
Biodiv Sci ›› 2019, Vol. 27 ›› Issue (4): 373-379. DOI: 10.17520/biods.2019003 cstr: 32101.14.biods.2019003
Special Issue: 传粉生物学
• Original Papers: Plant Diversity • Previous Articles Next Articles
Received:2019-01-07
Accepted:2019-05-04
Online:2019-04-20
Published:2019-06-05
Contact:
Mingxun Ren
Wenqian Xiang, Mingxun Ren. Adaptive significance of yellow flowered Bombax ceiba (Malvaceae)[J]. Biodiv Sci, 2019, 27(4): 373-379.
Fig. 1 Floral syndromes of red and yellow flowers of Bombax ceiba (I-L, I-S, P represent inner long stamen, inner short stamen and peripheral stamen, respectively)
Fig. 3 Relative spectral reflectance of red and yellow flowers of Bombax ceiba. The short dashed lines are spectral sensitivities of bees, the dotted line are spectral sensitivities of birds.
| 红花 Red flower | 黄花 Yellow flower | |
|---|---|---|
| 花蜜产量 Nectar volume (mL) | 7.46 ± 1.05a | 7.78 ± 0.84a |
| 果糖 Fructose (mg/mL) | 13.30 ± 1.89a | 13.09 ± 2.79a |
| 葡萄糖 Glucose (mg/mL) | 26.71 ± 0.86a | 28.25 ± 2.04a |
| 烷烃类 Hydrocarbon (%) | 67.42 ± 13.92a | 54.75 ± 7.78a |
| 脂类 Lipids (%) | 6.59 ± 0.54a | 7.08 ± 0.98a |
| 2,4-二叔丁基苯酚 2,4-Di-tert-butylphenol (%) | 5.88 ± 1.53a | 6.42 ± 0.93a |
| 5-羟基-2,4-二叔丁基苯基酯戊酸5-hydroxy-pentanoic acid (% ) | 0.79 ± 0.09a | 0.55 ± 0.11a |
Table 1 Nectar volume, nectar components and volatile substances (%) of red and yellow flowers of Bombax ceiba. Data are mean ± standard. Different small letters mean significant difference at 0.05 level among treatments.
| 红花 Red flower | 黄花 Yellow flower | |
|---|---|---|
| 花蜜产量 Nectar volume (mL) | 7.46 ± 1.05a | 7.78 ± 0.84a |
| 果糖 Fructose (mg/mL) | 13.30 ± 1.89a | 13.09 ± 2.79a |
| 葡萄糖 Glucose (mg/mL) | 26.71 ± 0.86a | 28.25 ± 2.04a |
| 烷烃类 Hydrocarbon (%) | 67.42 ± 13.92a | 54.75 ± 7.78a |
| 脂类 Lipids (%) | 6.59 ± 0.54a | 7.08 ± 0.98a |
| 2,4-二叔丁基苯酚 2,4-Di-tert-butylphenol (%) | 5.88 ± 1.53a | 6.42 ± 0.93a |
| 5-羟基-2,4-二叔丁基苯基酯戊酸5-hydroxy-pentanoic acid (% ) | 0.79 ± 0.09a | 0.55 ± 0.11a |
| 红花植株 Red-flower individual (n = 5) | 黄花植株 Yellow-flower individual (n = 5) | |
|---|---|---|
| 花朵数量 No. of flowers per tree | 10,050 ± 4,452.25a | 9,780 ± 2,031.50a |
| 每小时鸟类访花次数 Bird visits per hour | 79 ± 14.27a | 34.80 ± 19.61b |
| 每小时蜜蜂访花次数 Honeybee visits per hour | 100.40 ± 63.79a | 360 ± 114.67b |
| 果实数量 No. of fruits per tree | 362 ± 102.32a | 186.20 ± 66.52b |
| 坐果率 Fruit set (%) | 3.27 ± 0.93a | 1.08 ± 0.56b |
Table 2 Pollinator visitation and fruit set (%) of red and yellow flowers of Bombax ceiba. Data are mean ± standard. Different small letters mean significant difference at 0.05 level among treatments.
| 红花植株 Red-flower individual (n = 5) | 黄花植株 Yellow-flower individual (n = 5) | |
|---|---|---|
| 花朵数量 No. of flowers per tree | 10,050 ± 4,452.25a | 9,780 ± 2,031.50a |
| 每小时鸟类访花次数 Bird visits per hour | 79 ± 14.27a | 34.80 ± 19.61b |
| 每小时蜜蜂访花次数 Honeybee visits per hour | 100.40 ± 63.79a | 360 ± 114.67b |
| 果实数量 No. of fruits per tree | 362 ± 102.32a | 186.20 ± 66.52b |
| 坐果率 Fruit set (%) | 3.27 ± 0.93a | 1.08 ± 0.56b |
| [1] |
Aluri JSR, Srungavarapu PR, Kone R (2005) Pollination by bats and birds in the obligate outcrosser Bombax ceiba L. (Bombacaceae), a tropical dry season flowering tree species in the Eastern Ghats forests of India. Ornithological Science, 4, 81-87.
DOI URL |
| [2] |
APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141, 399-436.
DOI URL |
| [3] | Barwick M (2004) Tropical and Subtropical Trees. Timber Press, Portland. |
| [4] |
Bergamo PJ, Rech AR, Brito VLG, Sazima M (2016) Flower colour and visitation rates of Costus arabicus support the ‘bee avoidance’ hypothesis for red-reflecting hummingbird-pollinated flowers. Functional Ecology, 30, 710-720.
DOI URL |
| [5] |
Chang SM, Rausher MD (1999) The role of inbreeding depression in maintaining the mixed mating system of the common morning glory, Ipomoea purpurea. Evolution, 53, 1366-1376.
DOI URL |
| [6] |
Chittka L, Waser N (1997) Why red flowers are not invisible to bees. Israel Journal of Plant Sciences, 45, 169-183.
DOI URL |
| [7] | Cruden RW (1977) Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 35, 964-974. |
| [8] | Dafni A (1992) Pollination Ecology: A Practical Approach. Oxford University Press, Oxford. |
| [9] |
Dafni A, Maués MM (1998) A rapid and simple procedure to determine stigma receptivity. Sexual Plant Reproduction, 11, 177-180.
DOI URL |
| [10] | Davis TA, Mariamma KO (1965) Three kinds of stamens in Bombax ceiba L. (Bombacaceae). Botanic Garden Meise, 35, 185-211. |
| [11] |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution,and Systematics, 35, 375-403.
DOI URL |
| [12] |
Gigord LDB, Macnair MR, Smithson A (2001) Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò. Proceedings of the National Academy of Sciences,USA, 98, 6253-6255.
DOI URL |
| [13] | Gong YB, Huang SQ (2007) On methodology of foraging behavior of pollinating insects. Biodiversity Science, 15, 576-583. (in Chinese with English abstract) |
| [ 龚燕兵, 黄双全 (2007) 传粉昆虫行为的研究方法探讨. 生物多样性, 15, 576-583.] | |
| [14] |
Grunfeld E, Vincent C, Bagnara D (1989) High-performance liquid chromatography analysis of nectar and pollen of strawberry flowers. Journal of Agricultural and Food Chemistry, 37, 290-294.
DOI URL |
| [15] |
Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G (2003) The role of herbivores in the maintenance of a flower color polymorphism wild radish. Ecology, 84, 1733-1743.
DOI URL |
| [16] |
Joseph N, Siril EA (2013) Floral color polymorphism and reproductive success in annatto (Bixa orellana L.). Tropical Plant Biology, 6, 217-227.
DOI URL |
| [17] |
Koski MH, Ashman TL (2016) Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors. New Phytologist, 211, 708-718.
DOI URL |
| [18] | Li QL, Ma XK, Cheng J, Luo YB (2012) Quantitative studies of floral color and floral scent. Biodiversity Science, 20, 308-316. (in Chinese with English abstract) |
| [ 李庆良, 马晓开, 程瑾, 罗毅波 (2012) 花颜色和花气味的量化研究方法. 生物多样性, 20, 308-316.] | |
| [19] |
Majetic CJ, Raguso RA, Ashman T (2009) The sweet smell of success: Floral scent affects pollinator attraction and seed fitness in Hesperis matronalis. Functional Ecology, 23, 480-487.
DOI URL |
| [20] |
Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: Floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE, 2, e556.
DOI URL |
| [21] | Ren MX (2008) Stamen fusion in plants: Diversity, adaptive significance, and taxonomic implications. Journal of Systematics and Evolution, 46, 452-466. (in Chinese with English abstract) |
| [ 任明迅 (2008) 植物雄蕊合生的多样性、适应意义及分类学意义初探. 植物分类学报, 46, 452-466.] | |
| [22] | Ren MX (2009) Intrafloral stamen differentiations and their adaptive significances. Chinese Journal of Plant Ecology, 33, 222-236. (in Chinese with English abstract) |
| [ 任明迅 (2009) 花内雄蕊分化及其适应意义. 植物生态学报, 33, 222-236.] | |
| [23] |
Rodriguez-Riano T, Dafni A (2000) A new procedure to assess pollen viability. Sexual Plant Reproduction, 12, 241-244.
DOI URL |
| [24] | Schoonhoven LM, van Loon JJA, Dicke M (2007) Insect-Plant Biology. Oxford University Press, Oxford, UK. |
| [25] |
Stanton ML, Snow AA, Handel SN (1986) Floral evolution: Attractiveness to pollinators increases male fitness. Science, 232, 1625-1626.
DOI URL |
| [26] |
Vaidya P, Mcdurmon A, Mattoon E, Keefe M, Carley L, Lee CR, Bingham R, Anderson JT (2018) Ecological causes and consequences of flower color polymorphism in a self- pollinating plant (Boechera stricta). New Phytologist, 218, 380-392.
DOI URL |
| [27] |
Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany, 24, 163-178.
DOI URL |
| [28] | Zhang DY (2004) Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese) |
| [ 张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.] | |
| [29] | Zhou ZL, Ma HC, Lin K, Zhao YJ, Chen Y, Xiong Z, Wang LY, Tian B (2015) RNA-seq reveals complicated transcriptomic responses to drought stress in a nonmodel tropic plant, Bombax ceiba L. Evolutionary Bioinformatics, 11, 27-37. |
| [1] | Haidong Li, Zongxin Ren, Zhikun Wu, Kun Xu, Hong Wang. Variation in floral traits of distylous Primula poissonii (Primulaceae) along geographic gradients [J]. Biodiv Sci, 2015, 23(6): 747-758. |
| [2] | Yunfang Zhong, Zhe Zhang, Xiqiang Song, Zhaode Zhou. Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes [J]. Biodiv Sci, 2014, 22(4): 467-475. |
| [3] | Lingzhi Zhang, Hui Shang, Yibo Luo, Xin Cheng, Weining Bai. Morphology and cytology of three flower phenotypes in a duodichogamous tree species, Acer mono [J]. Biodiv Sci, 2011, 19(5): 551-557. |
| [4] | Min Liu, Shan Sun, Qing-jun Li. The relation between stigma position and receptivity in two flexistylous gingers [J]. Biodiv Sci, 2007, 15(6): 639-644. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn
