steppe Ecosystems in China (中国典型草原生态系统). Science Press, Beijing. (in Chinese) |
[8] | Chen ZZ (陈佐忠) (1988) Topgraphy and climate of Xilin River basin. In: Research on Grassland Ecosystem, No. 3, (草原生态系统研究) (ed. Inner Mongolia Grassland Ecosystem Research Station of Chinese Academy of Sciences (中国科学院内蒙古草原生态系统定位站)), pp.13-22. Science Press, Beijing. (in Chinese) |
[9] | De Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology, 79, 2242-2252. |
[10] | del Pozo A, Ovalle C, Casado MA, Acosta B, de Miguel JM (2006) Effects of grazing intensity in grasslands of the Espinal of central Chile. Journal of Vegetation Science, 17, 791-798. |
[11] | Esmaeili MM, Bonis A, Bouzille JB, Mony C, Benot ML (2009) Consequence of ramet defoliation on plant clonal propagation and biomass allocation: example of five rhizomatous grassland species. Flora, 204, 25-33. |
[12] |
Garibaldi LA, Semmartin M, Chaneton EJ (2007) Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia, 151, 650-662.
DOI URL PMID |
[13] | Han GD (韩国栋), Li B (李博), Wei ZJ (卫智军), Yang J (杨静), Lü X (吕雄), Li H (李宏) (1999) Plant compensatory growth in the grazing system of Stipa breviflora desert steppe. I. Plant net productivity. Acta Agrestia Sinica (草地学报), 7, 1-7. (in Chinese with English abstract) |
[14] |
Hayashi M, Fujita N, Yamauchi A (2007) Theory of grazing optimization in which herbivory improves photosynthetic ability. Journal of Theoretical Biology, 248, 367-376.
DOI URL PMID |
[15] | Ilmarinen K, Mikola J, Nissinen K, Vestberg M (2009) Role of soil organisms in the maintenance of species-rich seminatural grasslands through mowing. Restoration Ecology, 17, 78-88. |
[16] | Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. Journal of Ecology, 90, 360-370. |
[17] | Kurz I, O'Reilly CD, Tunney H (2006) Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland. Agriculture Ecosystems & Environment, 113, 378-390. |
[18] | Leriche H, Le Roux X, Desnoyers F, Benest D, Simioni G, Abbadie L (2003) Grass response to clipping in an African savanna: testing the grazing optimization hypothesis. Ecological Applications 13, 1346-1354. |
[19] | Li JH (李金花), Li ZQ (李镇清), Ren JZ (任继周) (2002) The effects of grazing on grassland plants. Acta Prataculturae Sinica (草业学报), 11(1),4-11. (in Chinese with English abstract) |
[20] | Li YH (李永宏) (1988) The divergence and convergence of Leymus chinensis steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学报), 12, 189-196. (in Chinese with English abstract) |
[21] | McNaughton SJ (1979) Grazing as optimization process: grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703. |
[22] | Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366. |
[23] | Schonbach P, Wan H, Schiborra A, Gierus M, Bai Y, Muller K, Glindemann T, Wang C, Susenbeth A, Taube F (2009) Short-term management and stocking rate effects of grazing sheep on herbage quality and productivity of Inner Mongolia steppe. Crop & Pasture Science, 60, 963-974. |
[24] | Semmartin M, Garibaldi LA, Chaneton EJ (2008) Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 303, 177-189. |
[25] | Sternberg M, Gutman M, Perevolotsky A, Kigel J (2003) Effects of grazing on soil seed bank dynamics: an approach with functional groups. Journal of Vegetation Science, 14, 375-386. |
[26] | Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[27] | Wang RZ (王仁忠) (1998) A study on the effects of grazing and mowing disturbances in Leymus chinensis grasslands in Songnen Plain. Acta Ecologica Sinica (生态学报), 18, 210-213. (in Chinese with English abstract) |
[28] | Wang SP (汪诗平), Li YH (李永宏) (1999) Degradation mechanism of typical grassland in Inner Mongolia. Chinese Journal of Applied Ecology (应用生态学报), 10, 437-441. (in Chinese with English abstract) |
[29] | Wang SP (汪诗平), Li YH (李永宏), Wang YF(王艳芬), Han YH (韩苑鸿) (1998) The succession of Artemisia frigid rangeland and multivariation analysis under different stocking rates in Inner Mongolia. Acta Agrestia Sinica (草地学报), 6, 299-305. (in Chinese with English abstract) |
[30] | Wang W (王炜), Liu ZL (刘钟龄), Hao DY (郝敦元), Liang CZ (梁存柱) (1996a) Research on the restoring succession of the degenerated grassland in Inner Mongolia. I. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica (植物生态学报), 20, 449-459. (in Chinese with English abstract) |
[31] | Wang W (王炜), Liu ZL (刘钟龄), Hao DY (郝敦元), Liang CZ (梁存柱) (1996b) Research on the restoring succession of the degenerated grassland in Inner Mongolia.Ⅱ. Analysis of the restoring succession. Acta Phytoecologica Sinica (植物生态学报), 20, 460-471. (in Chinese with English abstract) |
[32] | Wang YF (王艳芬), Wang SP (汪诗平) (1999) Influence of different stocking rates on aboveground present biomass and herbage quality in Inner Mongolia steppe. Acta Prataculturae Sinica (草业学报), 8(1),15-20. (in Chinese with English abstract) |
[33] | Wang SP (汪诗平), Wang YF (王艳芬) (2001) Study on over-compensation growth of Cleistogenes squarrosa population in Inner Mongolia steppe. Acta Botanica Sinica (植物学报), 43, 413-418. (in Chinese with English abstract) |
[34] | Xie YZ, Wittig R (2004) The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (Autonomous Region of Ningxia). Acta Oecologica, 25, 197-204. |
[35] | Xing Q (邢旗), Shuang Q (双全), Jin Y(金玉), Song M (松梅) (2004) Studies on matter dynamics and plant compensatory growth under different grazing systems on meadow steppe. Grassland of China (中国草地), 26(5),26-31. (in Chinese with English abstract) |
[36] | Zhou BR (周秉荣), Ma ZT (马宗泰), Li HM (李红梅), He XL (贺晓龙) (2007) Effects of cutting on forage compensatory growth in alpine meadow. Pratacultural Science (草业科学), 24(4),79-83. (in Chinese with English abstract) |
[37] | Zhu GL (朱桂林), Wei ZJ (卫智军), Yang J (杨静), Yang SM (杨尚明) (2002) The effects of grazing systems on the aboveground biomass of the plants in Stipa breviflora community. Grassland of China (中国草地), 24(3),15-19. (in Chinese with English abstract) |
[1] | Qiujie Zhao, Huijun Guo, Guangtao Meng, Mingchuan Zhong, Jun Yin, Zhuocheng Liu, Pinrong Li, Li Chen, Yi Tao, Sheng Qiu, Hong Wang, Yanhui Zhao. Effects of grazing on bees and suggestions for its ecological restoration [J]. Biodiv Sci, 2023, 31(5): 23037-. |
[2] | Yiqing Wang, Ziyu Ma, Gang Wang, Yanlin Liu, Dazhao Song, Beibei Liu, Lu Li, Xinguo Fan, Qiaowen Huang, Sheng Li. Spatiotemporal patterns of cattle depredation by the North Chinese leopard in Taihang Mountains and its management strategy: A case study in Heshun, Shanxi Province [J]. Biodiv Sci, 2022, 30(9): 21510-. |
[3] | Yuanfang Hu, Binqiang Li, Dan Liang, Xingquan Li, Lanxiang Liu, Jiawei Yang, Xu Luo. Effect of anthropogenic disturbance on Lady Amherst’s pheasant (Chrysolophus amherstiae) activity [J]. Biodiv Sci, 2022, 30(8): 21484-. |
[4] | Yu Zhang, Luyu Wang, Changlin Xiang, Meichun Duan, Zhisheng Zhang. Effects of different grazing intensities on spider diversity in Saihanwula Grassland [J]. Biodiv Sci, 2021, 29(4): 467-476. |
[5] | Wang Xinting, Chai Jing, Jiang Chao, Tai Yang, Chi Yanyan, Zhang Weihua, Liu Fang, Li Suying. Population spatial pattern of Stipa grandis and its response to long-term overgrazing [J]. Biodiv Sci, 2020, 28(2): 128-134. |
[6] | Xiaoyun Shi,Xiaogang Shi,Qiang Hu,Tianpei Guan,Qiang Fu,Jian Zhang,Meng Yao,Sheng Li. Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan [J]. Biodiv Sci, 2019, 27(9): 951-959. |
[7] | Chen Xing, Zhao Lianjun, Hu Xixi, Luo Chunping, Liang Chunping, Jiang Shiwei, Liang Lei, Zheng Weichao, Guan Tianpei. Impact of livestock terrain utilization patterns on wildlife: A case study of Wanglang National Nature Reserve [J]. Biodiv Sci, 2019, 27(6): 630-637. |
[8] | Zhonghua Zhang, Huakun Zhou, Xinquan Zhao, Buqing Yao, Zhen Ma, Quanmin Dong, Zhenhua Zhang, Wenying Wang, Yuanwu Yang. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2018, 26(2): 111-129. |
[9] | Guohong Wang, Xiaoping Wang, Weikang Zhang, He Li, Lianhai Du, Jigui Wu. A functional analysis of resistance of plant communities to disturbance: a case study of Beijing nature reserves [J]. Biodiv Sci, 2013, 21(2): 153-162. |
[10] | XIANG Hua-Jun, AN Shu-Qing, WANG Zhong-Sheng, ZHENG Jian-Wei, LENG-Xin, ZHUO Yuan-Wu. Plant diversity and the mechanism for its maintenance in tropical forests [J]. Biodiv Sci, 2004, 12(2): 290-300. |
[11] | KANG LE, ZHANG MINGZHAO. Grasshopper Species-Area Relationship on Ungrazed and Overgrazed Grasslands [J]. Biodiv Sci, 1996, 04(Suppl.): 15-22. |
[12] | KANG LE. Influence of Livestock Grazing on Grasshopper (Orthoptera: Acrididae) Diversity in the Inner Mongolian Steppes [J]. Biodiv Sci, 1994, 02(Suppl.): 9-17. |
[13] | LI YONGHONG. Biodiversity Features of the Main Steppe Communities in Inner Mongolia and their Relations to Climate and Grazing [J]. Biodiv Sci, 1993, 01(增刊): 77-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn