Biodiversity Science ›› 2018, Vol. 26 ›› Issue (8): 789-806.doi: 10.17520/biods.2018054

Previous Article     Next Article

Advances in remote sensing application for biodiversity research

Qinghua Guo1, 2, *(), Tianyu Hu1, 2, Yuanxi Jiang3, Shichao Jin1, 2, Rui Wang1, Hongcan Guan1, 2, Qiuli Yang4, Yumei Li1, 2, Fangfang Wu1, 2, Qiuping Zhai1, 2, Jin Liu1, 2, Yanjun Su1, 2   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 Urban Construction School, Beijing City University, Beijing 100083
    4 College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046
  • Received:2018-07-22 Accepted:2018-07-24 Online:2018-09-27
  • Guo Qinghua E-mail:qguo@ibcas.ac.cn
  • About author:# Co-first authors

Since rapid human population growth, overconsumption of natural resources by human activities and climate change, loss and extinction of species is increasing, and biodiversity become an important global issue. Traditional ground-based biodiversity researches focus on the species or community, which can not provide necessary information for biodiversity conservation and assessment at a large scale. Since the advantages in spatial coverage and time series, remote sensing is very useful in large-scale biodiversity monitoring, mapping and assessment. According to the height of the platform, remote sensing platforms can be classified into satellite remote sensing, airborne remote sensing and near-surface remote sensing, which can obtain biodiversity information at different spatial scales. The purpose of this study is to review the recent advances of application of different remote sensing platforms for biodiversity research. We focus on the following aspects, such as observation methods, research scale, and analyze advantages and limitations of different remote sensing platforms. Finally, we summary the future application of remote sensing in biodiversity research. From the literature statistics result, we found that satellite platform were used more frequently in biodiversity research than other remote sensing platform. Due to the high flight cost, the biodiversity researches used airborne remote sensing was fewer than the researches used satellite. Near-surface remote sensing includes the UAV platform and the ground-based platform, which is an emerging remote sensing platform and hotspot in remote sensing of biodiversity. Compared to satellite and airborne remote sensing platforms, the near-surface remote sensing platform can directly observe the individuals and can directly obtain information from species or population. Although there are some limitations in these three platforms, we believe that remote sensing technology can better serve biodiversity conservation and assessment from different temporal and spatial scales with the development of remote sensing platforms and the improvement of sensors.

Key words: satellite remote sensing, airborne remote sensing, near-surface remote sensing, UAV, lidar

Fig. 1

The trend of literature quantity of remote sensing in biodiversity"

Fig. 2

Observation scale of different remote sensing platforms in biodiversity research"

Fig. 3

Literature quantity of remote sensing platform (a), study scale (b) and biodiversity group (c) in biodiversity research"

Fig. 4

The trend of literatures about different remote sensing senors using in biodiversity research"

Table 1

the parameters list of Chinese and international popular remote sensing satellites"

卫星
Satellite
传感器
Sensor
传感器类型
Type of sensor
波段数
Bands
空间分辨率
Spatial resolution
重返时间
Repeat interval
发射时间
Launch date
LandSat 5 TM 多光谱
Multispectral
7 Band 1-5, 7: 30 m
Band 6: 120 m
16 d 1984
(2013宣布失效)
(Deactivated in 2013)
LandSat 7 ETM+ 全色/多光谱
Panchromatic/
multispectral
8 Band 8: 15 m
Band 1-5, 7: 30 m
Band 6: 60 m
16 d 1999
(2003.05设备故障,影像出现条带状)
(SLC-off in 2003.05)
LandSat 8 OLI 全色/多光谱
Panchromatic/
multispectral
9 Band 8: 15 m
Band 1-7, 9: 30 m
16 d 2013
TRS 热红外
Thermal infrared
2 100 m
QucikBird-2 CCD相机
CCD camera
全色/多光谱
Panchromatic/
multispectral
4 全色: 0.61 m
Panchromatic
多光谱: 2.44 m
Multispectral
1-6 d 2001
(2015宣布失效)
(Deactivated in 2015)
IKONOS CCD相机
CCD camera
全色/多光谱
Panchromatic/
multispectral
4 全色: 1 m
Panchromatic
多光谱: 4 m
Multispectral
3 d 1999
(2015年宣布退役)
(Deactivated in 2015)
SPOT 5 HRG 全色/多光谱
Panchromatic/
multispectral
4 全色: 2.5 m
Panchromatic
Band 1-3: 10 m
Band 4: 20 m
26 d 2002
SPOT 7 NAOMI 全色/多光谱
Panchromatic/
multispectral
4 全色: 1.5 m
Panchromatic
多光谱: 6 m
Multispectral
26 d 2014
GeoEye-1 CCD相机 全色/多光谱
Panchromatic/
multispectral
4 全色: 0.41 m
Panchromatic
多光谱: 1.65 m
Multispectral
2-3 d 2008
WorldView-3 CCD相机 全色/多光谱/短波红外/CAVIS
Panchromatic/
multispectral/
Short wavelength
infrared/CAVIS
29 全色: 0.31 m
Panchromatic
多光谱: 1.24 m
Multispectral
短波红外: 3.7 m
Short wavelength infrared
CAVIS 30 m
小于1 d 2014
卫星
Satellite
传感器
Sensor
传感器类型
Type of sensor
波段数
Bands
空间分辨率
Spatial resolution
重返时间
Repeat interval
发射时间
Launch date
WorldView-4 CCD相机 全色/多光谱
Panchromatic/
multispectral
4 全色: 0.31 m
Panchromatic
多光谱: 1.24 m
Multispectral
1或4.5 d 2016
Terra ASTER 近红外/短波红外/
热红外
Near Infrared/Short Wavelength Infrared/ Thermal Infrared
15 近红外: 15 m
Near Infrared
短波红外: 30 m
Short wavelength infrared
热红外: 90 m
Thermal infrared
16 d 1999
MODIS 多光谱
Multispectral
36 Band 1, 2: 250 m
Band 3-7: 500 m
Band 8-36: 1,000 m
AQUA MODIS 多光谱
Multispectral
36 Band 1, 2: 250 m
Band 3-7: 500 m
Band 8-36: 1,000 m
16 d 2002
Sentinel-1A C波段合成孔径雷达
SAR (synthetic aperture radar) with C band
SAR - 条带模式:5*5 m
Strip map mode
干涉宽幅模式: 5*20 m
Interferometric wide swath mode
超宽幅模式: 20*40 m
Extra wide swath mode
6 d 2014
Sentinel-2A 多光谱成像仪
Multispectral scanner
多光谱
Multispectral
13 Band 2-4, 8: 10 m
Band 5-7, 8A, 11, 12: 20 m
Band 1, 9, 10: 60 m
10 d 2015
GF-1 全色多光谱相机
Panchromatic multispectral scanner
全色/多光谱
Panchromatic/
multispectral
5 Band 1: 2 m
Band 2-5: 8 m
4 d 2013
多光谱相机
Multispectral scanner
多光谱
Multispectral
4 16 m
GF-2 全色多光谱相机
Panchromatic multispectral scanner
全色/多光谱
Panchromatic/
multispectral
5 Band 1: 1 m
Band 2-5: 4 m
5 d 2014
GF-3 C波段合成孔径雷达
SAR with C band
SAR - 因成像模式而定
(1, 3, 5, 8, 10, 25, 50, 100, 500 m)
Resolution depend on the scan mode
- 2016
GF-4 面阵凝视相机
Staring array camera
可见光/近红外/
中波红外
Visible/Near infrared/
Middle infrared
6 可见光近红外: 50 m
Visible/near infrared
中波红外: 400 m
Middle infrared
20 s 2015
ZY-1 02C 全色多光谱相机
Panchromatic multispectral scanner
全色/多光谱
Panchromatic/
multispectral
4 全色: 5m
Panchromatic
多光谱: 10 m
Multispectral
3 d 2011
全色高分辨率相机
Panchromatic
high-resolution scanner
全色
Panchromatic
- 2.36 m
ZY-3 正视全色TDI CCD相机
Ortho-panchromatic TDI CCD camera
全色
Panchromatic
- 2.1 m 5 d 2012
前视、后视TDI CCD相机
fore sigh and back sight TDI CCD camera
全色
Panchromatic
- 3.5 m
正视多光谱相机
Multispectral ortho-imager
多光谱
Multispectral
4 6 m
卫星
Satellite
传感器
Sensor
传感器类型
Type of sensor
波段数
Bands
空间分辨率
Spatial resolution
重返时间
Repeat interval
发射时间
Launch date
HJ-1A CCD相机
CCD camera
多光谱
Multispectral
4 30 m 4 d 2008
高光谱成像仪
Hyperspectral scanner
高光谱
Hyperspectral
110-128 100 m
HJ-1B CCD相机
CCD camera
多光谱
Multispectral
4 30 m 4 d 2008
红外多光谱相机
Infrared multispectral
scanner
红外
Infrared
4 150 m
HJ-1C 合成孔径雷达
SAR
SAR - 单视模式: 5 m
Single mode
距离向四视模式: 20 m
Four sights at range
direction
4 d 2012

Table 2

Biodiversity indicators that can be derived from satellite remote sensing"

生物多样性核心指标
Essential biodiversity variables
卫星遥感能获取的指标
Indicators obtained from satellite remote sensing
物种数量
Species populations
物种分布 Species distribution (Saveraid et al, 2001; Leyequien et al, 2007; Shirley et al, 2013; Sequeira et al, 2014)
物种性状
Species traits
叶面积指数 LAI (Fuentes et al, 2008)、氮素含量 Nitrogen content (Ojoyi et al, 2017)等
群落组成
Community composition
物种密度 Species density (Hernández-Stefanoni & Dupuy, 2007; Godinho et al, 2016)、物种丰富度 Species richness (Knudby et al, 2010; Lucas et al, 2010)等
生态系统功能
Ecosystem function
植被绿度 Greenness (Zhou et al, 2014)、植被物候 Phenology (Ganguly et al, 2010)、光合作用能力和生态系统生产力 Photosynthesis and ecosystem productivity (Franklin et al, 2006; Mishra & Chaudhuri, 2015)等
生态系统结构
Ecosystem structure
景观破碎化和异质性 Landscape fragmentation and heterogeneity (Saatchi et al, 2001; Wang & Moskovits, 2001; Tuanmu & Jetz, 2015)、土地覆盖和土地利用 Landcover and land use (Farashi et al, 2016; Zhao et al, 2016)、植被高度 Vegetation height (Su et al, 2017)等

Fig. 5

Cloud profile of different forest point clouds obtained by unmanned aerial vehicle lidar. (a) Conifer and broad-leaved mixed forest in Changbai Mountain, Jilin; (b) Evergreen broad-leaved forest in Gutian Mountain, Zhejiang; (c) Tropical rain forest in Xishuangbanna, Yunnan; (d) Mangrove forest in Leizhou, Guangdong."

Fig. 6

Plot-level points cloud data obtained by backpack lidar. (a) Botanical Gardens; (b) Orchards; (c) Nurseries."

Table 3

Biodiversity monitoring indicators based on remote sensing at different spatial scales"

空间幅度与观测平台
Scale & Observation platform
指标
Indicators
参数
Parameters
全球/洲际/国家
Global/continental/national
卫星平台
Satellite borne
生境类型
Habitat type
土地覆盖类型/植被类型/二者结合
Landcover/vegetation type/both
立地条件
Stand condition
陆面温度 Land surface temperature
大气降水 Precipitation
高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position
生境结构
Habitat structure
植被覆盖度 Canopy cover
植被冠层高度 Canopy height
生境质量
Habitat quality
植被指数 NDVI/EVI/SAVI
叶面积指数 LAI
地上生物量 Aboveground biomass
绿度 Greenness
光合有效辐射吸收比率 FPAR
区域/省际
Regional/province-scale
机载平台
Airborne
生境类型
Habitat type
土地覆盖类型/植被类型/二者结合
Landcover/vegetation type/both
立地条件
Stand condition
陆面温度 Land surface temperature
大气降水 Precipitation
高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position
生境结构
Habitat structure
植被覆盖度 Canopy cover
植被冠层高度 Canopy height
生境质量
Habitat quality
植被指数 NDVI/EVI/SAVI
叶面积指数 LAI
地上生物量 Aboveground biomass
绿度 Greenness
光合有效辐射吸收比率 FPAR
景观
Landscape
无人机平台
UAV borne
生境类型
Habitat type
植被类型 Vegetation type
景观多样性指数 Landscape diversity index
立地条件
Stand condition
陆面温度 Land surface temperature
大气降水 Precipitation
高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position
土壤含水量 Soil water content
生境结构
Habitat structure
植被覆盖度 Canopy cover
植被冠层高度 Canopy height
植被密度 Vegetation density
斑块大小、形状、丰富度 Size, shape and richness of patches
生境质量
Habitat quality
植被指数 NDVI/EVI/SAVI
叶面积指数 LAI
地上生物量 Aboveground biomass
绿度 Greenness
光合有效辐射吸收比率 FPAR
景观聚集度指数 Landscape aggregation metrics
景观连通性指数 Landscape connectivity metrics
景观破碎化程度 Landscape fragmentation index
局地/样地
Local/plot
地基移动/固定平台
Terrestrial or mobile platform
生境类型
Habitat type
植被类型 Vegetation type
物种多样性指数 Biodiversity index
立地条件
Stand condition
土壤含水量 Soil water content
高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position
生境结构
Habitat structure
植被覆盖度 Canopy cover
冠层高度 Canopy height
植被密度 Vegetation density
单木树高 Individual tree height
枝下高 Crown base height
植被冠层高度剖面 Vegetation height profile
冠幅 Crown size
空间幅度与观测平台
Scale & Observation platform
指标
Indicators
参数
Parameters
生境质量
Habitat quality
植被指数 NDVI/EVI/SAVI
叶面积指数 LAI
地上生物量 Aboveground biomass
绿度 Greenness
光合有效辐射吸收比率FPAR
景观聚集度指数 Landscape aggregation metrics
景观连通性指数 Landscape connectivity metrics
[1] Adame K, Pardo MA, Salvadeo C, Beier E, Elorriaga- Verplancken FR (2017) Detectability and categorization of California sea lions using an unmanned aerial vehicle. Marine Mammal Science, 33, 913-925.
[2] Asner G, Martin R, Knapp D, Tupayachi R, Anderson C, Sinca F, Vaughn N, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385-389.
[3] Asner GP, Martin RE (2008) Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 3958-3970.
[4] Austin GE, Thomas CJ, Houston DC, Thompson DB (1996) Predicting the spatial distribution of buzzard Buteo buteo nesting areas using a geographical information system and remote sensing. Journal of Applied Ecology, 33, 1541-1550.
[5] Azmy SN, Sah SAM, Shafie NJ, Ariffin A, Majid Z, Ismail MNA, Shamsir MS (2012) Counting in the dark: Non-intrusive laser scanning for population counting and identifying roosting bats. Scientific Reports, 2, 524.
[6] Brisson-Curadeau E, Bird D, Burke C, Fifield DA, Pace P, Sherley RB, Elliott KH (2017) Seabird species vary in behavioural response to drone census. Scientific Reports, 7, 17884.
[7] Carleer A, Wolff E (2004) Exploitation of very high resolution satellite data for tree species identification. Photogrammetric Engineering & Remote Sensing, 70, 135-140.
[8] Carlson KM, Asner GP, Hughes RF, Ostertag R, Martin RE (2007) Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems, 10, 536-549.
[9] Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.
[10] Clawges R, Vierling K, Vierling L, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of Environment, 112, 2064-2073.
[11] Clerici N, Weissteiner CJ, Gerard F (2012) Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories. Remote Sensing, 4, 1781-1803.
[12] Coops NC, Tompaski P, Nijland W, Rickbeil GJ, Nielsen SE, Bater CW, Stadt JJ (2016) A forest structure habitat index based on airborne laser scanning data. Ecological Indicators, 67, 346-357.
[13] Coops NC, Wulder MA, Duro DC, Han T, Berry S (2008) The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators, 8, 754-766.
[14] Dassot M, Constant T, Fournier M (2011) The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Annals of Forest Science, 68, 959-974.
[15] Davies AB, Asner GP (2014) Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology & Evolution, 29, 681-691.
[16] Duffy JP, Pettorelli N (2012) Exploring the relationship between NDVI and African elephant population density in protected areas. African Journal of Ecology, 50, 455-463.
[17] Duro DC, Coops NC, Wulder MA, Han T (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography: Earth and Environment, 31, 235-260.
[18] Evans LJ, Jones TH, Pang K, Evans MN, Saimin S, Goossens B (2015) Use of drone technology as a tool for behavioral research: A case study of crocodilian nesting. Herpetological Conservation and Biology, 10, 90-98.
[19] Farashi A, Parvian N, Najafabadi MS (2016) Land use and land cover change in protected areas: Using remote sensing to survey suitable habitats of brown bear Ursus arctos. Polish Journal of Ecology, 64, 420-430.
[20] Franklin KA, Lyons K, Nagler PL, Lampkin D, Glenn EP, Molina-Freaner F, Markow T, Huete AR (2006) Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biological Conservation, 127, 62-71.
[21] Fuentes S, Palmer AR, Taylor D, Zeppel M, Whitley R, Eamus D (2008) An automated procedure for estimating the leaf area index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application to an examination of the relationship between remotely sensed and field measurements of LAI. Functional Plant Biology, 35, 1070-1079.
[22] Ganguly S, Friedl MA, Tan B, Zhang X, Verma M (2010) Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sensing of Environment, 114, 1805-1816.
[23] Getzin S, Wiegand K, Schoening I (2012) Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3, 397-404.
[24] Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Progress in Physical Geography, 32, 203-221.
[25] Godinho S, Gil A, Guiomar N, Neves N, Pinto-Correia T (2016) A remote sensing-based approach to estimating montado canopy density using the FCD model: A contribution to identifying HNV farmlands in southern Portugal. Agroforestry Systems, 90, 23-34.
[26] Goetz S, Sun M, Zolkos S, Hansen A, Dubayah R (2014) The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environmental Research Letters, 9, 034013.
[27] Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91, 1569-1576.
[28] Gould W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10, 1861-1870.
[29] Guo QH, Liu J, Li YM, Zhai QP, Wang YC, Wu FF, Hu TY, Wan HW, Liu HM, Shen WM (2016a) A near-surface remote sensing platform for biodiversity monitoring: Perspectives and prospects. Biodiversity Science, 24, 1249-1266. (in Chinese with English abstract)
[郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳, 胡天宇, 万华伟, 刘慧明, 申文明 (2016a) 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 24, 1249-1266.]
[30] Guo QH, Wu FF, Hu TY, Chen LM, Liu J, Zhao XQ, Gao S, Pang SX (2016b) Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodiversity Science, 24, 1267-1278. (in Chinese with English abstract)
[郭庆华, 吴芳芳, 胡天宇, 陈琳海, 刘瑾, 赵晓倩, 高上, 庞树鑫 (2016b) 无人机在生物多样性遥感监测中的应用现状与展望. 生物多样性, 24, 1267-1278.]
[31] Handcock RN, Swain DL, Bishop-Hurley GJ, Patison KP, Wark T, Valencia P, Corke P, O’Neill CJ (2009) Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors, 9, 3586-3603.
[32] Hernández-Stefanoni JL, Dupuy JM (2007) Mapping species density of trees, shrubs and vines in a tropical forest, using field measurements, satellite multiespectral imagery and spatial interpolation. Biodiversity and Conservation, 16, 3817-3833.
[33] Hodgson A, Kelly N, Peel D (2013) Unmanned aerial vehicles (UAVs) for surveying marine fauna: A Dugong case study. PLoS ONE, 8, e79556.
[34] Hu JB, Zhang J (2018) Unmanned aerial vehicle remote sensing in ecology: Advances and prospects. Acta Ecologica Sinica, 38, 20-30. (in Chinese with English abstract)
[胡健波, 张健 (2018) 无人机遥感在生态学中的应用进展. 生态学报, 38, 20-30.]
[35] Hu T, Su Y, Xue B, Liu J, Zhao X, Fang J, Guo Q (2016) Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sensing, 8, 565.
[36] Hutchinson J, Jacquin A, Hutchinson S, Verbesselt J (2015) Monitoring vegetation change and dynamics on US Army training lands using satellite image time series analysis. Journal of Environmental Management, 150, 355-366.
[37] Jordan YC, Ghulam A, Herrmann RB (2012) Floodplain ecosystem response to climate variability and land-cover and land-use change in Lower Missouri River basin. Landscape Ecology, 27, 843-857.
[38] Kalacska M, Arroyo-Mora JP, de Gea J, Snirer E, Herzog C, Moore TR (2013) Videographic analysis of Eriophorum vaginatum spatial coverage in an ombotrophic bog. Remote Sensing, 5, 6501-6512.
[39] Kerr JT, Ostrovsky M (2003) From space to species: Ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299-305.
[40] Kerr JT, Southwood T, Cihlar J (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proceedings of the National Academy of Sciences,USA, 98, 11365-11370.
[41] Kiszka JJ, Mourier J, Gastrich K, Heithaus MR (2016) Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Marine Ecology Progress Series, 560, 237-242.
[42] Knudby A, LeDrew E, Brenning A (2010) Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sensing of Environment, 114, 1230-1241.
[43] Krause DJ, Hinke JT, Perryman WL, Goebel ME, LeRoi DJ (2017) An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE, 12, e0187465.
[44] Lausch A, Bannehr L, Beckmann M, Boehm C, Feilhauer H, Hacker JM, Heurichr M, Jung A, Klenke R, Neumann C, Pause M, Rocchini D, Schaepman ME, Schmidtlein S, Schulz K, Selsam P, Settele J, Skidmore AK, Cord AF (2016) Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecological Indicators, 70, 317-339.
[45] Leyequien E, Verrelst J, Slot M, Schaepman-Strub G, Heitkönig IM, Skidmore A (2007) Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. International Journal of Applied Earth Observation and Geoinformation, 9, 1-20.
[46] Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014) Camera-trapping in wildlife research and conservation in China: Review and outlook. Biodiversity Science, 22, 685-695. (in Chinese with English abstract)
[李晟, 王大军, 肖治术, 李欣海, 王天明, 冯利民, 王云 (2014) 红外相机技术在我国野生动物研究与保护中的应用与前景. 生物多样性, 22, 685-695.]
[47] Li SQ, Wang GH, Shi ZP, Li XK, Xiao ZS, Zhou QH (2016) Infrared camera traps for monitoring mammal and bird diversity and activity pattern in limestone habitats. Acta Theriologica Sinica, 36, 272-281. (in Chinese with English abstract)
[李生强, 汪国海, 施泽攀, 李先琨, 肖治术, 周岐海 (2016) 红外相机技术监测喀斯特生境兽类和鸟类多样性及活动节律. 兽类学报, 36, 272-281.]
[48] Li Y, Guo Q, Su Y, Tao S, Zhao K, Xu G (2017) Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 308-316.
[49] Li Y, Guo Q, Tao S, Zheng G, Zhao K, Xue B, Su Y (2016) Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index. Canadian Journal of Remote Sensing, 42, 719-729.
[50] Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J (2005) The living planet index: Using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 289-295.
[51] Löffler E, Margules C (1980) Wombats detected from space. Remote Sensing of Environment, 9, 47-56.
[52] Lucas KL, Raber GT, Carter GA (2010) Estimating vascular plant species richness on Horn Island, Mississippi using small-footprint airborne LiDAR. Journal of Applied Remote Sensing, 4, 043545.
[53] Luschi P, Hays G, Del Seppia C, Marsh R, Papi F (1998) The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proceedings of the Royal Society of London B: Biological Sciences, 265, 2279-2284.
[54] Ma KP (1993) On the concept of biodiversity. Chinese Biodiversity, 1, 20-22. (in Chinese)
[马克平 (1993) 试论生物多样性的概念. 生物多样性, 1, 20-22.]
[55] Martin M, Newman S, Aber J, Congalton R (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65, 249-254.
[56] Mishra NB, Chaudhuri G (2015) Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000-2014. Applied Geography, 56, 29-41.
[57] Mulero-Pazmany M, Jenni-Eiermann S, Strebel N, Sattler T, Jose Negro J, Tablado Z (2017) Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE, 12, e0178448.
[58] Mulero-Pazmany M, Stolper R, van Essen LD, Negro JJ, Sassen T (2014) Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS ONE, 9, e83873.
[59] Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 46, 897-905.
[60] Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
[61] Nicholson E, Mace GM, Armsworth PR, Atkinson G, Buckle S, Clements T, Ewers RM, Fa JE, Gardner TA, Gibbons J, Grenyer R, Metcalfe R, Mourato S, Muuls M, Osborn D, Reuman DC, Watson C, Milner-Gulland EJ (2009) Priority research areas for ecosystem services in a changing world. Journal of Applied Ecology, 46, 1139-1144
[62] Ojoyi MM, Mutanga O, Odindi J, Kahinda JMM, Abdel-Rahman EM (2017) Implications of land use transitions on soil nitrogen in dynamic landscapes in Tanzania. Land Use Policy, 64, 95-100.
[63] Paganini M, Leidner AK, Geller G, Turner W, Wegmann M (2016) The role of space agencies in remotely sensed essential biodiversity variables. Remote Sensing in Ecology and Conservation, 2, 132-140.
[64] Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Bruford MW, Brummitt N, Butchart S, Cardoso A (2013) Essential biodiversity variables. Science, 339, 277-278.
[65] Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philosophical Transactions of the Royal Society of London, 369, 20130190.
[66] Purkis SJ, Graham N, Riegl B (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs, 27, 167-178.
[67] Ramankutty N, Foley JA (1999) Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecology and Biogeography, 8, 381-396.
[68] Rocchini D, Ricotta C, Chiarucci A (2007) Using satellite imagery to assess plant species richness: The role of multispectral systems. Applied Vegetation Science, 10, 325-331.
[69] Roughgarden J, Running SW, Matson PA (1991) What does remote sensing do for ecology? Ecology, 72, 1918-1922.
[70] Saatchi S, Agosti D, Alger K, Delabie J, Musinsky J (2001) Examining fragmentation and loss of primary forest in the southern Bahian Atlantic forest of Brazil with radar imagery. Conservation Biology, 15, 867-875.
[71] Saatchi S, Buermann W, Ter Steege H, Mori S, Smith TB (2008) Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment, 112, 2000-2017.
[72] Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2012) Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landscape and Ecological Engineering, 8, 157-171.
[73] Sarda-Palomera F, Bota G, Vinolo C, Pallares O, Sazatornil V, Brotons L, Gomariz S, Sarda F (2012) Fine-scale bird monitoring from light unmanned aircraft systems. Ibis, 154, 177-183.
[74] Saveraid EH, Debinski DM, Kindscher K, Jakubauskas ME (2001) A comparison of satellite data and landscape variables in predicting bird species occurrences in the Greater Yellowstone Ecosystem, USA. Landscape Ecology, 16, 71-83.
[75] Schofield G, Katselidis KA, Lilley MKS, Reina RD, Hays GC (2017) Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Functional Ecology, 31, 2310-2319.
[76] Sequeira AM, Mellin C, Fordham DA, Meekan MG, Bradshaw CJ (2014) Predicting current and future global distributions of whale sharks. Global Change Biology, 20, 778-789.
[77] Shazali N, Chew TH, Shamsir MS, Tingga RCT, Mohd-Ridwan AR, Khan FAA (2017) Assessing bat roosts using the LiDAR system at Wind Cave Nature Reserve in Sarawak, Malaysian Borneo. Acta Chiropterologica, 19, 199-210.
[78] Shirley S, Yang Z, Hutchinson R, Alexander J, McGarigal K, Betts M (2013) Species distribution modelling for the people: Unclassified landsat TM imagery predicts bird occurrence at fine resolutions. Diversity and Distributions, 19, 855-866.
[79] Simonson WD, Allen HD, Coomes DA (2012) Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests. Conservation Biology, 26, 840-850.
[80] Skidmore AK, Pettorelli N (2015) Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. Nature, 523, 403-406.
[81] Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science, 260, 1905-1910.
[82] Su YJ, Guo QH, Xue BL, Hu TY, Alvarez O, Tao SL, Fang JY (2016a) Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne Lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 173, 187-199.
[83] Su YJ, Guo Q, Fry DL, Collins BM, Kelly M, Flanagan JP, Battles JJ (2016b) A vegetation mapping strategy for conifer forests by combining airborne LiDAR data and aerial imagery. Canadian Journal of Remote Sensing, 42, 1-15.
[84] Su YJ, Ma Q, Guo Q (2017) Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. International Journal of Digital Earth, 10, 307-323.
[85] Szantoi Z, Smith SE, Strona G, Koh LP, Wich SA (2017) Mapping orangutan habitat and agricultural areas using Landsat OLI imagery augmented with unmanned aircraft system aerial photography. International Journal of Remote Sensing, 38, 2231-2245.
[86] Tempel DJ, Gutiérrez RJ, Battles JJ, Fry DL, Su Y, Guo Q, Reetz MJ, Whitmore SA, Jones GM, Collins BM, Stephens SL, Kelly M, Berigan WJ, Peery MZ (2015) Evaluating short- and long-term impacts of fuels treatments and simulated wildfire on an old-forest species. Ecosphere, 6, 1-18.
[87] Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329-1339.
[88] Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314.
[89] Vermeulen C, Lejeune P, Lisein J, Sawadogo P, Bouche P (2013) Unmanned aerial survey of elephants. PLoS ONE, 8, e54700.
[90] Vihervaara P, Mononen L, Auvinen A-P, Virkkala R, Lü Y, Pippuri I, Packalen P, Valbuena R, Valkama J (2015) How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landscape Ecology, 30, 501-516.
[91] Wang Y, Moskovits DK (2001) Tracking fragmentation of natural communities and changes in land cover: Applications of Landsat data for conservation in an urban landscape (Chicago Wilderness). Conservation Biology, 15, 835-843.
[92] Weil G, Lensky IM, Levin N (2017) Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology of Mediterranean woody species. International Journal of Applied Earth Observation and Geoinformation, 62, 88-101.
[93] Wilson BT, Lister AJ, Riemann RI (2012) A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Forest Ecology and Management, 271, 182-198.
[94] Yang X, Schaaf C, Strahler A, Kunz T, Fuller N, Betke M, Wu Z, Wang Z, Theriault D, Culvenor D, Jupp D, Newnham G, Lovell J (2013) Study of bat flight behavior by combining thermal image analysis with a LiDAR forest reconstruction. Canadian Journal of Remote Sensing, 39, S112-S125.
[95] Zhang J, Hu J, Lian J, Fan Z, Ouyang X, Ye W (2016) Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69.
[96] Zhao F, Sweitzer RA, Guo Q, Kelly M (2012) Characterizing habitats associated with fisher den structures in the Southern Sierra Nevada, California using discrete return lidar. Forest Ecology and Management, 280, 112-119.
[97] Zhao Y, Feng D, Yu L, Wang X, Chen Y, Bai Y, Hernández H J, Galleguillos M, Estades C, Biging GS (2016) Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment, 183, 170-185.
[98] Zhao Y, Zeng Y, Zheng Z, Dong W, Zhao D, Wu B, Zhao Q (2018) Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China. Remote Sensing of Environment, 213, 104-114.
[99] Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature, 509, 86-90.
[100] Zhu C, Fang Y, Zhou KX, Mu SJ, Jiang JL (2015) IUCN red list of ecosystems: a new tool for biodiversity conservation. Acta Ecologica Sinica, 35, 2826-2836. (in Chinese with English abstract)
[朱超, 方颖, 周可新, 穆少杰, 蒋金亮 (2015) IUCN生态系统红色名录——一种新的生物多样性保护工具. 生态学报, 35, 2826-2836. ]
[1] Qing-Hua GUO Yu TianHU qin Ma Kexin Xu Qiuli Yang Qianhui Sun Yumei Li Yanjun Su. (2020) The Advances for the New Remote Sensing Technology in Ecosystem Ecology Research . Chin J Plant Ecol, 44(生态技术与方法专辑): 0-0.
[2] Li Qiang, Wang Bin, Deng Yun, Lin Luxiang, Dawa Zhaxi, Zhang Zhiming. (2019) Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests . Biodiv Sci, 27(3): 273-285.
[3] Li Jie,Li Weiyue,Fu Jing,Gao Jun,Yang Lei,He Weihang. (2019) Using low-altitude UAV remote sensing to identify national park functional zoning boundary: A case study in Qianjiangyuan National Park pilot . Biodiv Sci, 27(1): 42-50.
[4] Qian Lei, Jinya Li, Keming Ma. (2018) Applications of remote sensing technology in avian ecology . Biodiv Sci, 26(8): 862-877.
[5] Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. (2018) Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California . Biodiv Sci, 26(8): 878-891.
[6] Liu Fangzheng, Du Jinhong, Zhou Yue, Huang Zhipang, Li Yanpeng, Wang Wei, Xiao Wen. (2018) Monitoring technology and practice on protected area biodiversity by integrating unmanned aerial vehicle (UAV) and ground approaches . Biodiv Sci, 26(8): 905-917.
[7] Qinghua Guo, Jin Liu, Yumei Li, Qiuping Zhai, Yongcai Wang, Fangfang Wu, Tianyu Hu, Huawei Wan, Huiming Liu, Wenming Shen. (2016) A near-surface remote sensing platform for biodiversity monitoring: perspectives and prospects . Biodiv Sci, 24(11): 1249-1266.
[8] Qinghua Guo,Fangfang Wu,Tianyu Hu,Linhai Chen,Jin Liu,Xiaoqian Zhao,Shang Gao,Shuxin Pang. (2016) Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity . Biodiv Sci, 24(11): 1267-1278.
[9] XU Zi-Qian,CAO Lin,RUAN Hong-Hua,LI Wei-Zheng,JIANG Sheng. (2015) Inversion of subtropical forest stand characteristics by integrating very high resolution imagery acquired from UAV and LiDAR point-cloud . Chin J Plan Ecolo, 39(7): 694-703.
[10] XU Ting,CAO Lin,SHEN Xin,SHE Guang-Hui. (2015) Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data . Chin J Plan Ecolo, 39(4): 309-321.
[11] PANG Yong and LI Zeng-Yuan. (2012) Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China . Chin J Plan Ecolo, 36(10): 1095-1105.
[12] CHI Hong-Kang. (2000) Quantitative Remote Sensing Study of the Cover of a Sand Artemisia ordosica Community . Chin J Plan Ecolo, 24(4): 494-497.
[13] TangYa, Chen Jianzhong. (1995) An investigation on the probable causes for the endangerment of Plagiopteron suaveolens Griffith . Biodiv Sci, 03(2): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed