Biodiversity Science ›› 2009, Vol. 17 ›› Issue (3): 272-279.doi: 10.3724/SP.J.1003.2009.08327

• Editorial • Previous Article     Next Article

The spatial pattern of species richness and diversity centers of gymno-sperm in China

Guo Li 1, Zehao Shen 1*, Tsunshen Ying 2, Jingyun Fang 1   

  1. 1 Department of Ecology, College of Urban and Environmental Sciences, the Key Laboratory for Earth Surface Proc-esses of the Ministry of Education, Peking University, Beijing 100871
    2 Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2008-12-10 Revised:2009-03-31 Online:2009-05-20

China has the richest flora of gymnosperm in the world, which is crucial for understanding the change of global distribution and phylogeny of gymnosperm. We mapped the geographical range of 202 native gymnosperm species in China with records of altitudinal range and horizontal distribution at the county level, and explored the spatial distribution characteristics of Chinese gymnosperm at the family, genus and species levels. The uniqueness and similarity among the richness centers were analyzed with respect to their gymnosperm family and genus composition, and the endemism. Generally, Chinese gymnosperm shows a decreasing trend of richness from south to north. The richness is high in mountainous areas and low in large plains and on large plateaus. From the species, genus to family levels, the area with high gymnosperm rich-ness increases, and the center with high richness shifts southward. About 85% of all Chinese gymnosperm species are harbored in just 5% of Chinese land area. We classified these regions into six richness centers: (1) Eastern Himalaya-Hengduan Mountains-Qinling Mountains; (2) joint area of Yunnan-Guizhou-Guangxi and the South Mountain Ranges; (3) central China mountains; (4) Huangshan-Wuyi Mountains; (5) southern mountains of Hainan Island; and (6) central part of Changbai Mountains. The floristic relationship of gym-nosperm among the centers is obviously related with their geographic location, and the effect of isolation by distance. Among the six centers, Hengduan Mountains is a major variation center of gymnosperm in China.

Key words: Yushan Hill, biodiversity, soil invertebrate

[1] Lintao Huang Hui Huang Lei Jiang. (2020) A revised taxonomy for Chinese hermatypic corals . Biodiv Sci, 28(4): 515-523.
[2] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. (2020) Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China . Biodiv Sci, 28(2): 219-225.
[3] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. (2020) Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity . Biodiv Sci, 28(2): 244-252.
[4] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China . Biodiv Sci, 28(2): 226-230.
[5] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. (2020) The updated checklists of amphibians and reptiles of China . Biodiv Sci, 28(2): 189-218.
[6] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. (2020) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 99-106.
[7] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[8] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. (2020) Threat status of non-lichenized macro-ascomycetes in China and its threatening factors . Biodiv Sci, 28(1): 26-40.
[9] Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[10] Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[11] Yongmin Li,Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[12] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[13] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
[14] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. (2019) Spring and autumn shrimp and crab biodiversity in the east Nanji Islands . Biodiv Sci, 27(7): 787-795.
[15] Ding Lubin, Ma Nan, Wang Guoping, He Siyuan, Min Qingwen. (2019) Visual analysis of hotspots and emerging trends in traditional knowledge associated with biodiversity . Biodiv Sci, 27(7): 716-727.
Full text