生物多样性 ›› 2022, Vol. 30 ›› Issue (8): 22097. DOI: 10.17520/biods.2022097
所属专题: 土壤生物与土壤健康
张世航1,2, 陶冶1, 陈玉森2,3, 郭浩1,2, 陆永兴1,2, 郭星1,2, 刘朝红1,4, 周晓兵1,*(), 张元明1,*()
收稿日期:
2022-03-02
接受日期:
2022-07-14
出版日期:
2022-08-20
发布日期:
2022-08-31
通讯作者:
周晓兵,张元明
作者简介:
zhangym@ms.xjb.ac.cn基金资助:
Shihang Zhang1,2, Ye Tao1, Yusen Chen2,3, Hao Guo1,2, Yongxing Lu1,2, Xing Guo1,2, Chaohong Liu1,4, Xiaobing Zhou1,*(), Yuanming Zhang1,*()
Received:
2022-03-02
Accepted:
2022-07-14
Online:
2022-08-20
Published:
2022-08-31
Contact:
Xiaobing Zhou,Yuanming Zhang
摘要:
荒漠是重要的陆地生态系统之一, 其生态系统极其脆弱, 极易发生荒漠化。荒漠土壤的稳定和功能对于荒漠生态系统结构和功能的维持至关重要。但在荒漠地区, 大多数土壤功能的研究还主要集中在单一的土壤功能性。本研究基于准噶尔荒漠79个样点的土壤有机碳(SOC)、氮(N)、磷(P)、有效氮(AN)和有效磷(AP)等指标, 通过平均值法和因子分析法计算土壤多功能(soil multifunctionality, SMF)指数, 研究SMF空间变异特征及驱动因素。空间分析所示从整体来看, 荒漠SMF在空间分布上具有较大的异质性, 自西向东, SMF总体呈现逐渐增加的趋势, 而从南向北, SMF呈现先增加后降低的趋势。最优拟合显示, SMF与年均降雨量(MAP)和年均温(MAT)呈显著二次函数关系, 随着MAP和MAT的增加表现出先降低后升高的趋势; SMF与pH和植被增强指数(EVI)呈显著线性关系, SMF随着pH的增加表现出显著降低趋势, 而随着EVI的增加表现为显著上升的趋势; SMF与Aridity (干旱度)之间既符合二次函数关系也呈现线性关系(二者R2相同), 随Aridity增加而减少。结构方程模型结果表明, 土壤含水率(SWC)是SMF变化的最重要的驱动因素, 其次为EVI。土壤pH、SWC、MAT、Aridity和EVI对荒漠SMF具有显著的直接效应, 其中SWC和EVI为显著正效应, 其他为负效应。MAP、经度(Lon)、纬度(Lat)和海拔(Alt)可通过影响MAT等指标对SMF产生间接效应。研究结果对深入理解准噶尔荒漠SMF的空间变异特征及驱动因素具有重要意义, 将有助于预测环境变化对荒漠生态系统多功能性的影响, 为生态系统科学管理服务。
张世航, 陶冶, 陈玉森, 郭浩, 陆永兴, 郭星, 刘朝红, 周晓兵, 张元明 (2022) 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素. 生物多样性, 30, 22097. DOI: 10.17520/biods.2022097.
Shihang Zhang, Ye Tao, Yusen Chen, Hao Guo, Yongxing Lu, Xing Guo, Chaohong Liu, Xiaobing Zhou, Yuanming Zhang (2022) Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China. Biodiversity Science, 30, 22097. DOI: 10.17520/biods.2022097.
图2 基于因子分析法(MF1)和平均值法(MF2)得到的土壤多功能指数之间的线性关系
Fig. 2 Linear relationship of the soil multifunctional index obtained determined by factor analysis (MF1) and mean method (MF2)
有机碳 SOC | 氮 N | 磷 P | 碳氮比 C∶N | 碳磷比 C∶P | 氮磷比 N∶P | 速效氮 AN | 速效磷 AP | MF1 | MF2 | |
---|---|---|---|---|---|---|---|---|---|---|
MF1 | 0.940** | 0.519** | 0.637** | 0.609** | 0.924** | 0.344** | 0.644** | 0.812** | 1 | 0.963** |
MF2 | 0.845** | 0.723** | 0.569** | 0.396** | 0.828** | 0.572** | 0.511** | 0.786** | 0.963** | 1 |
表1 单一土壤功能与土壤多功能性的相关性
Table 1 Correlation between single soil function and soil multifunctionality
有机碳 SOC | 氮 N | 磷 P | 碳氮比 C∶N | 碳磷比 C∶P | 氮磷比 N∶P | 速效氮 AN | 速效磷 AP | MF1 | MF2 | |
---|---|---|---|---|---|---|---|---|---|---|
MF1 | 0.940** | 0.519** | 0.637** | 0.609** | 0.924** | 0.344** | 0.644** | 0.812** | 1 | 0.963** |
MF2 | 0.845** | 0.723** | 0.569** | 0.396** | 0.828** | 0.572** | 0.511** | 0.786** | 0.963** | 1 |
参数 Parameter | 有机碳 SOC (g/kg) | 全氮 N (g/kg) | 全磷 P (g/kg) | 速效氮 AN (mg/kg) | 速效磷 AP (mg/kg) | 年降水 MAP (mm) | 年均温 MAT (℃) | 干旱程度 Aridity | 土壤温度 ST (℃) | 土壤含水率 SWC (%) | pH | 植被增强 指数 EVI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 5.73 | 0.21 | 0.35 | 32.09 | 9.03 | 140.06 | 7.70 | 0.91 | 2.54 | 2.20 | 8.30 | 0.09 | ||
最大值 Max | 24.10 | 0.54 | 0.42 | 155.59 | 35.00 | 192.64 | 22.17 | 0.95 | 14.46 | 2.60 | 8.80 | 0.22 | ||
最小值 Min | 0.90 | 0.07 | 0.26 | 8.46 | 2.26 | 80.27 | ?4.76 | 0.84 | ?3.83 | 1.90 | 7.80 | 0.04 | ||
标准误差 SE | 4.33 | 0.08 | 0.03 | 26.91 | 7.90 | 20.09 | 6.11 | 0.02 | 2.20 | 0.01 | 0.20 | 0.03 | ||
变异系数 CV | 0.75 | 0.37 | 0.10 | 0.84 | 0.87 | 0.14 | 0.79 | 0.02 | 0.86 | 0.07 | 0.02 | 0.37 |
表2 准噶尔荒漠土壤、植被和气候参数的描述统计表。ST: 土壤温度; SWC: 土壤含水率; EVI: 植被增强指数。CV: 变异系数。
Table 2 Descriptive statistics of desert soil, vegetation and climate parameters in the Junggar Desert. ST, soil temperature; SWC, Soil water content; EVI, Vegetation enhancement index. CV, Coefficient of variation.
参数 Parameter | 有机碳 SOC (g/kg) | 全氮 N (g/kg) | 全磷 P (g/kg) | 速效氮 AN (mg/kg) | 速效磷 AP (mg/kg) | 年降水 MAP (mm) | 年均温 MAT (℃) | 干旱程度 Aridity | 土壤温度 ST (℃) | 土壤含水率 SWC (%) | pH | 植被增强 指数 EVI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 5.73 | 0.21 | 0.35 | 32.09 | 9.03 | 140.06 | 7.70 | 0.91 | 2.54 | 2.20 | 8.30 | 0.09 | ||
最大值 Max | 24.10 | 0.54 | 0.42 | 155.59 | 35.00 | 192.64 | 22.17 | 0.95 | 14.46 | 2.60 | 8.80 | 0.22 | ||
最小值 Min | 0.90 | 0.07 | 0.26 | 8.46 | 2.26 | 80.27 | ?4.76 | 0.84 | ?3.83 | 1.90 | 7.80 | 0.04 | ||
标准误差 SE | 4.33 | 0.08 | 0.03 | 26.91 | 7.90 | 20.09 | 6.11 | 0.02 | 2.20 | 0.01 | 0.20 | 0.03 | ||
变异系数 CV | 0.75 | 0.37 | 0.10 | 0.84 | 0.87 | 0.14 | 0.79 | 0.02 | 0.86 | 0.07 | 0.02 | 0.37 |
图5 环境因子对土壤多功能性的直接和间接影响的SEM分析结果。 不同粗细与箭头旁载重系数成正比。RMSEA, 近似误差均方根。空间地理位置、气候、土壤(环境)的组成部分作为独立的可观测变量包含在模型中, 但为了图解的简单性, 我们将它们放在同一个方框。环境因子的缩写全程详见图4。
Fig. 5 SEM analysis results about direct and indirect effects of environmental factors on soil multifunctionality. Different thickness is directly proportional to the load coefficient beside the arrow. RMSEA, Root mean square of approximate error. The components of spatial location, climate and soil (environment) are included in the model as independent observable variables, but for the simplicity of illustration, we put them in the same box. See Figure 4 for abbreviations of environmental factors. χ2 = 0.127, P = 0.881, GFI = 0.999, AGFI = 0.977, RMSEA = 0.018. * P < 0.05, ** P < 0.01, *** P < 0.001.
[1] |
Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 170191.
DOI URL |
[2] |
Bui EN, Henderson BL (2013) C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 373, 553-568.
DOI URL |
[3] | Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions. Methods in Ecology and Evolution, 2014, 5, 111-124. |
[4] |
Chen YL, Xu ZW, Hu HW, Hu YJ, Hao ZP, Jiang Y, Chen BD (2013) Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 68, 36-45.
DOI URL |
[5] | Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences, USA, 110, 5064-5068. |
[6] |
Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu JS, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang DL, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676.
DOI URL |
[7] |
Ding JY, Eldridge DJ (2021) Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena, 201, 105233.
DOI URL |
[8] |
Durán J, Delgado-Baquerizo M, Dougill AJ, Guuroh RT, Linstädter A, Thomas AD, Maestre FT (2018) Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology, 99, 1184-1193.
DOI URL |
[9] | Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001) 1:1000000 Vegetation Atlas of China. Science Press, Beijing. (in Chinese) |
[中国科学院中国植被图编辑委员会 (2001) 1:100 万中国植被图集. 科学出版社, 北京.] | |
[10] |
Eldridge DJ, Delgado-Baquerizo M, Quero JL, Ochoa V, Gozalo B, García-Palacios P, Escolar C, García-Gómez M, Prina A, Bowker MA, Bran DE, Castro I, Cea A, Derak M, Espinosa CI, Florentino A, Gaitán JJ, Gatica G, Gómez-González S, Ghiloufi W, Gutierrez JR, Gusmán-Montalván E, Hernández RM, Hughes FM, Muiño W, Monerris J, Ospina A, Ramírez DA, Ribas-Fernández YA, Romão RL, Torres-Díaz C, Koen TB, Maestre FT (2019) Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 57, 424-435.
DOI URL |
[11] |
Fan LL, Ma J, Wu LF, Xu GQ, Li Y, Tang LS (2012) Response of the herbaceous layer to snow variability at the south margin of the Gurbantonggut Desert of China. Chinese Journal of Plant Ecology, 36, 126-135. (in Chinese with English abstract)
DOI URL |
[范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松 (2012) 古尔班通古特沙漠南缘草本层对积雪变化的响应. 植物生态学报, 36, 126-135.]
DOI |
|
[12] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
PMID |
[13] |
Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI URL |
[14] |
Hooper DU, Vitousek PM (2005) Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149.
DOI URL |
[15] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.
DOI URL |
[16] |
Hu ZH, Chen HYH, Yue C, Gong XY, Shao JJ, Zhou GY, Wang JW, Wang MH, Xia JY, Li YT, Zhou XH, Michaletz ST (2020) Traits mediate drought effects on wood carbon fluxes. Global Change Biology, 26, 3429-3442.
DOI URL |
[17] |
Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology & Biochemistry, 38, 898-911.
DOI URL |
[18] | Lan J, Lei XD, He X, Gao WQ, Li YT (2021) Multi-functionality of natural mixed broad-leaved forests and driving forces in Jilin Province. Acta Ecologica Sinica, 41, 5128-5141. (in Chinese with English abstract) |
[兰洁, 雷相东, 何潇, 高文强, 李玉堂 (2021) 吉林省天然阔叶混交林生态系统多功能性及驱动因素. 生态学报, 41, 5128-5141.] | |
[19] |
Li JP, Zheng ZR, Zhao NX, Gao YB (2016) Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747. (in Chinese with English abstract)
DOI URL |
[李静鹏, 郑志荣, 赵念席, 高玉葆 (2016) 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.]
DOI |
|
[20] |
Liang MW, Chen JQ, Smith NG, Bai X, Jia CZ, Li ZY, Liang CZ (2019) Changes and regulations of net ecosystem CO2 exchange across temporal scales in the Alxa Desert. Journal of Arid Environments, 164, 78-84.
DOI URL |
[21] |
Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitán J, Gatica MG, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huang XW, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes DA, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga JP, Wang DL, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.
DOI URL |
[22] | Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018) Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436. |
[23] |
Mcdaniel MD, Kaye JP, Kaye MW (2013) Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology & Biochemistry, 56, 90-98.
DOI URL |
[24] |
Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology & Biochemistry, 59, 72-85.
DOI URL |
[25] |
Pau S, Gillespie TW, Wolkovich EM (2012) Dissecting NDVI-species richness relationships in Hawaiian dry forests. Journal of Biogeography, 39, 1678-1686.
DOI URL |
[26] |
Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
PMID |
[27] |
Ren CJ, Zhao FZ, Shi Z, Chen J, Han XH, Yang GH, Feng YZ, Ren GX (2017) Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology & Biochemistry, 115, 1-10.
DOI URL |
[28] |
Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bulletin of the American Meteorological Society, 85, 381-394.
DOI URL |
[29] |
Sanderson MA, Skinner RH, Barker DJ, Edwards GR, Tracy BF, Wedin DA (2004) Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Science, 44, 1132-1144.
DOI URL |
[30] |
Soliveres S, Maestre FT, Eldridge DJ, Delgado-Baquerizo M, Quero JL, Bowker MA, Gallardo A (2014) Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Global Ecology and Biogeography, 23, 1408-1416.
PMID |
[31] |
Tan QQ, Jia YF, Wang GA (2021) Decoupling of soil nitrogen and phosphorus dynamics along a temperature gradient on the Qinghai-Tibetan Plateau. Geoderma, 396, 115084.
DOI URL |
[32] | Tao Y, Liu YB, Wu GL, Zhang YM (2016) Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar desert, China. Acta Prataculturae Sinica, 25, 13-23. (in Chinese with English abstract) |
[陶冶, 刘耀斌, 吴甘霖, 张元明 (2016) 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局. 草业学报, 25, 13-23.] | |
[33] |
Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and landscape position in a lowland rainforest of southern Taiwan. Geoderma, 123, 131-142.
DOI URL |
[34] |
Valencia E, Maestre FT le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015) Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-671.
DOI PMID |
[35] | Wagg C, Bender SF, Widmer F,van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[36] | Wang LJ, Sun DY, Zhao CY, Li JY, Sheng Y (2011) Plant architecture characteristics of Haloxylon ammodendron and Haloxylon persicum in Zhungar Basin. Acta Ecologica Sinica, 31, 4952-4960. (in Chinese with English abstract) |
[王丽娟, 孙栋元, 赵成义, 李菊艳, 盛钰 (2011) 准噶尔盆地梭梭、白梭梭植物构型特征. 生态学报, 31, 4952-4960.] | |
[37] | Wang XQ, Jiang J, Lei JQ, Zhao CJ (2004) Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantonggut desert. Chinese Journal of Applied Ecology, 15, 556-560. (in Chinese with English abstract) |
[王雪芹, 蒋进, 雷加强, 赵从举 (2004) 短命植物分布与沙垄表层土壤水分的关系——以古尔班通古特沙漠为例. 应用生态学报, 15, 556-560.] | |
[38] | Wei P, An SZ, Dong YQ, Bieerdawulieti Xi HR, Sun ZJ, Zheng FL (2021) Plant diversity and its influencing factors of three typical plant formations in Junggar Desert. Chinese Journal of Grassland, 43, 27-33. (in Chinese with English abstract) |
[魏鹏, 安沙舟, 董乙强, 别尔达吾列提·希哈依, 孙宗玖, 郑逢令 (2021) 准噶尔荒漠3种典型植物群系植物多样性及其影响因素. 草地学报, 43, 27-33.] | |
[39] |
Xu W, Jing X, Ma ZY, He JS (2016) A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. (in Chinese with English abstract)
DOI URL |
[徐炜, 井新, 马志远, 贺金生 (2016) 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.]
DOI |
|
[40] |
Yan YZ, Zhang Q, Buyantuev A, Liu QF, Niu JM (2020) Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment, 726, 138529.
DOI URL |
[41] | Yang M, Xiao Y, Ouyang ZY, Jiang LH, Hou P (2021) Relation of biodiversity and ecosystem multifunctionality in Sichuan Province. Acta Ecologica Sinica, 41, 9738-9748. (in Chinese with English abstract) |
[杨渺, 肖燚, 欧阳志云, 江腊海, 侯鹏 (2021) 四川省生物多样性与生态系统多功能性分析. 生态学报, 41, 9738-9748.] | |
[42] |
Yuan ZQ, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang SP, Zhang XK, Li H, Hao ZQ, Wang XG, Loreau M (2020) Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 108, 2012-2024.
DOI URL |
[43] | Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, USA, 107, 1443-1446. |
[44] |
Zhang C, Lu DS, Chen X, Zhang YM, Maisupova B, Tao Y (2016) The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sensing of Environment, 175, 271-281.
DOI URL |
[45] | Zhang GS, Deng HJ, Du K, Lin YM, Ma RF, Yu W, Wang DJ, Wu CZ, Hong W (2016) Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: A case study in Xiaojiang Watershed, Yunnan. Acta Ecologica Sinica, 36, 675-687. (in Chinese with English abstract) |
[张广帅, 邓浩俊, 杜锟, 林勇明, 马瑞丰, 俞伟, 王道杰, 吴承祯, 洪伟 (2016) 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例. 生态学报, 36, 675-687.] | |
[46] |
Zhang HJ, Wang W (2021) Responses of ecosystem multifunctionality to global change: Progress, problem and prospect. Chinese Journal of Plant Ecology, 45, 1112-1126. (in Chinese with English abstract)
DOI URL |
[张宏锦, 王娓 (2021) 生态系统多功能性对全球变化的响应: 进展、问题与展望. 植物生态学报, 45, 1112-1126.]
DOI |
|
[47] | Zhang LY, Chen CD (2002) On the general characteristics of plant diversity of Gurbantunggut Sandy Desert. Acta Ecologica Sinica, 22, 1923-1932. (in Chinese with English abstract) |
[张立运, 陈昌笃 (2002) 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 22, 1923-1932.] | |
[48] |
Zheng Q, Hu YT, Zhang SS, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019) Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology & Biochemistry, 136, 107521.
DOI URL |
[49] |
Zhou XH, Zhou LY, Nie YY, Fu YL, Du ZG, Shao JJ, Zheng ZM, Wang XH (2016) Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis. Agriculture, Ecosystems & Environment, 228, 70-81.
DOI URL |
[1] | 张飞飞, 杨天凤, 陈莉荣, 刘冬梅, 杨柳园, 杨杜宇, 鞠鹏, 陆露. 被子植物花粉颜色多样性及应用研究进展[J]. 生物多样性, 2024, 32(1): 23346-. |
[2] | 肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高. 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J]. 生物多样性, 2023, 31(4): 22585-. |
[3] | 芦伟, 余建平, 任海保, 米湘成, 陈建华, 马克平. 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征[J]. 生物多样性, 2018, 26(9): 1023-1028. |
[4] | 王志高, 叶万辉, 曹洪麟, 练琚愉. 鼎湖山季风常绿阔叶林物种多样性指数空间分布特征[J]. 生物多样性, 2008, 16(5): 454-461. |
[5] | 孙华之, 谭敦炎, 曲荣明. 短命植物小疮菊异形瘦果特性及其对荒漠环境的适应[J]. 生物多样性, 2008, 16(4): 353-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn