生物多样性 ›› 2011, Vol. 19 ›› Issue (3): 369-376. DOI: 10.3724/SP.J.1003.2011.08193 cstr: 32101.14.SP.J.1003.2011.08193
所属专题: 土壤生物与土壤健康
辜运富1, 张小平1,*(), 涂仕华2, Kristina Lindström3
收稿日期:
2010-08-06
接受日期:
2011-02-05
出版日期:
2011-05-20
发布日期:
2013-12-10
通讯作者:
张小平
作者简介:
*E-mail:aumdwsb@sicau.edu.cn基金资助:
Yunfu Gu1, Xiaoping Zhang1,*(), Shihua Tu2, Kristina Lindström3
Received:
2010-08-06
Accepted:
2011-02-05
Online:
2011-05-20
Published:
2013-12-10
Contact:
Xiaoping Zhang
摘要:
为了认识长期施肥对石灰性紫色水稻土培肥和肥力演化的作用, 结合变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)和限制性酶切片段长度多态性(RFLP)技术, 研究了稻麦轮作下农家肥(M)、氮肥+农家肥(NM)、氮磷肥+农家肥(NPM)、氮磷钾肥+农家肥(NPKM)、无肥(CK)、氮肥(N)、氮磷肥(NP)、氮磷钾肥(NPK)等不同施肥制度对石灰性紫色水稻土古菌群落结构的影响。研究结果表明, 长期定位施肥明显影响土壤中的古菌组成。在长期施用氮肥+农家肥、氮磷肥和氮磷钾肥+农家肥处理的土壤中, 古菌多样性指数低于农家肥、氮磷肥+农家肥、无肥、氮肥和氮磷钾肥处理。在DGGE图谱的基础上, 分别选择种植水稻和小麦的氮磷钾肥处理土壤样品, 对古菌克隆子的16S rDNA序列进行了系统发育分析, 发现水稻土古菌与各种土壤及水体环境的古菌极其相似。对DGGE图谱的聚类分析发现, 不管是种植水稻还是小麦, 8种施肥处理的古菌都聚在3个群里。种植水稻时, M和NPK处理下的土壤古菌聚成第一个群, NP处理下的聚成第二个群, 另外5种施肥处理(NPKM, NM, CK, N 和NPM)聚成第三个群。种植小麦时, NPKM和M处理下的土壤古菌聚成一个群, NP处理下的聚成第二个群, N、NPK、NM、NPM和CK处理下的聚成第三个群。聚类分析结果显示, 作物类型会影响土壤古菌群落结构。
辜运富, 张小平, 涂仕华, Kristina Lindström (2011) 长期定位施肥对石灰性紫色水稻土 古菌群落结构的影响. 生物多样性, 19, 369-376. DOI: 10.3724/SP.J.1003.2011.08193.
Yunfu Gu, Xiaoping Zhang, Shihua Tu, Kristina Lindström (2011) Effect of long-term fertilization on archaeal community structure in calcareous purplish paddy soil. Biodiversity Science, 19, 369-376. DOI: 10.3724/SP.J.1003.2011.08193.
施肥方式 Fertilization treatments | ||||||||
---|---|---|---|---|---|---|---|---|
M | NM | NPM | NPKM | CK | N | NP | NPK | |
水稻收获后 After rice cultivation | 4.043 | 3.993 | 4.987 | 4.057 | 3.969 | 4.990 | 3.942 | 3.753 |
小麦收获后 After wheat cultivation | 4.855 | 4.887 | 4.232 | 4.209 | 4.173 | 4.783 | 4.075 | 4.787 |
表1 种植稻麦后各施肥处理下表层风干土壤含水量(%)
Table 1 Water content of air-dried top soil under different fertilization treatments after rice/wheat cultivation (%)
施肥方式 Fertilization treatments | ||||||||
---|---|---|---|---|---|---|---|---|
M | NM | NPM | NPKM | CK | N | NP | NPK | |
水稻收获后 After rice cultivation | 4.043 | 3.993 | 4.987 | 4.057 | 3.969 | 4.990 | 3.942 | 3.753 |
小麦收获后 After wheat cultivation | 4.855 | 4.887 | 4.232 | 4.209 | 4.173 | 4.783 | 4.075 | 4.787 |
引物 Primer | 16S rDNA目标区(碱基数) 16S rDNA target (base number) | 引物序列 Primer sequence |
---|---|---|
PRA46F | Archaea (46-60) | 5′- C/TTAAGCCATGCG/AAGT-3′ |
PREA1100R | Archaea (1100-1117) | 5′- T/CGGGTCTCGCTCGTTG/ACC-3′ |
PARCH340F-GC | Archaea V3 region (340-358) | 5′- CCTACGGGGC/TGCAG/CCAG-3′ |
PARCH519R | Archaea V3 region (519-534) | 5′- TTACCGCGGCG/TGCTG-3′ |
表2 DGGE实验中古菌16S rDNA的特异性扩增引物(引自?vre?s et al., 1997)
Table 2 Specific amplification primers for the archaeal 16S rDNA in DGGE experiment (adopted from ?vre?s et al., 1997)
引物 Primer | 16S rDNA目标区(碱基数) 16S rDNA target (base number) | 引物序列 Primer sequence |
---|---|---|
PRA46F | Archaea (46-60) | 5′- C/TTAAGCCATGCG/AAGT-3′ |
PREA1100R | Archaea (1100-1117) | 5′- T/CGGGTCTCGCTCGTTG/ACC-3′ |
PARCH340F-GC | Archaea V3 region (340-358) | 5′- CCTACGGGGC/TGCAG/CCAG-3′ |
PARCH519R | Archaea V3 region (519-534) | 5′- TTACCGCGGCG/TGCTG-3′ |
引物 Primers | 16S rDNA目标区(碱基数) 16S rDNA target (base number) | 引物序列 Primer sequence | 参考文献 References |
---|---|---|---|
Ar4F | Archaea (8-25) | 5′- TCY GGT TGA TCC TGC CRG-3′ | |
Ar958R | Archaea (958-967) | 5′- YCC GGC GTT GAV TCC AAT T-3′ | |
Ar9R | Archaea (906-927) | 5′-CCC GCC AAT TCC TTT AAG TTT C-3′ | |
Ar3F | Archaea (7-26) | 5′- TTC CGG TTG ATC CTG CCG GA-3′ |
表3 RFLP实验中古菌16S rDNA的特异性扩增引物
Table 3 Specific amplification primers for the archaeal 16S rDNA in RFLP experiment
引物 Primers | 16S rDNA目标区(碱基数) 16S rDNA target (base number) | 引物序列 Primer sequence | 参考文献 References |
---|---|---|---|
Ar4F | Archaea (8-25) | 5′- TCY GGT TGA TCC TGC CRG-3′ | |
Ar958R | Archaea (958-967) | 5′- YCC GGC GTT GAV TCC AAT T-3′ | |
Ar9R | Archaea (906-927) | 5′-CCC GCC AAT TCC TTT AAG TTT C-3′ | |
Ar3F | Archaea (7-26) | 5′- TTC CGG TTG ATC CTG CCG GA-3′ |
图1 土壤古菌16S rDNA的DGGE分析(a, 种植水稻后土壤; b, 种植小麦后土壤)
Fig. 1 DGGE analysis (a, soil after rice; b, soil after wheat) of archaeal 16S rDNA gene retrieved from the soils
施肥处理 Fertilization treatments | Shannon多样性指数 Shannon's diversity index (H) | 丰富度 Richness (S) | 均匀度 Evenness (EH) | |||||
---|---|---|---|---|---|---|---|---|
水稻 Rice | 小麦 Wheat | 水稻 Rice | 小麦 Wheat | 水稻 Rice | 小麦 Wheat | |||
M | 3.08±0.13a | 3.13±0.14a | 21±2.00a | 20±2.00a | 1.016±0.00a | 1.014±0.00a | ||
NM | 2.94±0.09a | 2.99±0.07ab | 18±1.15b | 19±1.53ab | 1.017±0.00a | 1.018±0.01a | ||
NPM | 3.04±0.09a | 3.09±0.09a | 20±1.53a | 21±1.53a | 1.014±0.05a | 1.015±0.00a | ||
NPKM | 2.99±0.09a | 2.99±0.03ab | 19±0.58b | 19±1.53ab | 1.017±0.05a | 1.017±0.01a | ||
CK | 3.09±0.07a | 3.04±0.07ab | 21±1.16a | 20±1.15a | 1.015±0.05a | 1.015±0.00a | ||
N | 2.99±0.09a | 3.08±0.03ab | 19±0.06b | 21±1.53a | 1.014±0.00a | 1.017±0.00a | ||
NP | 2.89±0.09b | 2.89±0.07b | 17±1.15b | 17±1.53b | 1.019±0.00a | 1.020±0.01a | ||
NPK | 3.13±0.16a | 3.04±0.11ab | 22±2.08a | 20±3.00a | 1.013±0.03a | 1.014±0.00a |
表4 不同施肥处理下古菌的Shannon多样性指数(H), 丰富度(S)和均匀度(EH)
Table 4 Archaea diversity as indicated by the number of DNA bands, Shannon diversity index (H), richness (S), and evenness (EH)
施肥处理 Fertilization treatments | Shannon多样性指数 Shannon's diversity index (H) | 丰富度 Richness (S) | 均匀度 Evenness (EH) | |||||
---|---|---|---|---|---|---|---|---|
水稻 Rice | 小麦 Wheat | 水稻 Rice | 小麦 Wheat | 水稻 Rice | 小麦 Wheat | |||
M | 3.08±0.13a | 3.13±0.14a | 21±2.00a | 20±2.00a | 1.016±0.00a | 1.014±0.00a | ||
NM | 2.94±0.09a | 2.99±0.07ab | 18±1.15b | 19±1.53ab | 1.017±0.00a | 1.018±0.01a | ||
NPM | 3.04±0.09a | 3.09±0.09a | 20±1.53a | 21±1.53a | 1.014±0.05a | 1.015±0.00a | ||
NPKM | 2.99±0.09a | 2.99±0.03ab | 19±0.58b | 19±1.53ab | 1.017±0.05a | 1.017±0.01a | ||
CK | 3.09±0.07a | 3.04±0.07ab | 21±1.16a | 20±1.15a | 1.015±0.05a | 1.015±0.00a | ||
N | 2.99±0.09a | 3.08±0.03ab | 19±0.06b | 21±1.53a | 1.014±0.00a | 1.017±0.00a | ||
NP | 2.89±0.09b | 2.89±0.07b | 17±1.15b | 17±1.53b | 1.019±0.00a | 1.020±0.01a | ||
NPK | 3.13±0.16a | 3.04±0.11ab | 22±2.08a | 20±3.00a | 1.013±0.03a | 1.014±0.00a |
图2 土壤古菌16S rDNA DGGE指纹图谱的聚类分析图(a, 种植水稻后土壤; b, 种植小麦后土壤)
Fig. 2 Cluster analysis of 16S rDNA DGGE profiles for archaeal communities in the soil after rice (a) and wheat (b)
图3 石灰性紫色水稻土古菌16S rDNA克隆文库序列的系统发育图, 有方框的序列号为本实验所得。
Fig. 3 Phylogenetic tree based on archaeal 16S rDNA library and some other known archaeal 16S rDNA sequences. The sequences in squares were isolated in this study.
[1] |
Bastida F, Zsolnay A, Hernandez T, Garcia C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma, 147, 159-171.
DOI URL |
[2] | Brock TD (1987) The study of microorganisms in situ: progress and problems. Symposia of the Society for General Microbiology, 41, 1-17. |
[3] |
Chen X, Zhang LM, Shen JP, Xu ZH, He JZ (2010) Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils and Sediments, 10, 1510-1516.
DOI URL |
[4] |
Chen XP, Zhu YG, Xia Y, Shen JP, He JZ (2008) Ammonia- oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology, 10, 1978-1987.
URL PMID |
[5] | Conrad R, Klose M (2005) Effect of potassium phosphate fertilization on production and emission of methane and its 13C-stable isotope composition in rice microcosms. Soil Biology and Biochemistry, 37, 2099-2108. |
[6] | Delong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. BMC System Biology, 50, 470-478. |
[7] | Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2, 621-624. |
[8] |
Fournier GP, Dick AA, Williams D, Peter GJ (2011) Evolution of the archaea: emerging views on origins and phylogeny. Research in Microbiology, 162, 92-98.
URL PMID |
[9] | Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 6, 205-226. |
[10] | Gu YF, Zhang XP, Tu SH, Vestberg M, Lindström K (2009) Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilization treatments under wheat-rice cropping. European Journal of Soil Biology, 45, 239-246. |
[11] |
He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2008) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9, 2364-2374.
DOI URL PMID |
[12] |
Hershberger KL, Barns SM, Reysenbach AL, Dawson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature, 384, 420.
DOI URL PMID |
[13] |
Jurgens G, Lindström K, Saano A (1997) Novel group within kingdom Crenarchaeota from boreal forest soil. Applied and Environmental Microbiology, 63, 803-805.
DOI URL PMID |
[14] |
Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific ocean. Nature, 409, 507-510.
DOI URL PMID |
[15] |
Lueders T, Pommerenke B, Friedrich MW (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Applied and Environmental Microbiology, 70, 5778-5786.
DOI URL PMID |
[16] |
Muyzer G, Smalla K (1993) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73, 127-141.
URL PMID |
[17] |
Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 63, 3367-3373.
DOI URL PMID |
[18] |
Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science, 276, 734-740.
DOI URL PMID |
[19] |
Peng JJ, Lü Z, Rui JP, Lu YH (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Applied and Environmental Microbiology, 74, 2894-2901.
URL PMID |
[20] |
Riesner D, Steger G, Zimmat R, Owens RA, Wagenhöfer M, Hillen W, Vollbach S, Henco K (1989) Temperature gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein nucleic acid interactions. Electrophoresis, 10, 377-389.
URL PMID |
[21] |
Saikaly PE, Stroot PG, Oerther DB (2005) Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Applied and Environmental Microbiology, 71, 5814-5822.
DOI URL PMID |
[22] |
Sandaa RA, Enger TV (1999) Abundance and diversity of archaea in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65, 3293-3297.
URL PMID |
[23] | Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochemistry Reviews, 8, 505-518. |
[24] |
van der Wielen P, Voost S, van der Kooij D (2009) Ammonia-oxidizing bacteria and archaea in groundwater treatment and drinking water distribution systems. Applied and Environmental Microbiology, 75, 4687-4695.
URL PMID |
[25] | Watanabe T, Kimura M, Asakawa S (2006) Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biology and Biochemistry, 38, 1264-1274. |
[26] |
Ye W, Liu X, Lin S, Tan J, Pan J, Li D, Yang H (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiology Ecology, 70, 107-120.
DOI URL PMID |
[27] | Zhu B, Wang T, You X, Gao MR (2008) Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere, 18, 257-264. |
[1] | 弋维, 艾鷖, 吴萌, 田黎明, 泽让东科. 青藏高原高寒草甸土壤古菌群落对不同放牧强度的响应[J]. 生物多样性, 2025, 33(1): 24339-. |
[2] | 关大伟, 李力, 姜昕, 马鸣超, 曹凤明, 周宝库, 李俊. 长期施肥对黑土大豆根瘤菌群体结构和多样性的影响[J]. 生物多样性, 2015, 23(1): 68-78. |
[3] | 隆沂峄, 杨丽媛, 廖万金. 利用PCR-RFLP技术鉴定传粉榕小蜂隐种混合样品的物种组成[J]. 生物多样性, 2010, 18(4): 414-419. |
[4] | 孙鑫鑫, 刘惠荣, 冯福应, 孟建宇, 李蘅, 玛丽娜. 乌梁素海富营养化湖区浮游细菌多样性及系统发育分析[J]. 生物多样性, 2009, 17(5): 490-498. |
[5] | 徐琳, 徐佳洁, 刘巧莉, 谢瑞美, 韦革宏. 西北部分地区苦马豆根瘤菌的遗传多样性[J]. 生物多样性, 2009, 17(1): 69-75. |
[6] | 张建萍, 董乃源, 余浩滨, 周勇军, 陆永良, 耿锐梅, 余柳青. 应用16S rDNA-RFLP方法分析宁夏地区稻田土壤细菌的多样性[J]. 生物多样性, 2008, 16(6): 586-592. |
[7] | 滕齐辉, 曹慧, 崔中利, 王英, 孙波, 郝红涛, 李顺鹏. 太湖地区典型菜地土壤微生物16S rDNA的PCR-RFLP分析[J]. 生物多样性, 2006, 14(4): 345-351. |
[8] | 邓兆群, 胡勤学, 柳晟, 王瑶, 林木兰. 用PCR及RFLP方法分析支原体与植原体的同源性[J]. 生物多样性, 2000, 08(1): 103-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn