Biodiversity Science ›› 2014, Vol. 22 ›› Issue (3): 348-357.doi: 10.3724/SP.J.1003.2014.13190

• Original Papers • Previous Article     Next Article

Species abundance–distribution relationship and its interpretation in plant communities on the Songnen grasslands, China

, Dayong Han, Yunfei Yang*   

  1. Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024
  • Received:2013-08-19 Revised:2014-05-05 Online:2014-06-04
  • Yunfei Yang E-mail:yangyf@nenu.edu.cn

The species abundance–distribution relationship (SAD) is a key issue in biodiversity science, yet there is no consensus about the mechanism that shape the SAD. The two most widely-recognized explanations are Brown’s niche breadth hypothesis and metapopulation dynamics theory. To test these two hypotheses on the Songnen grasslands, we investigated plant species growth-form composition and interpatch distance in Leymus chinensis–forb community patches in 2007 and 2008. We employed a growth-form adaption index (GAI), a measure of species adaptation, as a surrogate for species niche breadth and employed shortest distance to nearest patch to indicate the dispersal and colonization process of plant species. Two-year data showed that a species’ local abundance was positively correlated with this species’ regional distribution. Furthermore, the SAD showed no obvious variation among years. Both abundance and distribution of a species were closely correlated with plant growth-form; species with higher abundance and wider distributions were mainly comprised of rhizomatous root, erect grass-like stem, or erect dicot stem growth forms. By contrast, species with lower abundance and narrow distributions were mainly comprised of basal rosette stem or bushy root growth forms. GAI was both positively and linearly correlated with abundance and distribution of a species. A few species were distributed widely, whereas most species were distributed more narrowly. This result directly supports the niche breadth hypothesis. Shortest distance to nearest patch exhibited a negative power-law correlation with both abundance and distribution of a species, whereas no correlation was detected between species composition similarity index and distance of patch pairs, results which failed to support the metapopulation dynamic theory. We argue that dispersal processes may be an important potential mechanism for shaping the SAD relationship of the plant communities in Songnen Leymus chinensis meadows.

Key words: allozyme, isozyme, genetic diversity, molecular systematics

[1] Jie-Li HE. Development of EST-SSR and Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[3] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[4] Xie Lifeng, Li Ning, Li Ye, Yao Minghua. Genetic Diversity and Population Structure of Eggplant (Solanum melongena) Germplasm Resources Based on SRAP Method [J]. Chin Bull Bot, 2019, 54(1): 58-63.
[5] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[6] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[7] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. Domestication origin and spread of cultivated tea plants [J]. Biodiv Sci, 2018, 26(4): 357-372.
[8] Shengyuan Qin,Jun Rong,Wenju Zhang,Jiakuan Chen. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin [J]. Biodiv Sci, 2018, 26(4): 384-395.
[9] Ren Mengyun, Du Leshan, Chen Yanjun, Zhang Dun, Shen Qi, Guan Xiao, Zhang Yindong. Analysis on Genetic Diversity of Cynomorium songaricum by ITS Sequence [J]. Chin Bull Bot, 2018, 53(3): 313-321.
[10] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding [J]. Biodiv Sci, 2018, 26(3): 217-228.
[11] Xunhe Huang,Zheqi Yu,Zhuoxian Weng,Danlin He,Zhenhua Yi,Weina Li,Jiebo Chen,Xiquan Zhang,Bingwang Du,Fusheng Zhong. Mitochondrial genetic diversity and maternal origin of Guangdong indigenous chickens [J]. Biodiv Sci, 2018, 26(3): 238-247.
[12] Xingtong Wu,Lu Chen,Minqiu Wang,Yuan Zhang,Xueying Lin,Xinyu Li,Hong Zhou,Yafeng Wen. Population structure and genetic divergence in Firmiana danxiaensis [J]. Biodiv Sci, 2018, 26(11): 1168-1179.
[13] ZHANG Li-Wen, HAN Guang-Xuan. A review on the relationships between plant genetic diversity and ecosystem functioning [J]. Chin J Plan Ecolo, 2018, 42(10): 977-989.
[14] Wumei Xu, Xiuqin Ci, Jie Li. Parallel effects of environmental properties on genetic diversity and species diversity [J]. Biodiv Sci, 2017, 25(5): 481-489.
[15] Fang Sheng, Shuying Chen, Jia Tian, Peng Li, Xue Qin, Shuping Luo, Jiang Li. Genetic diversity of Crataegus songorica in Xinjiang [J]. Biodiv Sci, 2017, 25(5): 518-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Florian Fort, Claire Jouany, Pablo Cruz. Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies[J]. J Plant Ecol, 2013, 6(3): 211 -219 .
[2] Xilong Wang, Jiangtao Ou, Liguang Huang, Chunhua Guo, Jincheng Zhong, Xiaocheng Li, Feng Wang, Xinli Zheng. Genetic diversity in the Wuzhishan pig from Hainan based on 32 microsatellite loci[J]. Biodiv Sci, 2005, 13(1): 20 -26 .
[3] Lisette M. Bakker, Liesje Mommer, Jasper van Ruijven. Can root trait diversity explain complementarity effects in a grassland biodiversity experiment?[J]. J Plant Ecol, 2018, 11(1): 73 -84 .
[4] Tongqing Song, Wanxia Peng, Fuping Zeng, Kelin Wang, Honglin Cao, Xiankun Li, Wengeng Qin, Weining Tan, Lu Liu. Community composition and biodiversity characteristics of forests in Karst cluster-peak-depression region[J]. Biodiv Sci, 2010, 18(4): 355 -364 .
[5] Keping Ma. Hot topics for Biodiversity Science[J]. Biodiv Sci, 2016, 24(1): 1 -2 .
[6] LU Yi-Jun, GE Ying, CHANG Jie, GUAN Bao-Hua, YUE Chun-Lei. Studies on differentiation and space utilization strategies of different local populations of Mosla hangchowensis[J]. Biodiv Sci, 2001, 09(3): 254 -259 .
[7] Christoph Z. Hahn, Pascal A. Niklaus, Helge Bruelheide, Stefan G. Michalski, Miaomiao Shi, Xuefei Yang, Xueqin Zeng, Markus Fischer, Walter Durka. Opposing intra vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages[J]. J Plant Ecol, 2017, 10(1): 242 -251 .
[8] Ting Lu, Dunyan Tan. Evolutionary implications of pollen presentation schedules in animal- pollinated plants[J]. Biodiv Sci, 2007, 15(6): 673 -679 .
[9] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[10] LIU Shou-Jiang-, HUANG You-You-, HU Cui-Hua. Dynamic Changes Analysis on the Main Vegetation Type in the Xiaoxiangling Mountains[J]. Plant Diversity, 2011, 33(3): 350 -356 .