Biodiversity Science ›› 2017, Vol. 25 ›› Issue (5): 518-530.doi: 10.17520/biods.2016369

• Original Papers: Plant Diversity • Previous Article     Next Article

Genetic diversity of Crataegus songorica in Xinjiang

Fang Sheng1, Shuying Chen2, Jia Tian1, *(), Peng Li1, Xue Qin1, Shuping Luo1, Jiang Li1, *()   

  1. 1 Xinjiang Agricultural University, Urumqi 830052
    2 Academy of Forestry in Ili, Yining, Xinjiang 835000
  • Received:2016-12-27 Accepted:2017-03-20 Online:2017-06-06
  • Tian Jia,Li Jiang E-mail:terrisay@163.com;lijiangxj@163.com

The aim of this study is to reveal the genetic diversity of different populations of Crataegus songorica and to provide a scientific basis for its protection and sustainable utilization. The experimental materials included 92 samples, which were selected from Daxigou, Huocheng County in Xinjiang and analyzed by combining the analysis of phenotypic trait variation and the SSR marker. Results showed that there was considerable genetic variation in the phenotypic traits of different C. songorica populations, as the variation coefficient varied from 2.96% to 71.32%, and the phenotypic variation was mainly caused by the variation within population, as the mean phenotypic differentiation coefficient was 13.90% among populations and 86.10% within population. A total of 739 loci were detected from five populations by 43 SSR primers, and the polymorphism loci ratio was 90.53% at the species level. Nei’s diversity index, Shannon’s diversity index (I), the gene diversity within population (Hs), the total population genetic diversity (Ht), genetic differentiation coefficient and gene flow were 0.2377, 0.3712, 0.1635, 0.2023, 0.1916 and 2.1116, respectively. Comprehensive analysis suggested that the total genetic diversity of C. songorica was higher in Daxigou, and the genetic differentiation among populations was smaller. The results of UPGMA clustering showed that five populations formed two sub-types, and the differences in different habitats were the main causes of the discrepancy among populations. We conclude that the genetic diversity of C. songorica of different populations was high both at phenotypic and molecular levels in Daxigou, and there was a visible genetic differentiation within population, moreover differentiation trends had regional characteristics. Therefore, in situ conservation is supposed to be an effective method to protect C. songorica.

Key words: Crataegus songorica, SSR, phenotypic traits, genetic diversity

Table 1

Geographic information and sample size of Crataegus songorica in different populations"

居群代码 Population 北纬 Latitude (N) 东经 Longitude (E) 海拔 Altitude (m) 样本数 Sample size
Pop1 44°23′55.1″-44°24′73.0″ 80°45′81.6″-80°46′15.1″ 1,000-1,100 14
Pop2 44°23′45.5″-44°25′97.0″ 80°40′15.1″-80°46′65.7″ 1,100-1,200 25
Pop3 44°24′78.9″-44°26′25.2″ 80°45′57.1″-80°48′31.4″ 1,200-1,300 24
Pop4 44°25′86.6″-44°25′94.2″ 80°45′67.0″-80°46′06.5″ 1,300-1,400 19
Pop5 44°25′92.1″-44°26′17.6″ 80°45′78.9″-80°46′28.3″ 1,400-1,500 10

Table 2

Statistic CV of phenotypic characteristics in Crataegus songorica populations"

表型性状 Phenotypic traits 平均值
Mean value
变异系数
Coefficient of variance (%)
居群平均值
Average of population
Pop1 Pop2 Pop3 Pop4 Pop5 变异系数
CV (%)
相对极差
Ri
一年生枝长 Annual branch length (mm) 109.09 42.64 44.92 39.57 30.81 24.69 36.53 0.68
一年生枝粗 Annual branch diameter (mm) 3.52 14.96 16.27 24.10 9.61 10.81 15.15 0.52
新梢长 New branch length (mm) 178.99 23.99 34.87 40.43 29.13 16.63 29.01 0.59
单果重 Fruit weight (g) 0.93 11.60 19.94 13.99 17.34 5.12 13.60 0.54
果实纵径 Fruit longitudinal diameter (mm) 12.46 2.68 5.57 4.03 4.47 0.71 3.49 0.51
果实横径 Fruit diameter (mm) 11.38 5.98 8.97 6.05 6.23 1.96 5.84 0.52
果柄长 Fruit stalk length (mm) 11.02 9.85 17.01 11.85 6.14 13.77 11.72 0.47
果柄粗 Fruit stalk thickness (mm) 0.63 5.76 15.01 6.70 11.71 5.38 8.91 0.41
坐果数 Fruit set number 3.21 13.22 27.39 10.35 37.67 4.33 18.59 0.45
果实硬度 Fruit hardness (kg/cm2) 1.77 8.33 20.20 18.68 14.09 5.61 13.38 0.51
可固性 Soluble solids (%) 15.18 11.75 19.18 13.56 9.25 4.72 11.69 0.50
果实形状 Fruit shape 3.36 79.52 68.12 68.27 72.54 68.12 71.32 0.45
果皮颜色 Peel color 5.87 21.34 29.41 30.25 24.98 22.22 25.64 0.67
果肉颜色 Flesh color 4.05 18.47 25.85 26.70 21.64 14.52 21.44 0.56
果实风味 Fruit flavor 2.08 50.25 50.22 47.67 57.57 50.25 51.19 0.56
叶厚 Leaf thickness (mm) 0.27 15.41 17.74 18.22 21.10 26.86 19.87 0.67
叶面积 Leaf area (cm2) 15.48 24.29 22.54 21.38 19.10 13.72 20.20 0.60
叶宽 Leaf width (cm) 5.18 8.89 10.55 8.67 8.10 1.85 7.61 0.53
叶长 Leaf length (cm) 5.48 13.22 10.93 11.20 8.31 1.69 9.07 0.60
叶形指数 Leaf length/leaf width 1.06 7.48 6.16 4.20 5.96 0.16 4.79 0.54
叶柄长 Petiole length (mm) 25.99 16.46 17.39 14.26 19.27 15.22 16.52 0.63
叶柄粗 Petiole thickness (mm) 1.14 32.05 15.19 16.82 13.06 7.64 16.95 0.62
叶柄指数 Petiole length/petiole thickness 23.65 32.62 25.83 25.49 28.11 22.73 26.96 0.71
叶片颜色 Leaf color 3.00 23.89 27.19 26.83 21.32 25.27 24.90 0.41
叶基形态 Leaf base morphology 2.82 55.17 35.88 36.93 41.57 47.02 43.31 0.62
叶缘形态 Leaf margin morphology 2.78 13.22 17.68 14.92 16.59 13.52 15.19 0.70
叶面状态 Status of leaf surface 1.29 50.25 41.61 52.36 43.86 34.26 44.47 0.59
托叶形状 Stipule shape 2.49 20.10 26.98 23.53 20.10 20.10 22.16 0.74
果核数 Stone number 1.99 2.24 3.74 4.07 1.86 2.89 2.96 0.48
鲜核重 Fresh stone weight (g) 0.24 9.25 10.88 13.52 13.29 2.61 9.91 0.55
果核纵径 Longitudinal diameter of stone (mm) 7.35 2.11 3.38 3.71 4.59 1.02 2.96 0.56
果核横径 Stone diameter (mm) 6.17 4.13 3.54 4.73 6.19 2.86 4.29 0.58
花序小花数 Floret number of inflorescence 12.08 34.40 27.70 26.32 11.82 0.06 20.06 0.51
平均值 Mean value 14.61 20.77 22.06 20.89 19.92 14.80 19.69 0.56

Table 3

Variance analysis of phenotypic characteristics of Crataegus songorica"

性状 Traits 均方 Mean square F Sig 方差分量 Variance components 表型分化系数 VST (%)
居群内
Within population
居群间
Among populations
居群内
Within population
居群间
Among populations
一年生枝长 Annual branch length (mm) 1,851.668 1,475.734 0.797 0.530 1,815.1961 251.5190 12.17
一年生枝粗 Annual branch diameter (mm) 0.388 0.630 1.624 0.176 0.3944 0.0421 9.64
新梢长 New branch length (mm) 3,494.973 5,356.658 1.533 0.200 3,537.9271 680.9977 16.14
单果重 Fruit weight (g) 0.026 0.180 6.936 0.000 0.0323 0.0157 32.67
果实纵径 Fruit longitudinal diameter (mm) 0.374 2.091 5.590 0.000 0.4447 0.1428 24.31
果实横径 Fruit diameter (mm) 0.770 3.012 3.914 0.006 0.8587 0.2540 22.82
果柄长 Fruit stalk length (mm) 2.534 1.831 0.723 0.579 2.4755 0.2410 8.87
果柄粗 Fruit stalk thickness (mm) 0.006 0.018 3.041 0.021 0.0065 0.0021 24.15
坐果数 Fruit setting number 0.615 1.294 2.104 0.087 0.6379 0.1156 15.34
果实硬度 Fruit hardness (kg/cm2) 0.110 0.010 0.091 0.985 0.1046 0.0008 0.73
可固性 Soluble solids (%) 5.589 18.268 3.269 0.015 6.0793 1.2828 17.42
果实形状 Fruit shape 0.799 0.62 0.776 0.544 0.7826 0.0464 5.60
果皮颜色 Peel color 0.785 1.904 2.425 0.054 0.8253 0.1241 13.07
果肉颜色 Flesh color 0.388 0.713 1.835 0.129 0.3984 0.0486 10.88
果实风味 Fruit flavor 1.266 1.261 0.997 0.414 1.2517 0.0884 6.60
叶厚 Leaf thickness (mm) 0.002 0.003 1.265 0.290 0.0023 0.0005 16.85
叶面积 Leaf area (cm2) 10.696 23.508 2.198 0.076 11.1369 2.9202 20.77
叶宽 Leaf width (cm) 0.246 0.557 2.262 0.069 0.2570 0.0525 16.95
叶长 Leaf length (cm) 0.333 0.900 2.705 0.035 0.3538 0.1353 27.67
叶形指数 Leaf length/leaf width 0.004 0.004 1.102 0.361 0.0035 0.0007 17.25
叶柄长 Petiole length (mm) 19.332 11.263 0.583 0.676 18.7708 0.3819 1.99
叶柄粗 Petiole thickness (mm) 0.037 0.023 0.614 0.654 0.0360 0.0015 4.11
叶柄指数 Petiole length/petiole thickness 38.335 8.692 0.227 0.923 36.6297 0.9423 2.51
叶片颜色 Leaf color 0.099 0.121 1.217 0.309 0.0990 0.0151 13.23
叶基形态 Leaf base morphology 0.405 1.033 2.552 0.045 0.4276 0.1204 21.97
叶缘形态 Leaf margin morphology 0.054 0.026 0.482 0.749 0.0518 0.0022 4.00
叶面状态 Status of leaf surface 0.077 0.177 2.296 0.066 0.0808 0.0091 10.08
托叶形状 Stipule shape 0.401 0.021 0.052 0.995 0.3803 0.0006 0.16
果核数 Stone number 0.005 0.004 0.823 0.514 0.0050 0.0008 13.69
鲜核重 Fresh stone weight (g) 0.001 0.002 1.947 0.110 0.0008 0.0001 10.85
果核纵径 Longitudinal
diameter of stone (mm)
0.068 0.264 3.853 0.006 0.0762 0.0180 19.08
果核横径 Stone diameter (mm) 0.069 0.334 4.840 0.001 0.0797 0.0190 19.26
花序小花数 Floret number of inflorescence 9.265 43.064 4.648 0.002 10.6336 2.2995 17.78
平均值 Mean value 164.840 210.734 2.101 0.292 165.0436 28.5406 13.90

Fig. 1

Dendrogram of five Crataegus songorica populations based on phenotypic characters"

Table 4

Sequences of SSR primers and amplification results"

引物名称
Primers
正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′) 退火温度TM (℃) 扩增总带数
Ampl-ified total bands
多态性条带数
Polym- orphic bands
多态性位点比率
Percentage of polymo-
rphism bands
(%)
多态性信息量Polymorphim information content
(PIC)
XNDMa1 CACGGTCATGAACTCCAT TGGCAGATGGCTTAACTG 46 10 10 100.00 0.82
XNDMa4 GCCTTCACTGTCTGAGAG CGGATGCTCCTGTTACAC 55 19 18 94.74 0.91
XNDMa7 CGTGTTCATTGTGTCCTTC TTGCCTTCTCAAGACCATC 61 14 11 78.57 0.9
XNDMa10 CACTTCAGAGCCGCATTA GAACAACCACGACCTTCT 58 12 8 66.67 0.91
XNDMa11 CTTCAGAGCCGCATTAGG GAACAACCACGACCTTCT 59 18 12 66.67 0.93
XNDMa14 GCCGAACTACCGTTACCT GCCGAAGTTGTAGATGTCC 60 17 14 82.35 0.92
XNDMa15 CTGACGACGACGATGAAG CTGACGACGACGATGAAG 52 23 21 91.30 0.94
XNDPy03 CCCTCCCTCTTTCTCTTCT AGTTGGACATTGCGATGG 47 16 14 88.00 0.92
XNDPy07 CGATACAACAGAGAATTGAGTC AAGAACCAGATGGCACAC 46 16 16 100 0.91
XNDPy09 CTTACCTAACAGGACTCAATG GAGGATGGCAGCAATCTT 48 10 9 90.00 0.86
XNDPy11 AACAGGAAGAGGAGATGGT CAATGAAAGCGGGAAACTG 47 18 17 94.44 0.92
XNDPy13 CGAAGTTTACATAGGGTTCTCT TGGGACACTCCAGCATGA 54 17 16 94.11 0.9
XNDPy14 CGCTCACTCCTCAGAAGT TCGCCTCGTCCATTTGTA 55 7 5 71.43 0.91
XNDPy15 AAAGTAAAGGCGGCAAATG TCTAGGGTGCGTTTGTTG 47 12 12 100.00 0.9
XNDPy16 CTTCAAGTAGCCAACTATCAG TGTTTCTGCAAACTGGTCTA 52 11 10 90.91 0.88
XNDPy37 CGGGTGTTGATTCTCTCT GGTTGGACGAAGTTGATC 52 13 13 100.00 0.88
XNDPy38 GCAGCAGGAAACACAGAA TTGGCGGTCATTGATAGTAA 57 24 23 95.83 0.92
XNDPy40 CCCTTCCTCAACTAACAGT GGATAAGCGGTTCTGTAGA 60 14 14 100.00 0.89
ZFRIt066 TGGCTTTAAACGGTTATGCTG TGAGGAGGGAGGGAATACAA 46 17 17 100.00 0.93
ZFRIt067 GCAAGACCCTTATGCCAACT TGAGGCCTAACTGCTTCGAC 62 15 15 100.00 0.9
ZFRIt084 GCTGTTGAGCTAGGCAGGTT CCCGAGTCCTCACCAAGTAA 62 13 12 92.31 0.9
ZFRIt097 ACTGTTTCCAGCAGGCTTGT GAAGATTGCCCCACAGAAAA 51 14 14 100.00 0.9
PES05 ATGGTGGGTTGGCAGAG GGTTGGAGCAGATGGT 48 15 12 80.00 0.92
PES06 CCCCAGAAACCCTAACC AAGAGCGATGACACCACC 51 22 19 86.36 0.94
BPPCT028 TCAAGTTAGCTGAGGATCGC GAGCTTGCCTATGAGAAGACC 54 19 17 89.47 0.92
CH02h11a CGTGGCATGCCTATCATTTG CTGTTTGAACCGCTTCCTTC 56 19 17 89.47 0.93
CH02b10 CAAGGAAATCATCAAAGATTCAAG CAAGTGGCTTCGGATAGTTG 53 20 20 100.00 0.92
CH05d03 TACCTGAAAGAGGAAGCCCT TCATTCCTTCTCACATCCACT 59 14 10 71.43 0.91
CH05e06 ACACGCACAGAGACAGAGACAT GTTGAATAGCATCCCAAATGGT 50 18 17 94.44 0.92
HI02c07 AGAGCTACGGGGATCCAAAT GTTTAAGCATCCCGATTGAAA 54 20 18 90.00 0.92
MS14h03 CGCTCACCTCGTAGACGT ATGCAATGGCTAAGCATA 48 15 13 86.67 0.89
CH03a09 GCCAGGTGTGACTCCTTCTC CTGCAGCTGCTGAAACTGG 50 31 28 90.32 0.95
CH02a04 GAAACAGGCGCCATTATTTG AAAGGAGACGTTGCAAGTGG 58 15 12 80.00 0.9
CH01f03b GAGAAGCAAATGCAAAACCC CCCGGCTCCTATTCTAC 52 31 29 93.55 0.94
CH02a08 GAGGAGCTGAAGCAGCAGAG ATGCCAACAAAAGCATAGCC 60 14 12 85.71 0.91
CH05a04 GAAGCGAATTTTGCACGAAT GCTTTTGTTTCATTGAATCCCC 58 14 14 100.00 0.92
CH01h01 GAAAGACTTGCAGTGGGAGC GGAGTGGGTTTGAGAAGGTT 59 22 21 95.45 0.93
CN851079 ACCGCCACAACCACAATC CTCGGGCAAGCGAAGAAT 56 23 21 91.30 0.91
CN848770 CTTATTCCTCCACTCCGATTC AAACAGCCAAACCCAGCA 54 15 14 93.33 0.87
CN581002 TGGAGGGAAAGGAGAAGC AAGTGGCAGGCAGCAGTA 49 26 25 96.15 0.95
CV986977 CTCAAACCCAAACCCTCC TCTCCTGACCCACGAAAA 55 22 21 95.45 0.89
CV882996 CTTCTCCACTAACGCACCA CCATTCTCAACCAGCACC 53 20 18 90.00 0.92
CV794040 CGTGGTTCCTGGTTGTGA AAAGCAGTTGCCTCCCTC 50 14 14 100.00 0.87
合计 Total 739 673
平均 Mean 17.19 15.65 90.60 0.91

Table 5

Genetic diversity of populations of Crataegus songorica"

居群
Population
多态性位点数
Polymorphism locus number
多态性位点比率
Percentage of polymorphism loci (%)
观测等位基因
Observed number of alleles (Na)
有效等位基因(Ne)
Effective number of alleles
Nei’s基因多样性指数
Nei’s gene diversity index (H)
Shannon多样性指数
Shannon’s diversity index (I)
Pop1 257 34.78 1.3837±0.4756 1.2386±0.3538 0.1375±0.1895 0.2050±0.2720
Pop2 660 89.31 1.9025±0.2938 1.4342±0.3325 0.2635±0.1722 0.4035±0.2350
Pop3 427 57.78 1.6061±0.4824 1.3285±0.3655 0.1938±0.1960 0.2928±0.2786
Pop4 327 44.25 1.4766±0.4908 1.2883±0.3738 0.1658±0.1996 0.2473±0.2841
Pop5 99 13.40 1.1372±0.3444 1.0971±0.2435 0.0569±0.1427 0.0830±0.2082
平均 Mean 354 47.90 1.5012±0.4174 1.2773±0.3338 0.1635±0.1780 0.2463±0.2556
物种水平
Species level
669 90.53 1.9136±0.2781 1.3843±0.3302 0.2377±0.1695 0.3712±0.2301

Table 6

The Gst analysis of genetic differentiation among Crataegus songorica populations"

总居群基因多样度
Total gene diversity index (Ht)
居群内基因多样度
Gene diversity within population (Hs)
遗传分化系数
Index of genetic differentiation (Gst)
基因流
Gene flow (Nm)
平均 Average 0.2023 0.1635 0.1916 2.1116
标准差 Standard deviation 0.0293 0.0182

Table 7

Analysis of molecular variance(AMOVA) within and among populations"

变异来源
Source of variation
自由度
df
平方和
Sum of square
均方
Mean square
方差分量
Variance component
方差分量百分率
Percentage of variance component
P
居群间
Among populations
4 0.3890 0.0972 0.0185 20.37% <0.001
居群内
Within population
91 6.7171 0.0772 0.0723 79.63% <0.001

Table 8

Nei’s genetic identity (above the diagonal) and genetic distance (below the diagonal) among five populations of Crataegus songorica"

居群1 Pop1 居群2 Pop2 居群3 Pop3 居群4 Pop4 居群5 Pop5
居群1 Pop1 **** 0.9641 0.9595 0.9510 0.8900
居群2 Pop2 0.0366 **** 0.9792 0.9678 0.9057
居群3 Pop3 0.0414 0.0211 **** 0.9760 0.9315
居群4 Pop4 0.0503 0.0327 0.0243 **** 0.9247
居群5 Pop5 0.1171 0.0993 0.0711 0.0785 ****

Fig. 2

Clustering dendrogram of 92 Crataegus songorica individuals based on UPGMA"

Fig. 3

Principal coordinate analysis for 92 Crataegus songorica resources. (a) Planar graph; (b) Three-dimensional graph."

[1] An MM, Wang YT, Song Y, Ji XH, Liu C, Wang N, Wu YS, Liu W, Cao YF, Feng SQ, Chen XS (2014) Genetic diversity of fruit phenotypic traits of wild Pyrus ussuriensis Maxim. Scientia Agricultura Sinica, 47, 3034-3043. (in Chinese with English abstract)
[安萌萌, 王艳廷, 宋杨, 冀晓昊, 刘畅, 王楠, 吴玉森, 刘文, 曹玉芬, 冯守千, 陈学森 (2014) 野生秋子梨(Pyrus ussuriensis Maxim)果实性状的遗传多样性. 中国农业科学, 47, 3034-3043.]
[2] Bao WQ, Wuyun TN, Wang L, Zhao H, Du HY (2016) Genetic diversity and population structure of wild apricot in Xinjiang revealed by SSR markers. Acta Botanica Boreali-Occidentalia Sinica, 36, 1757-1763. (in Chinese with English abstract)
[包文泉, 乌云塔娜, 王琳, 赵罕, 杜红岩 (2016) 基于SSR标记的新疆野杏群体遗传多样性及遗传结构. 西北植物学报, 36, 1757-1763.]
[3] Campbell DR (2009) Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 103, 1557-1566.
[4] Cao Q, Liao K, Liu J, Xu GX, Sun Q, Si HZ, Yang XF (2016) Study on the Daxigou wild apricot fruit phenotypic diversity in Huocheng County, Xinjiang. Xinjiang Agricultural Sciences, 53, 791-798. (in Chinese with English abstract)
[曹倩, 廖康, 刘娟, 徐桂香, 孙琪, 司洪章, 杨新峰 (2016) 新疆霍城县大西沟野杏果实表型多样性研究. 新疆农业科学, 53, 791-798.]
[5] Dong Y, Zhang J, Ren YC, Han ZX (2013) Study on genetic diversity of natural population in Malus sieversii with microsatellite. Journal of Plant Genetic Resources, 14, 771-777. (in Chinese with English abstract)
[董研, 张军, 任亚超, 韩志校 (2013) 中国新疆野苹果天然群体遗传多样性SSR分析. 植物遗传资源学报, 14, 771-777.]
[6] Ge S, Wang MX, Chen YW (1988) An analysis of population genetic structure of masson pine by isozyme technique. Scientia Silvae Sinicae, 24, 399-409. (in Chinese with English abstract)
[葛颂, 王明庥, 陈岳武 (1988) 用同工酶研究马尾松群体的遗传结构. 林业科学, 24, 399-409.]
[7] Geng WJ, Liao K, Diao YQ, Xu Z, Sha H (2012) Analysis of genetic relationships among different populations of Prunus domestica L. based on SSR marker. Acta Horticulturae Sinica, 39(Suppl.), 2602. (in Chinese)
[耿文娟, 廖康, 刁永强, 许正, 沙红 (2012) 野生欧洲李不同居群亲缘关系的SSR分析. 园艺学报, 39(增刊), 2602.]
[8] Gonzalez-Martinez SC, Alia R, Gil L (2002) Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity, 89, 199-206.
[9] Gu QH, Xiong BX, Chen J, Huang J, Zhu YT (2011) Application of microsatellite DNA markers in population genetics studies of freshwater gastropoda. Chinese Journal of Applied and Environmental Biology, 17, 280-286. (in Chinese with English abstract)
[顾钱洪, 熊邦喜, 陈洁, 黄瑾, 朱玉婷 (2011) 微卫星标记技术在淡水腹足类种群遗传学研究中的应用. 应用与环境生物学报, 17, 280-286.]
[10] Han ZX, Bi ZL, Lu FQ, Gao P, Zhang PF, Li JH, Zhang J (2014) Analysis of the relative relationship of different hawthorn cultivars by apple SSR primers. Hebei Journal of Forestry and Orchard Research, 29, 165-168. (in Chinese with English abstract)
[韩志校, 毕振良, 陆凤勤, 高朋, 张朋飞, 李舰航, 张军 (2014) 利用苹果引物对不同山楂品种的SSR分析. 河北林果研究, 29, 165-168.]
[11] He TM (2006) Study on Genetic Diversity of Chinese Common Apricot (Prunus armeniaca) Germplasm and Origin of Purple Apricot (Prunus dasycarpa). PhD dissertation, Shandong Agricultural University, Tai’an, Shandong. (in Chinese with English abstract)
[何天明 (2006) 中国普通杏(Prunus armeniaca)种质资源遗传多样性及紫杏(P. dasycarpa)起源研究. 博士学位论文, 山东农业大学, 山东泰安.]
[12] Hu BL, Wan Y, Li X, Lei JG, Luo XD, Yan WG, Xie JK (2012) Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment. Acta Agronomica Sinica, 38, 829-839. (in Chinese with English abstract)
[胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤 (2012) 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 38, 829-839.]
[13] Huang CQ, Liu GD, Bai CJ, Wang WQ, Tang J, Yu DG (2012) A study on the morphological diversity of 475 accessions of Cynodon dactylon. Acta Prataculturae Sinica, 21(4), 33-42. (in Chinese with English abstract)
[黄春琼, 刘国道, 白昌军, 王文强, 唐军, 虞道耿 (2012) 475份狗牙根种质资源形态多样性的研究. 草业学报, 21(4), 33-42.]
[14] Liu CQ, Chen XS, Wang JZ, Chen XL, Wang HB, Tian CP, Wu CJ (2008) Studies on genetic diversity of phenotypic traits in wild myrobalan plum (Prunus cerasifera Ehrh.). Acta Horticulturae Sinica, 35, 1261-1268. (in Chinese with English abstract)
[刘崇琪, 陈学森, 王金政, 陈晓流, 王海波, 田长平, 吴传金 (2008) 新疆野生樱桃李果实部分表型性状的遗传多样性分析. 园艺学报, 35, 1261-1268.]
[15] Liu H, Liao K, Liu J, Zhao SR, Sun Q, Cao Q (2016) Analysis of genetic diversity and genetic relationship of wild hawthorn resources in Xinjiang by ISSR markers. Nonwood Forest Research, 34(2), 19-23. (in Chinese with English abstract)
[刘欢, 廖康, 刘娟, 赵世荣, 孙琪, 曹倩 (2016) 新疆野生山楂资源遗传多样性及亲缘关系的ISSR分析. 经济林研究, 34(2), 19-23.]
[16] Liu H, Liao K, Sun Q, Cao Q, Peng XL, Yang XF, Si HZ (2015) A study on flower bud morphological differentiation of wild hawthorn in Xinjiang. Journal of Xinjiang Agricultural University, 38, 36-39. (in Chinese with English abstract)
[刘欢, 廖康, 孙琪, 曹倩, 彭晓莉, 杨新峰, 司洪章 (2015) 新疆野山楂花芽形态分化的研究. 新疆农业大学学报, 38, 36-39.]
[17] Liu H, Liao K, Sun Q, Yang XF, Si HZ, Cao Q (2014) Research on morphlogical characteristics of flower organ of wild hawthorn in Xinjiang. Journal of Xinjiang Agricultural University, 37, 293-297. (in Chinese with English abstract)
[刘欢, 廖康, 孙琪, 杨新峰, 司洪章, 曹倩 (2014) 新疆3种野生山楂花器官形态特征研究. 新疆农业大学学报, 37, 293-297.]
[18] Lü DG, Li ZX (2006) Description Criterion and Data Standard for Hawthorn Germplasm Evaluation. China Agriculture Press, Beijing. (in Chinese)
[吕德国, 李作轩 (2006)山楂种质资源描述规范和数据标准. 中国农业出版社, 北京.]
[19] Lü HY, Zhou LL, Li J, Zhang J (2011) The studies on extracting technology of pigments from Crataegus songorica. Anhui Agricultural Science Bulletin, 17(9), 25-27. (in Chinese with English abstract)
[吕海英, 周露露, 李进, 张瑾 (2011) 准噶尔山楂果实色素提取工艺研究. 安徽农学通报, 17(9), 25-27.]
[20] Meeus S, Honnay O, Jacquemyn H (2012) Strong differences in genetic structure across disjunct, edge, and core populations of the distylous forest herb Pulmonaria officinalis (Boraginaceae). American Journal of Botany, 99, 1809-1818.
[21] Opedal H, Falahati-Anbaran M, Albertsen E, Armbruster WS, Perez-Barrales R, Stenien HK, Pelabon C (2017) Euglossine bees mediate only limited long-distance gene flow in a tropical vine. New Phytologist, 213, 1898-1908.
[22] Ramos R, Song G, Navarro J, Zhang R, Symes CT, Forero MG, Lei F (2016) Population genetic structure and long-distance dispersal of a recently expanding migratory bird. Molecular Phylogenetics and Evolution, 99, 194-203.
[23] Wang K, Liu FZ, Zhao JC, Gong X, Gao Y, Liu LJ (2008) Study on partial phenotypic diversity of apple germplasm resources. China Fruits, (5), 20-25. (in Chinese)
[王昆, 刘凤之, 赵进春, 龚欣, 高源, 刘立军 (2008) 苹果种质资源部分表型多样性研究. 中国果树, (5), 20-25.]
[24] Wang ZY, Dong YZ, Chen H, Wang RF (2011) Rapid DNA extraction method from Xinjiang Yili wild walnut for SSR-PCR. Northern Horticulture, (19), 100-103. (in Chinese with English abstract)
[王肇延, 董玉芝, 陈虹, 王瑞芬 (2011) 适用于新疆野核桃SSR-PCR的快速提取DNA的方法. 北方园艺, (19), 100-103.]
[25] Yin LK (2006) Rare and Endangered Endemic Higher Plants in Xinjiang of China. Xinjiang Science and Technology Publishing House, Urumqi. (in Chinese)
[尹林克 (2006)新疆珍稀濒危特有高等植物. 新疆科学技术出版社, 乌鲁木齐.]
[26] Yu WL, Zhang B (2012) A study on morphological variation of pods and seeds of Medicago falcata collected from Zhaosu, Xinjiang. Acta Prataculturae Sinica, 21, 249-255. (in Chinese with English abstract)
[于万里, 张博 (2012) 新疆昭苏野生黄花苜蓿果实形态变异研究. 草业学报, 21, 249-255.]
[27] Zhang Y, Dai HY, Zhang QJ, Li H, Zhang ZH (2008) Assessment of genetic relationship in Crataegus genus by the apple SSR primers. Journal of Fruit Science, 25, 521-525. (in Chinese with English abstract)
[张叶, 代红艳, 张琪静, 李贺, 张志宏 (2008) 利用苹果SSR引物分析山楂属植物遗传关系. 果树学报, 25, 521-525.]
[28] Zhao HZ, Feng BT (1996) China Fruit Plant Monograph:Hawthorn (Crataegus) Flora. China Forestry Publishing House, Beijing. (in Chinese)
[赵焕谆, 丰宝田 (1996) 中国果树志·山楂卷. 中国林业出版社, 北京.]
[29] Zia ZU, Sadaqat HA, Tahir MH, Sadia B, Bushman BS, Hole D, Michaels L, Malik W (2014) Estimation of genetic diversity using SSR markers in sunflower. Genetika, 50, 570-580.
[1] Jie-Li HE. Development of EST-SSR and Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[3] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[4] Xie Lifeng, Li Ning, Li Ye, Yao Minghua. Genetic Diversity and Population Structure of Eggplant (Solanum melongena) Germplasm Resources Based on SRAP Method [J]. Chin Bull Bot, 2019, 54(1): 58-63.
[5] Tao Naiqi, Zhang Bin, Liu Xinkai, Zhou Heda, Zhong Naisheng, Yan Danfeng, Zhang Min, Gao Jiyin, Zhang Wenju. Identification of 21 New Camellia Hybrid Varieties by Fluorescence-labelled Simple Sequence Repeat Markers [J]. Chin Bull Bot, 2019, 54(1): 37-45.
[6] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[7] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[8] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. Domestication origin and spread of cultivated tea plants [J]. Biodiv Sci, 2018, 26(4): 357-372.
[9] Shengyuan Qin,Jun Rong,Wenju Zhang,Jiakuan Chen. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin [J]. Biodiv Sci, 2018, 26(4): 384-395.
[10] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding [J]. Biodiv Sci, 2018, 26(3): 217-228.
[11] Xunhe Huang,Zheqi Yu,Zhuoxian Weng,Danlin He,Zhenhua Yi,Weina Li,Jiebo Chen,Xiquan Zhang,Bingwang Du,Fusheng Zhong. Mitochondrial genetic diversity and maternal origin of Guangdong indigenous chickens [J]. Biodiv Sci, 2018, 26(3): 238-247.
[12] Zhu Yujia, Jiao Kaili, Luo Xiujun, Feng Shangguo, Wang Huizhong. Genetic Relationship of Physalis Plants Revealed by Simple Sequence Repeat Markers [J]. Chin Bull Bot, 2018, 53(3): 305-312.
[13] Ren Mengyun, Du Leshan, Chen Yanjun, Zhang Dun, Shen Qi, Guan Xiao, Zhang Yindong. Analysis on Genetic Diversity of Cynomorium songaricum by ITS Sequence [J]. Chin Bull Bot, 2018, 53(3): 313-321.
[14] Xingtong Wu,Lu Chen,Minqiu Wang,Yuan Zhang,Xueying Lin,Xinyu Li,Hong Zhou,Yafeng Wen. Population structure and genetic divergence in Firmiana danxiaensis [J]. Biodiv Sci, 2018, 26(11): 1168-1179.
[15] ZHANG Li-Wen, HAN Guang-Xuan. A review on the relationships between plant genetic diversity and ecosystem functioning [J]. Chin J Plan Ecolo, 2018, 42(10): 977-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants[J]. J Syst Evol, 2016, 54(4): 277 -306 .
[2] Xiufen Che, Xiaobo Yang, Ping Yue, Zhiyang Ou, Donghai Li, Qingshu Wu. Species diversity of forests in Tongguling National Nature Reserve, Hainan[J]. Biodiv Sci, 2006, 14(4): 292 -299 .
[3] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[4] Chen Chia-Jui. Sphaerotylos C. J. Chen—A Remarkable New Genus of Urticaceae from China, with Notes on Stigmas of the Family[J]. J Syst Evol, 1985, 23(6): 444 -456 .
[5] LIU Guang-Cai, YANG Qi-Feng, LI Long, SUN Jian-Hao. INTERCROPPING ADVANTAGE AND CONTRIBUTION OF ABOVE- AND BELOW-GROUND INTERACTIONS IN WHEAT-MAIZE INTERCROPPING[J]. Chin J Plan Ecolo, 2008, 32(2): 477 -484 .
[6] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[7] Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland[J]. Chin J Plan Ecolo, 2017, 41(9): 938 -952 .
[8] SHI Wei, WANG Zheng-Quan, LIU Jin-Liang, GU Jia-Cun, GUO Da-Li. FINE ROOT MORPHOLOGY OF TWENTY HARDWOOD SPECIES IN MAOERSHAN NATURAL SECONDARY FOREST IN NORTHEASTERN CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1217 -1226 .
[9] Xia Bing, Lan Tao, He Shan-an. Nonlinear Response Function of Growth of Pinus massomiana to Climate[J]. Chin J Plan Ecolo, 1996, 20(1): 51 -56 .
[10] GONG Ji-Rui, HUANG Yong-Mei, GE Zhi-Wei, DUAN Qing-Wei, YOU Xin, AN Ran, ZHANG Xin-Shi. ECOLOGICAL RESPONSES TO SOIL WATER CONTENT IN FOUR HYBRID POPULUS CLONES[J]. Chin J Plan Ecolo, 2009, 33(2): 387 -396 .