生物多样性 ›› 2023, Vol. 31 ›› Issue (1): 22362. DOI: 10.17520/biods.2022362
• 中国野生脊椎动物鸣声监测与生物声学研究专题 • 上一篇 下一篇
赵琳1, 程建斌2, 曾文2, 李果2, 龚海兵2, 张贵权2,*(), 刘定震1,*()
收稿日期:
2022-06-29
接受日期:
2023-01-16
出版日期:
2023-01-20
发布日期:
2023-01-18
通讯作者:
*张贵权, E-mail: zguiquan@126.com;刘定震 dzliu@bnu.edu.cn
基金资助:
Lin Zhao1, Jianbin Cheng2, Wen Zeng2, Guo Li2, Haibing Gong2, Guiquan Zhang2,*(), Dingzhen Liu1,*()
Received:
2022-06-29
Accepted:
2023-01-16
Online:
2023-01-20
Published:
2023-01-18
Contact:
*Guiquan Zhang, E-mail: zguiquan@126.com;Dingzhen Liu dzliu@bnu.edu.cn
摘要:
研究表明, 群居哺乳动物具备通过叫声进行母幼识别的机制, 而有关独栖动物的母幼识别机制鲜有研究。大熊猫(Ailuropoda melanoleuca)是典型的独栖动物, 原始森林是保持野生大熊猫种群数量可持续发展的必要条件, 其中的大型古树提供的育幼巢穴对大熊猫幼仔的存活至关重要。但是, 近年来大型古树因受人为干扰而急剧减少, 致使野生成年雌性大熊猫活动领域的重叠增大, 在育幼期产仔大熊猫母兽对育幼巢穴的利用产生了竞争。大熊猫幼仔的体重约为成年大熊猫的0.1%, 幼仔需要母兽高度关怀才能存活和成长。叫声是0‒45日龄大熊猫幼仔向其母兽传递生理需求或所处状态的主要方式。然而, 母兽能否根据幼仔的叫声识别自己的后代, 目前尚无定论。本研究以274条大熊猫幼仔的尖叫声为例, 首先对其进行个体独特性分析, 然后通过叫声回放以及母兽对所回放的两种叫声的行为反应, 验证大熊猫母兽能否辨别出其亲生幼仔。结果发现, 尖叫声的17个声学参数中有14个具有潜在的个体判别能力(PIC > 1); 进一步的判别分析结果显示, 基于这17个声学参数, 78.5%的尖叫声被正确分配到对应的幼仔; 叫声回放实验的结果显示, 母兽在行为上更倾向其亲生幼仔的尖叫声(P = 0.008)。我们的结果表明尖叫声可以编码大熊猫幼仔的身份信息, 且圈养大熊猫母兽通过该叫声能辨别亲生和非亲生后代。本研究结果为大熊猫的迁地保护和圈养大熊猫繁育工作提供了理论依据, 对人工繁育大熊猫幼仔存活率具有重要意义。
赵琳, 程建斌, 曾文, 李果, 龚海兵, 张贵权, 刘定震 (2023) 大熊猫母兽可根据幼仔的尖叫声辨别自己的后代. 生物多样性, 31, 22362. DOI: 10.17520/biods.2022362.
Lin Zhao, Jianbin Cheng, Wen Zeng, Guo Li, Haibing Gong, Guiquan Zhang, Dingzhen Liu (2023) Giant panda mothers can discriminate own neonates from others based on their squalls. Biodiversity Science, 31, 22362. DOI: 10.17520/biods.2022362.
幼仔编号 Neonates ID | 母兽呼名 Name of mother | 出生日期 Date of birth | 性别 Gender |
---|---|---|---|
Cuba | 汪佳 Wangjia | 2020/7/31 | 雄 Male |
Cubf | 小白兔 Xiaobaitu | 2020/8/19 | 雄 Male |
Cubg | 小白兔 Xiaobaitu | 2020/8/19 | 雌 Female |
Cubj | 绅宾 Shenbin | 2020/8/27 | 雌 Female |
Cubp | 华美 Huamei | 2019/10/17 | 雌 Female |
Cubs | 知春 Zhichun | 2019/10/20 | 雄 Male |
表1 用于采集尖叫声的幼仔的个体信息
Table 1 Individual information of cubs used in collecting squall samples
幼仔编号 Neonates ID | 母兽呼名 Name of mother | 出生日期 Date of birth | 性别 Gender |
---|---|---|---|
Cuba | 汪佳 Wangjia | 2020/7/31 | 雄 Male |
Cubf | 小白兔 Xiaobaitu | 2020/8/19 | 雄 Male |
Cubg | 小白兔 Xiaobaitu | 2020/8/19 | 雌 Female |
Cubj | 绅宾 Shenbin | 2020/8/27 | 雌 Female |
Cubp | 华美 Huamei | 2019/10/17 | 雌 Female |
Cubs | 知春 Zhichun | 2019/10/20 | 雄 Male |
母兽呼名 Name of mother | 谱系号 Studbook number | 出生日期 Date of birth | 产幼仔时间 Date of postpartum | 健康状况 Health state |
---|---|---|---|---|
汪佳 Wangjia | 702 | 2007/9/1 | 2020/7/30 | 良好 In good health |
娜娜 Nana | 568 | 2003/8/20 | 2020/8/9 | 良好 In good health |
姚蔓 Yaoman | 759 | 2009/8/27 | 2020/8/10 | 良好 In good health |
小白兔 Xiaobaitu | 784 | 2010/8/13 | 2020/8/19 | 贫血 Anemic |
绅宾 Shenbin | 755 | 2009/8/20 | 2020/8/27 | 良好 In good health |
汉媛 Hanyuan | 708 | 2008/7/21 | 2020/8/27 | 良好 In good health |
表2 参与回放实验的大熊猫母兽的个体信息
Table 2 Individual information of giant panda mothers used in playback experiments
母兽呼名 Name of mother | 谱系号 Studbook number | 出生日期 Date of birth | 产幼仔时间 Date of postpartum | 健康状况 Health state |
---|---|---|---|---|
汪佳 Wangjia | 702 | 2007/9/1 | 2020/7/30 | 良好 In good health |
娜娜 Nana | 568 | 2003/8/20 | 2020/8/9 | 良好 In good health |
姚蔓 Yaoman | 759 | 2009/8/27 | 2020/8/10 | 良好 In good health |
小白兔 Xiaobaitu | 784 | 2010/8/13 | 2020/8/19 | 贫血 Anemic |
绅宾 Shenbin | 755 | 2009/8/20 | 2020/8/27 | 良好 In good health |
汉媛 Hanyuan | 708 | 2008/7/21 | 2020/8/27 | 良好 In good health |
声学参数 Acoustic parameters | 幼仔a Cuba | 幼仔f Cubf | 幼仔g Cubg | 幼仔j Cubj | 幼仔p Cubp | 幼仔s Cubs |
---|---|---|---|---|---|---|
时长 Duration (D, s) | 0.59 ± 0.16 | 0.45 ± 0.10 | 0.33 ± 0.10 | 0.40 ± 0.11 | 0.38 ± 0.10 | 0.47 ± 0.13 |
基频 Fundamental frequency (f0, kHz) | 1.72 ± 0.70 | 2.39 ± 0.70 | 2.30 ± 1.04 | 1.03 ± 0.53 | 2.79 ± 0.84 | 1.93 ± 0.62 |
基频的最小值 Minimum fundamental frequency (f0min, kHz) | 0.37 ± 0.10 | 0.73 ± 0.40 | 0.44 ± 0.21 | 0.32 ± 0.16 | 0.80 ± 0.73 | 0.56 ± 0.25 |
基频的最大值 Maximum fundamental frequency (f0max, kHz) | 3.64 ± 2.36 | 3.91 ± 1.15 | 4.46 ± 2.00 | 2.13 ± 1.35 | 4.11 ± 0.70 | 4.06 ± 1.22 |
基频的范围 Range of fundamental frequency (Rangef0, kHz) | 3.26 ± 2.36 | 3.18 ± 1.25 | 4.01 ± 1.98 | 1.81 ± 1.33 | 3.92 ± 1.74 | 3.38 ± 0.99 |
主频 Dominant frequency (DF, kHz) | 2.95 ± 1.20 | 2.71 ± 0.81 | 3.35 ± 1.25 | 1.67 ± 0.81 | 3.20 ± 0.68 | 3.69 ± 0.81 |
主频的最大值 Maximum dominant frequency (DFmax, kHz) | 6.12 ± 2.06 | 4.57 ± 1.80 | 6.28 ± 2.65 | 3.62 ± 1.71 | 5.47 ± 2.12 | 6.47 ± 2.33 |
最小频率 Minimum frequency (MINF, kHz) | 1.58 ± 0.50 | 1.12 ± 1.14 | 1.66 ± 0.94 | 1.08 ± 0.36 | 2.24 ± 0.67 | 2.10 ± 0.74 |
最小频率的最小值 Minimum value of minimum frequency (MINFmin, kHz) | 0.61 ± 0.38 | 0.19 ± 0.65 | 0.62 ± 0.70 | 0.42 ± 0.26 | 1.21 ± 3.00 | 1.06 ± 0.48 |
最小频率的最大值 Maximum value of minimum frequency (MINFmax, kHz) | 3.28 ± 1.42 | 2.36 ± 1.59 | 3.33 ± 1.49 | 1.79 ± 0.52 | 3.80 ± 0.82 | 3.76 ± 1.43 |
最大频率 Maximum frequency (MAXF, kHz) | 8.80 ± 3.69 | 6.19 ± 2.06 | 10.22 ± 4.03 | 4.00 ± 2.84 | 7.81 ± 1.25 | 8.27 ± 2.28 |
最大频率的最小值 Minimum value of maximum frequency (MAXFmin, kHz) | 1.90 ± 1.04 | 1.46 ± 1.80 | 2.19 ± 1.79 | 0.79 ± 0.65 | 3.66 ± 0.80 | 3.16 ± 1.05 |
最大频率的最大值 Maximum value of maximum frequency (MAXFmax, kHz) | 17.27 ± 3.54 | 12.51 ± 4.03 | 15.62 ± 4.27 | 7.08 ± 3.59 | 12.27 ± 2.00 | 12.78 ± 3.20 |
带宽 Bandwidth (BW, kHz) | 16.07 ± 3.69 | 11.77 ± 4.01 | 14.36 ± 4.16 | 6.11 ± 3.67 | 10.75 ± 1.77 | 11.27 ± 3.30 |
维纳熵 Wiener entropy (E) | 0.50 ± 0.10 | 0.47 ± 0.10 | 0.57 ± 0.13 | 0.32 ± 0.10 | 0.49 ± 0.04 | 0.49 ± 0.08 |
维纳熵的最小值 Minimum of Wiener entropy (Emin) | 0.34 ± 0.12 | 0.30 ± 0.11 | 0.36 ± 0.14 | 0.18 ± 0.09 | 0.37 ± 0.06 | 0.33 ± 0.08 |
维纳熵的最大值 Maximum of Wiener entropy (Emax) | 0.70 ± 0.10 | 0.60 ± 0.10 | 0.72 ± 0.10 | 0.46 ± 0.10 | 0.60 ± 0.05 | 0.63 ± 0.09 |
表3 新生幼仔尖叫声的声学参数(平均值 ± 标准差)
Table 3 Acoustic parameters (mean ± SD) of squalls of each panda neonate
声学参数 Acoustic parameters | 幼仔a Cuba | 幼仔f Cubf | 幼仔g Cubg | 幼仔j Cubj | 幼仔p Cubp | 幼仔s Cubs |
---|---|---|---|---|---|---|
时长 Duration (D, s) | 0.59 ± 0.16 | 0.45 ± 0.10 | 0.33 ± 0.10 | 0.40 ± 0.11 | 0.38 ± 0.10 | 0.47 ± 0.13 |
基频 Fundamental frequency (f0, kHz) | 1.72 ± 0.70 | 2.39 ± 0.70 | 2.30 ± 1.04 | 1.03 ± 0.53 | 2.79 ± 0.84 | 1.93 ± 0.62 |
基频的最小值 Minimum fundamental frequency (f0min, kHz) | 0.37 ± 0.10 | 0.73 ± 0.40 | 0.44 ± 0.21 | 0.32 ± 0.16 | 0.80 ± 0.73 | 0.56 ± 0.25 |
基频的最大值 Maximum fundamental frequency (f0max, kHz) | 3.64 ± 2.36 | 3.91 ± 1.15 | 4.46 ± 2.00 | 2.13 ± 1.35 | 4.11 ± 0.70 | 4.06 ± 1.22 |
基频的范围 Range of fundamental frequency (Rangef0, kHz) | 3.26 ± 2.36 | 3.18 ± 1.25 | 4.01 ± 1.98 | 1.81 ± 1.33 | 3.92 ± 1.74 | 3.38 ± 0.99 |
主频 Dominant frequency (DF, kHz) | 2.95 ± 1.20 | 2.71 ± 0.81 | 3.35 ± 1.25 | 1.67 ± 0.81 | 3.20 ± 0.68 | 3.69 ± 0.81 |
主频的最大值 Maximum dominant frequency (DFmax, kHz) | 6.12 ± 2.06 | 4.57 ± 1.80 | 6.28 ± 2.65 | 3.62 ± 1.71 | 5.47 ± 2.12 | 6.47 ± 2.33 |
最小频率 Minimum frequency (MINF, kHz) | 1.58 ± 0.50 | 1.12 ± 1.14 | 1.66 ± 0.94 | 1.08 ± 0.36 | 2.24 ± 0.67 | 2.10 ± 0.74 |
最小频率的最小值 Minimum value of minimum frequency (MINFmin, kHz) | 0.61 ± 0.38 | 0.19 ± 0.65 | 0.62 ± 0.70 | 0.42 ± 0.26 | 1.21 ± 3.00 | 1.06 ± 0.48 |
最小频率的最大值 Maximum value of minimum frequency (MINFmax, kHz) | 3.28 ± 1.42 | 2.36 ± 1.59 | 3.33 ± 1.49 | 1.79 ± 0.52 | 3.80 ± 0.82 | 3.76 ± 1.43 |
最大频率 Maximum frequency (MAXF, kHz) | 8.80 ± 3.69 | 6.19 ± 2.06 | 10.22 ± 4.03 | 4.00 ± 2.84 | 7.81 ± 1.25 | 8.27 ± 2.28 |
最大频率的最小值 Minimum value of maximum frequency (MAXFmin, kHz) | 1.90 ± 1.04 | 1.46 ± 1.80 | 2.19 ± 1.79 | 0.79 ± 0.65 | 3.66 ± 0.80 | 3.16 ± 1.05 |
最大频率的最大值 Maximum value of maximum frequency (MAXFmax, kHz) | 17.27 ± 3.54 | 12.51 ± 4.03 | 15.62 ± 4.27 | 7.08 ± 3.59 | 12.27 ± 2.00 | 12.78 ± 3.20 |
带宽 Bandwidth (BW, kHz) | 16.07 ± 3.69 | 11.77 ± 4.01 | 14.36 ± 4.16 | 6.11 ± 3.67 | 10.75 ± 1.77 | 11.27 ± 3.30 |
维纳熵 Wiener entropy (E) | 0.50 ± 0.10 | 0.47 ± 0.10 | 0.57 ± 0.13 | 0.32 ± 0.10 | 0.49 ± 0.04 | 0.49 ± 0.08 |
维纳熵的最小值 Minimum of Wiener entropy (Emin) | 0.34 ± 0.12 | 0.30 ± 0.11 | 0.36 ± 0.14 | 0.18 ± 0.09 | 0.37 ± 0.06 | 0.33 ± 0.08 |
维纳熵的最大值 Maximum of Wiener entropy (Emax) | 0.70 ± 0.10 | 0.60 ± 0.10 | 0.72 ± 0.10 | 0.46 ± 0.10 | 0.60 ± 0.05 | 0.63 ± 0.09 |
声学参数 Acoustic Parameters | 个体间变异系数 Coefficient of variation between individuals | 个体内变异系数的均值 Coefficient of variation intra-individuals | 个体身份编码的潜力 Potential for individual identity coding |
---|---|---|---|
时长 Duration (D, s) | 30.20 | 25.78 | 1.13 |
基频 Fundamental frequency (f0, kHz) | 44.14 | 37.86 | 1.11 |
基频的最小值 Minimum fundamental frequency (f0min, kHz) | 65.00 | 51.58 | 2.57 |
基频的最大值 Maximum fundamental frequency (f0max, kHz) | 41.68 | 41.15 | 0.65 |
基频的范围 Range of fundamental frequency (Rangef0, kHz) | 47.68 | 50.89 | 0.67 |
主频 Dominant frequency (DF, kHz) | 35.73 | 32.43 | 0.90 |
主频的最大值 Maximum dominant frequency (DFmax, kHz) | 42.65 | 39.16 | 1.29 |
最小频率 Minimum frequency (MINF, kHz) | 47.93 | 47.52 | 1.56 |
最小频率的最小值 Minimum value of minimum frequency (MINFmin, kHz) | 71.15 | 107.7 | 1.19 |
最小频率的最大值 Maximum value of minimum frequency (MINFmax, kHz) | 45.55 | 40.24 | 1.07 |
最大频率 Maximum frequency (MAXF, kHz) | 42.19 | 37.88 | 1.02 |
最大频率的最小值 Minimum value of maximum frequency (MAXFmin, kHz) | 60.51 | 65.59 | 1.12 |
最大频率的最大值 Maximum value of maximum frequency (MAXFmax, kHz) | 34.70 | 28.43 | 1.73 |
带宽 Bandwidth (BW, kHz) | 38.59 | 31.8 | 1.71 |
维纳熵 Wiener entropy (E) | 24.58 | 19.52 | 1.11 |
维纳熵的最小值 Minimum of Wiener entropy (Emin) | 36.08 | 33.67 | 1.04 |
维纳熵的最大值 Maximum of Wiener entropy (Emax) | 18.8 | 14.83 | 1.25 |
表4 每一种声学参数在个体间和个体内的变异系数均值及其PIC值
Table 4 The average of inter- and intra-individual coefficients of variation and PIC for each acoustic parameter
声学参数 Acoustic Parameters | 个体间变异系数 Coefficient of variation between individuals | 个体内变异系数的均值 Coefficient of variation intra-individuals | 个体身份编码的潜力 Potential for individual identity coding |
---|---|---|---|
时长 Duration (D, s) | 30.20 | 25.78 | 1.13 |
基频 Fundamental frequency (f0, kHz) | 44.14 | 37.86 | 1.11 |
基频的最小值 Minimum fundamental frequency (f0min, kHz) | 65.00 | 51.58 | 2.57 |
基频的最大值 Maximum fundamental frequency (f0max, kHz) | 41.68 | 41.15 | 0.65 |
基频的范围 Range of fundamental frequency (Rangef0, kHz) | 47.68 | 50.89 | 0.67 |
主频 Dominant frequency (DF, kHz) | 35.73 | 32.43 | 0.90 |
主频的最大值 Maximum dominant frequency (DFmax, kHz) | 42.65 | 39.16 | 1.29 |
最小频率 Minimum frequency (MINF, kHz) | 47.93 | 47.52 | 1.56 |
最小频率的最小值 Minimum value of minimum frequency (MINFmin, kHz) | 71.15 | 107.7 | 1.19 |
最小频率的最大值 Maximum value of minimum frequency (MINFmax, kHz) | 45.55 | 40.24 | 1.07 |
最大频率 Maximum frequency (MAXF, kHz) | 42.19 | 37.88 | 1.02 |
最大频率的最小值 Minimum value of maximum frequency (MAXFmin, kHz) | 60.51 | 65.59 | 1.12 |
最大频率的最大值 Maximum value of maximum frequency (MAXFmax, kHz) | 34.70 | 28.43 | 1.73 |
带宽 Bandwidth (BW, kHz) | 38.59 | 31.8 | 1.71 |
维纳熵 Wiener entropy (E) | 24.58 | 19.52 | 1.11 |
维纳熵的最小值 Minimum of Wiener entropy (Emin) | 36.08 | 33.67 | 1.04 |
维纳熵的最大值 Maximum of Wiener entropy (Emax) | 18.8 | 14.83 | 1.25 |
声学参数 Acoustic Parameters | 函数1 Function 1 | 函数2 Function 2 |
---|---|---|
时长 Duration (D, s) | 0.292 | ?0.193 |
基频 Fundamental frequency (f0, kHz) | 0.060 | 0.187 |
基频的最小值 Minimum fundamental frequency (f0min, kHz) | 0.339 | 0.308 |
基频的最大值 Maximum fundamental frequency (f0max, kHz) | 0.405 | 0.229 |
基频的范围 Range of fundamental frequency (Rangef0, kHz) | 0.751 | 0.057 |
主频 Dominant frequency (DF, kHz) | 0.080 | ?0.110 |
主频的最大值 Maximum dominant frequency (DFmax, kHz) | 0.071 | 0.157 |
带宽 Bandwidth (BW, kHz) | 0.380 | ?0.838 |
最小频率 Minimum frequency (MINF, kHz) | ?0.249 | 0.306 |
最小频率的最小值 Minimum value of minimum frequency (MINFmin, kHz) | 0.579 | 0.290 |
最小频率的最大值 Maximum value of minimum frequency (MINFmax, kHz) | ?1.182 | 0.426 |
最大频率 Maximum frequency (MAXF, kHz) | 0.406 | ?0.473 |
最大频率的最小值 Minimum value of maximum frequency (MAXFmin, kHz) | ?0.060 | ?1.102 |
最大频率的最大值 Maximum value of maximum frequency (MAXFmax, kHz) | ?0.602 | 0.315 |
维纳熵 Wiener entropy (E) | 0.273 | ?0.093 |
维纳熵的最小值 Minimum of Winer entropy (Emin) | ?0.339 | 1.533 |
维纳熵的最大值 Maximum of Wiener entropy (Emax) | ?0.043 | 0.327 |
表5 幼仔尖叫声参数的判别函数分析结果
Table 5 Results of discriminant function analysis on acoustic parameters of squalls of panda neonates
声学参数 Acoustic Parameters | 函数1 Function 1 | 函数2 Function 2 |
---|---|---|
时长 Duration (D, s) | 0.292 | ?0.193 |
基频 Fundamental frequency (f0, kHz) | 0.060 | 0.187 |
基频的最小值 Minimum fundamental frequency (f0min, kHz) | 0.339 | 0.308 |
基频的最大值 Maximum fundamental frequency (f0max, kHz) | 0.405 | 0.229 |
基频的范围 Range of fundamental frequency (Rangef0, kHz) | 0.751 | 0.057 |
主频 Dominant frequency (DF, kHz) | 0.080 | ?0.110 |
主频的最大值 Maximum dominant frequency (DFmax, kHz) | 0.071 | 0.157 |
带宽 Bandwidth (BW, kHz) | 0.380 | ?0.838 |
最小频率 Minimum frequency (MINF, kHz) | ?0.249 | 0.306 |
最小频率的最小值 Minimum value of minimum frequency (MINFmin, kHz) | 0.579 | 0.290 |
最小频率的最大值 Maximum value of minimum frequency (MINFmax, kHz) | ?1.182 | 0.426 |
最大频率 Maximum frequency (MAXF, kHz) | 0.406 | ?0.473 |
最大频率的最小值 Minimum value of maximum frequency (MAXFmin, kHz) | ?0.060 | ?1.102 |
最大频率的最大值 Maximum value of maximum frequency (MAXFmax, kHz) | ?0.602 | 0.315 |
维纳熵 Wiener entropy (E) | 0.273 | ?0.093 |
维纳熵的最小值 Minimum of Winer entropy (Emin) | ?0.339 | 1.533 |
维纳熵的最大值 Maximum of Wiener entropy (Emax) | ?0.043 | 0.327 |
对象 Subject | 用于分析的叫声样本量 Sample size of vocalizations used for acoustic analysis | 正确分类的百分率 Corrective assignment rate (%) |
---|---|---|
Cuba | 13 | 46.20 |
Cubf | 17 | 82.40 |
Cubg | 43 | 65.10 |
Cubj | 42 | 90.50 |
Cubp | 26 | 57.70 |
Cubs | 133 | 91.70 |
表6 幼仔尖叫声的样本量和分类正确率
Table 6 Sample size and corrective assignment rate of squalls for each neonate
对象 Subject | 用于分析的叫声样本量 Sample size of vocalizations used for acoustic analysis | 正确分类的百分率 Corrective assignment rate (%) |
---|---|---|
Cuba | 13 | 46.20 |
Cubf | 17 | 82.40 |
Cubg | 43 | 65.10 |
Cubj | 42 | 90.50 |
Cubp | 26 | 57.70 |
Cubs | 133 | 91.70 |
图5 大熊猫母兽辨别亲生幼仔和非亲生幼仔尖叫的行为响应比较箱图。
Fig. 5 Boxplot of comparison of behavioral responses of mother giant pandas to playbacks of squalls of biological neonates and non-biological neonates. **P < 0.01。 ** P < 0.01.
[1] |
Balcombe JP, McCracken GF (1992) Vocal recognition in Mexican free-tailed bats: Do pups recognize mothers? Animal Behaviour, 43, 79-87.
DOI URL |
[2] |
Baotic A, Stoeger AS, Li DS, Tang CX, Charlton BD (2014) The vocal repertoire of infant giant pandas (Ailuropoda melanoleuca). Bioacoustics, 23, 15-28.
DOI URL |
[3] |
Blank DA, Yang W (2017) Mother-young recognition in goitered gazelle during hiding period. Behavioural Processes, 142, 21-28.
DOI PMID |
[4] | Bouchet H, Plat A, Levréro F, Reby D, Patural H, Mathevon N (2020) Baby cry recognition is independent of motherhood but improved by experience and exposure. Proceedings of the Royal Society B: Biological Sciences, 287, 20192499. |
[5] |
Brown AK, Pioon MO, Holekamp KE, Strauss ED (2021) Infanticide by females is a leading source of juvenile mortality in a large social carnivore. The American Naturalist, 198, 642-652.
DOI PMID |
[6] |
Charlton BD, Huang Y, Swaisgood RR (2009a) Vocal discrimination of potential mates by female giant pandas (Ailuropoda melanoleuca). Biology Letters, 5, 597-599.
DOI URL |
[7] |
Charlton BD, Owen MA, Keating JL, Martin-Wintle MS, Zhang HM, Swaisgood RR (2018) Sound transmission in a bamboo forest and its implications for information transfer in giant panda (Ailuropoda melanoleuca) bleats. Scientific Reports, 8, 12754.
DOI PMID |
[8] | Charlton BD, Reby D, Ellis WAH, Brumm J, Fitch WT (2012) Estimating the active space of male koala bellows: Propagation of cues to size and identity in a Eucalyptus forest. PLoS ONE, 7, e45420. |
[9] |
Charlton BD, Zhang ZH, Snyder RJ (2009b) The information content of giant panda, Ailuropoda melanoleuca, bleats: Acoustic cues to sex, age, and size. Animal Behaviour, 78, 893-898.
DOI URL |
[10] |
Charrier I, Harcourt RG (2006) Individual vocal identity in mother and pup Australian sea lions (Neophoca cinerea). Journal of Mammalogy, 87, 929-938.
DOI URL |
[11] |
Charrier I, Marchesseau S, Dendrinos P, Tounta E, Karamanlidis AA (2017) Individual signatures in the vocal repertoire of the endangered Mediterranean monk seal: New perspectives for population monitoring. Endangered Species Research, 32, 459-470.
DOI URL |
[12] |
Charrier I, Pitcher BJ, Harcourt RG (2009) Vocal recognition of mothers by Australian sea lion pups: Individual signature and environmental constraints. Animal Behaviour, 78, 1127-1134.
DOI URL |
[13] |
Clink DJ, Bernard H, Crofoot MC, Marshall AJ (2017) Investigating individual vocal signatures and small-scale patterns of geographic variation in female Bornean gibbon (Hylobates muelleri) great calls. International Journal of Primatology, 38, 656-671.
DOI URL |
[14] |
Fan PL, Liu RS, Grueter CC, Li F, Wu F, Huang TP, Yao H, Liu DZ, Liu XC (2019) Individuality in coo calls of adult male golden snub-nosed monkeys (Rhinopithecus roxellana) living in a multilevel society. Animal Cognition, 22, 71-79.
DOI PMID |
[15] |
Gittleman JL (1994) Are the pandas successful specialists or evolutionary failures? BioScience, 44, 456-464.
DOI URL |
[16] |
Hull V, Roloff G, Zhang JD, Liu W, Zhou SQ, Huang JY, Xu WH, Ouyang ZY, Zhang HM, Liu JG (2014) A synthesis of giant panda habitat selection. Ursus, 25, 148-162.
DOI URL |
[17] |
Lévy F, Keller M, Poindron P (2004) Olfactory regulation of maternal behavior in mammals. Hormones and Behavior, 46, 284-302.
PMID |
[18] |
Lü Z, Pan WS, Harkness J (1994) Mother-cub relationships in giant pandas in the Qinling Mountains, China, with comment on rescuing abandoned cubs. Zoo Biology, 13, 567-568.
DOI URL |
[19] |
Martin M, Gridley T, Fourie D, Elwen SH, Charrier I (2022) Mutual mother-pup vocal recognition in the highly colonial Cape fur seal: Evidence of discrimination of calls with a high acoustic similarity. Animal Cognition, 25, 1461-1472.
DOI PMID |
[20] |
Masataka N (1985) Development of vocal recognition of mothers in infant Japanese macaques. Developmental Psychobiology, 18, 107-114.
PMID |
[21] | Nuñez CMV, Rubenstein DI (2020) Communication is key: Mother-offspring signaling can affect behavioral responses and offspring survival in feral horses (Equus caballus). PLoS ONE, 15, e0231343. |
[22] | Phan ML, Pytte CL, Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences, USA, 103, 1088-1093. |
[23] |
Pitcher BJ, Ahonen H, Harcourt RG, Charrier I (2009) Delayed onset of vocal recognition in Australian sea lion pups (Neophoca cinerea). Naturwissenschaften, 96, 901-909.
DOI URL |
[24] | Pitcher BJ, Harcourt RG, Charrier I (2010a) Rapid onset of maternal vocal recognition in a colonially breeding mammal, the Australian sea lion. PLoS ONE, 5, e12195. |
[25] |
Pitcher BJ, Harcourt RG, Charrier I (2010b) The memory remains: Long-term vocal recognition in Australian sea lions. Animal Cognition, 13, 771-776.
DOI URL |
[26] |
Reby D, McComb K (2003) Anatomical constraints generate honesty: Acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 65, 519-530.
DOI URL |
[27] |
Robisson P, Aubin T, Bremond JC (1993) Individuality in the voice of the emperor penguin Aptenodytes forsteri: Adaptation to a noisy environment. Ethology, 94, 279-290.
DOI URL |
[28] | Schaller GB, Hu JC, Pan WS, Zhu J (1985) The Giant Pandas of Wolong. University of Chicago Press, Chicago. |
[29] |
Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA (2014) Microhabitats reduce animal’s exposure to climate extremes. Global Change Biology, 20, 495-503.
DOI PMID |
[30] |
Sèbe F, Aubin T, Boué A, Poindron P (2008) Mother-young vocal communication and acoustic recognition promote preferential nursing in sheep. Journal of Experimental Biology, 211, 3554-3562.
DOI PMID |
[31] |
Sibiryakova OV, Volodin IA, Volodina EV (2018) Advertising individual identity by mother and adolescent contact calls in Siberian wapiti Cervus elaphus sibiricus. Ethology, 124, 733-742.
DOI URL |
[32] |
Stoeger AS, Charlton BD, Kratochvil H, Fitch WT (2011) Vocal cues indicate level of arousal in infant African elephant roars. The Journal of the Acoustical Society of America, 130, 1700-1710.
DOI URL |
[33] | Tebbe J, Humble E, Stoffel MA, Tewes LJ, Müller C, Forcada J, Caspers B, Hoffman JI (2020) Chemical patterns of colony membership and mother-offspring similarity in Antarctic fur seals are reproducible. PeerJ, 8, e10131. |
[34] |
Torriani MVG, Vannoni E, McElligott AG (2006) Mother-young recognition in an ungulate hider species: A unidirectional process. The American Naturalist, 168, 412-420.
PMID |
[35] |
Volodin IA, Sibiryakova OV, Frey R, Efremova KO, Soldatova NV, Zuther S, Kisebaev TB, Salemgareev AR, Volodina EV (2017) Individuality of distress and discomfort calls in neonates with bass voices: Wild-living goitred gazelles (Gazella subgutturosa) and saiga antelopes (Saiga tatarica). Ethology, 123, 386-396.
DOI URL |
[36] | Wang HT (2014) Response Properties and Dynamical Behaviours of Single Neuron. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[王恒通 (2014) 神经元响应特性及其动力学行为. 博士学位论文, 兰州大学, 兰州.] | |
[37] | Wang JL, Tai FD, An SC (2009) Behavioral response of lactating Mandarin voles exposed to alien pups. Acta Theriologica Sinica, 29, 59-62. (in Chinese with English abstract) |
[王建礼, 邰发道, 安书成 (2009) 哺乳期棕色田鼠对非亲缘幼仔的行为反应. 兽类学报, 29, 59-62.] | |
[38] | Wei W, Swaisgood RR, Dai Q, Yang ZS, Yuan SB, Owen MA, Pilfold NW, Yang XY, Gu XD, Zhou H, Han H, Zhang JD, Hong MS, Zhang ZJ (2018) Giant panda distributional and habitat-use shifts in a changing landscape. Conservation Letters, 11, e12575. |
[39] |
Wei W, Swaisgood RR, Owen MA, Pilfold NW, Han H, Hong MS, Zhou H, Wei FW, Nie YG, Zhang ZJ (2019) The role of den quality in giant panda conservation. Biological Conservation, 231, 189-196.
DOI |
[40] |
Wierucka K, Charrier I, Harcourt R, Pitcher BJ (2018) Visual cues do not enhance sea lion pups’ response to multimodal maternal cues. Scientific Reports, 8, 9845.
DOI PMID |
[41] | Wierucka K, Pitcher BJ, Harcourt R, Charrier I (2017) The role of visual cues in mother-pup reunions in a colonially breeding mammal. Biology Letters, 13, 20170444. |
[42] |
Zhang GQ, Zhang HM, Chen M, He TM, Wei RP, Mainka SA (1996) Growth and development of infant giant pandas (Ailuropoda melanoleuca) at the Wolong Reserve, China. Zoo Biology, 15, 13-19.
DOI URL |
[43] |
Zhang ZJ, Swaisgood RR, Zhang SN, Nordstrom LA, Wang HJ, Gu XD, Hu JC, Wei FW (2011) Old-growth forest is what giant pandas really need. Biology Letters, 7, 403-406.
DOI PMID |
[44] |
Zhu XJ, Lindburg DG, Pan WS, Forney KA, Wang DJ (2001) The reproductive strategy of giant pandas (Ailuropoda melanoleuca): Infant growth and development and mother-infant relationships. Journal of Zoology, 253, 141-155.
DOI URL |
[1] | 王重阳, 赵联军, 孟世勇. 王朗国家级自然保护区滑坡体兰科植物分布格局及其保护策略[J]. 生物多样性, 2022, 30(2): 21313-. |
[2] | 滕继荣, 刘兴明, 何礼文, 王钧亮, 黄建, 冯杰, 王放, 翁悦. 甘肃白水江国家级自然保护区林缘社区饲养犬只对大熊猫时空节律的影响[J]. 生物多样性, 2022, 30(1): 21204-. |
[3] | 陈星, 赵联军, 胡茜茜, 罗春平, 梁春平, 蒋仕伟, 梁磊, 郑维超, 官天培. 基于地形的牲畜空间利用特征及干扰评价——以王朗国家级自然保护区为例[J]. 生物多样性, 2019, 27(6): 630-637. |
[4] | 和梅香, 陈俪心, 罗概, 古晓东, 王戈, 冉江洪. 凉山山系大熊猫和黑熊适宜生境预测及重叠分析[J]. 生物多样性, 2018, 26(11): 1180-1189. |
[5] | 龚明昊, 侯盟, 蔺琛, 宋延龄, 欧阳志云. 基于野外痕迹点和GIS技术定量评估步道对大熊猫活动的影响[J]. 生物多样性, 2012, 20(4): 420-426. |
[6] | 卢志军, 王巍, 张文辉, 李红, 曹庆, 党高弟, 何东, Scott Franklin. 巴山木竹发笋和大熊猫取食的时空格局及相关性分析[J]. 生物多样性, 2009, 17(1): 1-9. |
[7] | 尹玉峰, 王昊, 陈艾, 刘国琪. 对大熊猫数量调查方法中咬节区分机制的准确性评价[J]. 生物多样性, 2005, 13(5): 439-444. |
[8] | 刘国琪, 王昊, 尹玉峰. 王朗自然保护区中大熊猫发情场的嗅味树和嗅味标记调查[J]. 生物多样性, 2005, 13(5): 445-450. |
[9] | 黄世强. 北京动物园大熊猫繁殖记录[J]. 生物多样性, 1994, 02(2): 113-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn