Biodiversity Science ›› 2016, Vol. 24 ›› Issue (2): 148-156.doi: 10.17520/biods.2015229

• Orginal Article • Previous Article     Next Article

Floral traits of woody plants and their habitat differentiations in a northern tropical karst forest

Yuliang Jiang1, 2, 3, Kundong Bai1, Yili Guo1, 3, Bin Wang1, 3, Dongxing Li1, 3, Xiankun Li1, 3, *(), Zhishang Liu4   

  1. 1 Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006
    2 College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006
    3 Guangxi Youyiguan Forest Ecosystem National Research Station, Pingxiang, Guangxi 532600
    4 Nonggang National Nature Reserve Administration of Guangxi, Longzhou, Guangxi 532400
  • Received:2015-08-25 Accepted:2015-12-23 Online:2016-03-03
  • Li Xiankun E-mail:xiankunli@163.com

The diversification of floral traits is the outcome of evolution by natural selection, and the variation in floral traits between species has a certain correlation with the plant habitats. The northern tropical karst seasonal rain forests have a great habitat heterogeneity, a complex structure of plant community, and abundant endemic components. Analyzing the relationship between the variation of plant traits and their habitats in those forests is helpful to understand species coexistence, coevolution and their adaptations to habitats, and to provide clues for revealing the ecological adaptability of plants and the maintenance mechanisms of biodiversity in karst forests. We conducted a preliminary study at a 15 ha plot of the northern tropical karst seasonal rain forest in Nonggang to examine the differences in floral traits among species and how these traits varied with habitats, when a relatively large number of woody plants bloomed synchronously, with a total of 21 species being found flowering. We divided the 21 species into three preferred habitat types (peak, slope and valley) according to the spatial distribution of species and their habitat associations, and analysed the differentiations among their floral traits. We also divided 21 species into three clustering groups of floral traits, and had a comparison between the habitat types and the clustering groups. The results showed that species dominance had a significantly negative correlation with flower size and flower color vividness, which indicated that it should be a favored trait for trees to have small flower size or unattractive flower color in the community. Only the flower color lightness was significantly different among the three types, while other flower traits were not significantly different. However, there was weak consistency between the three types and the three main groups, with 57.14% species overlapped , which showed that habitats had something to do with flower traits differentiations. In conclusion, we believe that the floral traits are closely related to the dominance of species and habitats in the northern tropical karst forest. Moreover, floral traits might be more deeply affected by habitats than pollination in this region.

Key words: flower size, flower color, trait combination, habitat, adaption, species dominance

Table 1

Floral traits and preferred habitats of 21 species in Nonggang forest plot"

种名
Species
花序类型
Inflorescence type
花序位置
Position of inflorescence
花径
Flower diameter
(mean+SD)
(mm)
花长
Flower length
(mean+SD) (mm)
芳香
Scent
花蜜
Nectar
花瓣色值
Color value
(R, G, B)
偏好生境
Preferred habitat
1 中国无忧花
Saraca dives
伞状圆锥花序
Panicle
腋生
Axillary
25.92 ± 3.61 66.39 ± 3.72 0 0 248, 162, 13 谷底
Valley
2 田方骨
Goniothalamus donnaiensis
单生
Solitary
腋生
Axillary
17.65 ± 3.93 61.49 ± 10.14 1 0 239, 178, 193 谷底
Valley
3 山桂花
Bennettiodendron leprosipes
总状伞形花序
Umbel
顶生
Apicillary
7.17 ± 1.05 3.63 ± 0.52 0 0 208, 255, 55 谷底
Valley
4 南方紫金牛
Ardisia thyrsiflora
复亚伞形圆锥花序
Panicle
腋生
Axillary
7.94 ± 0.79 6.70 ± 0.64 0 0 253, 158, 214 谷底
Valley
5 劲直刺桐
Erythrina stricta
总状花序
Raceme
腋生
Axillary
13.76 ± 1.94 50.39 ± 1.69 0 0 250, 31, 29 谷底
Valley
6 广西棋子豆
Archidendron guangxiensis
头状圆锥花序
Panicle
腋生
Axillary
13.97 ± 1.35 10.56 ± 0.73 0 0 252, 251, 247 谷底
Valley
7 裂果卫矛
Euonymus dielsianus
聚伞花序
Cymes
腋生
Axillary
10.37 ± 0.48 2.17 ± 0.36 0 0 247, 237, 140 谷底
Valley
8 三角车
Rinorea bengalensis
密伞花序
Umbel
腋生
Axillary
2.54 ± 0.21 4.05 ± 0.16 0 0 244, 249, 226 山坡
Slope
9 苹婆
Sterculia monosperma
圆锥花序
Panicle
腋生
Axillary
7.29 ± 2.45 5.39 ± 0.58 0 0 255, 237, 249 山坡
Slope
10 米扬噎
Streblus tonkinensis
单生或头状花序
Solitary or Capitulum
腋生
Axillary
4.14 ± 0.28 3.36 ± 0.48 0 0 249, 245, 244 山坡
Slope
11 茎花山柚
Champereia manillana
复穗状花序
Spike
茎生
Cauline
2.93 ± 0.51 2.32 ± 0.14 0 0 181, 254, 139 山坡
Slope
12 海南大风子
Hydnocarpus hainanensis
总状花序
Raceme
腋生
axillary
8.34 ± 0.70 7.14 ± 0.31 1 1 238, 255, 200 山坡
Slope
13 广西澄广花
Orophea anceps
单生
Solitary
腋生
Axillary
6.08 ± 0.59 2.07 ± 0.32 0 0 239, 198, 196 山坡
Slope
14 割舌树
Walsura robusta
圆锥花序
Panicle
腋生
axillary
3.34 ± 0.41 4.65 ± 0.33 0 0 255, 246, 247 山坡
Slope
15 白头树
Garuga forrestii
圆锥花序
Panicle
腋生
Axillary
6.80 ± 1.02 4.80 ± 0.33 0 0 236, 255, 151 山坡
Slope
16 鱼骨木
Canthium dicoccum
聚伞花序
Cymes
腋生
Axillary
4.41 ± 0.56 4.72 ± 0.64 1 0 253, 254, 248 山顶
Peak
17 毛叶铁榄
Sinosideroxylon pedunculatum
总状花序
Raceme
腋生
Axillary
5.53 ± 0.76 6.50 ± 0.33 0 1 254, 255, 120 山顶
Peak
18 假桂乌口树
Tarenna attenuata
聚伞花序
Cymes
顶生
Apicillary
9.28 ± 0.98 9.17 ± 1.90 1 0 236, 253, 151 山顶
Peak
19 黄梨木
Boniodendron minus
聚伞圆锥花序
Panicle
顶生
Apicillary
3.82 ± 0.20 2.80 ± 0.19 1 0 255, 255, 255 山顶
Peak
20 细叶谷木
Memecylon scutellatum
伞形花序
Umbel
腋生
Axillary
2.93 ± 0.16 2.46 ± 0.08 0 0 224, 255, 148 山顶
Peak
21 米念芭
Tirpitzia ovoidea
聚伞花序
Cymes
腋生
Axillary
25.34 ± 1.05 31.03 ± 1.48 0 0 255, 255, 255 山顶
Peak

Fig. 1

Variations in floral traits among the three habitat types in the Nonggang forest plot (mean + SE)"

Table 2

Correlation between floral traits and species dominance"

花径
Flower diameter
花长
Flower length
花色鲜艳度
Color vividness
花色明度
Color lightness
每花序花数
No. of flowers
per inflorescence
花数量
No. of flowers per flowering individual
花长
Flower length
0.740**
花色鲜艳度
Color vividness
0.151 0.087
花色明度
Color lightness
-0.273 -0.034 -0.127
每花序花数
No. of flowers per inflorescence
0.023 0.089 0.096 0.344
花数量
No. of flowers per flowering individual
-0.130 0.063 -0.066 0.276 0.703**
物种多度
Species abundance
-0.587** -0.418* -0.404* 0.151 -0.095 -0.001
物种重要值
Importance value
-0.422* -0.210 -0.123 0.103 0.158 0.275

Fig. 2

Dendrogram of species based on clustering of floral traits"

Table 3

Number of the species overlapped in the perferred habitat types and the clustering groups of floral traits The numbers of species overlapped between two grouping methods which were respectively based on clustering of floral traits and preferred habitat"

基于偏好生境 Based on preferred habitat types 物种总数
Total number of species
山顶 Peak 山坡 Slope 谷底 Valley
基于花性状聚类
Based on clustering groups of floral traits
第1组 Group 1 3 2 0 5
第2组 Group 2 3 6 4 13
第3组 Group 3 0 0 3 3
物种总数 Total number of species 6 8 7 21
1 Cao GX, Li Y, Liu X (2008) Flower size variation at the inflorescence and individual levels and its trade-off with flower number in Polygonum hydropiper (Polygonaceae). Guihaia, 28, 307-310. (in Chinese with English abstract)
[操国兴, 李燕, 刘欣 (2008) 水蓼花大小在花序和个体上的变化及其与数量权衡关系研究. 广西植物, 28, 307-310.]
2 Chen P (1988) A report on the soil investigation of the Longgang Natural Reserve. Guihaia, 8(Suppl. 1), 52-73. (in Chinese with English abstract)
[陈平 (1988) 弄岗保护区土壤调查报告. 广西植物, 8(增刊1), 52-73.]
3 Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat associations of tropical trees. Journal of Ecology, 95, 482-492.
4 Dick CA, Buenrostro J, Butler T, Carlson ML, Kliebenstein DJ, Whittall JB (2011) Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway. PLoS ONE, 6, e18230.
5 Dormont L, Delle-Vedove R, Bessière JM, Schatz B (2014) Floral scent emitted by white and coloured morphs in orchids. Phytochemistry, 100, 51-59.
6 Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403.
7 Galen C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. BioScience, 49, 631-640.
8 Galen C (2000) High and dry: drought stress, sex-allocation trade-offs, and selection on flower size in the alpine wildflower Polemonium viscosum. The American Naturalist, 156, 72-83.
9 Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Wen SJ, Huang FZ, Li DX, Li XK (2015) Sprouting characteristics of tree species in 15 ha plot of northern tropical karst seasonal rain forest in Nonggang, Guangxi, southern China. Chinese Journal of Ecology, 34, 955-961. (in Chinese with English abstract)
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 文淑均, 黄甫昭, 李冬兴, 李先琨 (2015) 弄岗北热带喀斯特季节性雨林15 ha样地木本植物萌生特征. 生态学杂志, 34, 955-961.]
10 Harms K, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
11 He Q, Shen Y, Wang M, Huang M, Yang R, Zhu S, Wang L, Xu Y, Wu R (2011) Natural variation in petal color in Lycoris longituba revealed by anthocyanin components. PLoS ONE, 6, e22098.
12 Herrera J (2005) Flower size variation in Rosmarinus officinalis: individuals, populations and habitats. Annals of Botany, 95, 431-437.
13 Huang FZ, Wang B, Ding T, Xiang WS, Li XK, Zhou AP (2014) Numerical classification of associations in a northern tropical karst seasonal rain forest and the relationships of these associations with environmental factors. Biodiversity Science, 22, 157-166. (in Chinese with English abstract)
[黄甫昭, 王斌, 丁涛, 向悟生, 李先琨, 周爱萍 (2014) 弄岗北热带喀斯特季节性雨林群丛数量分类及与环境的关系. 生物多样性, 22, 157-166.]
14 Huang SQ (2014) Most effective pollinator principle of floral evolution: evidence and query. Chinese Bulletin of Life Sciences, 26, 118-124.
[黄双全 (2014) 花部特征演化的最有效传粉者原则: 证据与疑问. 生命科学, 26, 118-124.]
15 Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G (2003) The role of herbivores in the maintenance of a flower color polymorphism in wild radish. Ecology, 84, 1733-1743.
16 Jamie RM, Jana CV (2010) Floral color versus phylogeny in structuring subalpine flowering communities. Proceedings of the Royal Society B, 277, 2957-2965.
17 Lázaro A, Totland Ø (2014) The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation. Annals of Botany, 114, 157-165.
18 Liang CF, Liang JY, Liu LF, Mo XL (1988) A report on the floristic survey on the Nonggang Natural Reserve. Guihaia, 8(Suppl. 1), 83-184. (in Chinese with English abstract)
[梁畴芬, 梁建英, 刘兰芳, 莫新礼 (1988) 弄岗自然保护区植物区系考察报告. 广西植物, 8(增刊1), 83-184.]
19 Li QL, Ma XK, Cheng J, Luo YB (2012) Quantitative studies of floral color and floral scent. Biodiversity Science, 20, 308-316. (in Chinese with English abstract)
[李庆良, 马晓开, 程瑾, 罗毅波 (2012) 花颜色和花气味的量化研究方法. 生物多样性, 20, 308-316.]
20 Li SX, Hou J, Mao Y, Chen YN (2012) Molecular basis and genetic regulation of plant flower color. Journal of Southwest Forestry University, 32(6), 92-97. (in Chinese with English abstract)
[李淑娴, 侯静, 冒燕, 陈赢男 (2012) 决定植物花色的分子机制与遗传调控. 西南林业大学学报, 32(6), 92-97.]
21 Li XK, Su ZM, Lü SH, Ou ZL, Xiang WS, Ou Z, Lu SH (2003) The spatial pattern of natural vegetation in the karst regions of Guangxi and the ecological signality for ecosystem rehabilitation and reconstruction. Journal of Mountain Science, 21, 129-139. (in Chinese with English abstract)
[李先琨, 苏宗明, 吕仕洪, 欧祖兰, 向悟生, 区智, 陆树华 (2003) 广西岩溶植被自然分布规律及对岩溶生态恢复重建的意义. 山地学报, 21, 129-139.]
22 Li XK, He CX, Tang JS, Jiang ZC, Huang YQ (2008) Evolution and ecological processes of Karst ecosystem of Guangxi. Guangxi Sciences, 15, 80-86, 91. (in Chinese with English abstract)
[李先琨, 何成新, 唐建生, 蒋忠诚, 黄玉清 (2008) 广西岩溶山地生态系统特征与恢复重建. 广西科学, 15, 80-86, 91.]
23 Mani S, Adrian GD, Prakash B, Martin B (2014) Flower color and phylogeny along an altitudinal gradient in the Himalayas of Nepal. Journal of Ecology, 102, 126-135.
24 Marth RW (1995) Floral color change: a widespread functional convergence. American Journal of Botany, 82, 167-185.
25 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Vegan: Community Ecology Package. R package version 2.2-1..
26 R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria..
27 Schemske DW, Bierzychudek P (2001) Evolution of flower color in the desert annual Linanthus parryae: wright revisited. Evolution, 55, 1269-1282.
28 Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower color in the desert annual Linanthus parryae: Was Wright right? Evolution, 61, 2528-2543.
29 Steyn WJ, Wand SJ, Holcroft M, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist, 155, 349-361.
30 Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defense theory and flower petal colour predict variation in the secondary chemistry of wild radish. Journal of Ecology, 92, 132-141.
31 Su M, Qi W, Yang M, Du GZ (2009) Altitudinal differences in flower traits and reproductive allocation of Delphinium pylzowii (Ranunculaceae) at east Qinghai Tibetan Plateau. Journal of Lanzhou University (Natural Sciences), 45(2), 61-65. (in Chinese with English abstract)
[苏梅, 齐威, 阳敏, 杜国祯 (2009) 青藏高原东部大通翠雀花的花特征和繁殖分配的海拔差异. 兰州大学学报(自然科学版), 45(2), 61-65.]
32 Su ZM, Zhao TL, Huang QC (1988) The vegetation of Nonggang Natural Reserve in Guangxi. Guihaia(Suppl. 1), 185-214. (in Chinese with English abstract)
[苏宗明, 赵天林, 黄庆昌 (1988) 弄岗自然保护区植被调查报告. 广西植物(增刊1), 185-214.]
33 Wang B, Huang YS, Li XK, Xiang WS, Ding T, Huang FZ, Lu SH, Han WH, Wen SJ, He LJ (2014) Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamic plot in Nonggang, Guangxi, Southern China. Biodiversity Science, 22, 141-156. (in Chinese with English abstract)
[王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均, 何兰军 (2014) 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布. 生物多样性, 22, 141-156.]
34 Warren J, Mackenzie S (2001) Why are all color combinations not equally represented as flower-color polymorphisms? New Phytologist, 151, 237-241.
35 Zhang Q, Zhao CZ, Dong XG, Ma XL, Hou ZJ, Li Y (2013a) Relationships between flower size, flower number, and plant size of Stellera chamaejasme population along an altitude gradient of degraded alpine grassland in Northwest China. Chinese Journal of Ecology, 32, 3160-3166. (in Chinese with English abstract)
[张茜, 赵成章, 董小刚, 马小丽, 侯兆疆, 李钰 (2013a) 高寒退化草地不同海拔狼毒种群花大小、数量与个体大小的关系. 生态学杂志, 32, 3160-3166.]
36 Zhang Q, Zhao CZ, Ma XL, Hou ZJ, Li Y (2013b) Response of reproductive allocation of Stellera chamaejasme population in alpine grassland to altitude. Chinese Journal of Ecology, 32, 247-252. (in Chinese with English abstract)
[张茜, 赵成章, 马小丽, 侯兆疆, 李钰 (2013b) 高寒草地狼毒种群繁殖分配对海拔的响应. 生态学杂志, 32, 247-252.]
37 Zhang Q, Zhao CZ, Dong XG, Ma XL, Hou ZJ, Li Y (2014) Trade-off between the biomass and number of flowers in Stellera chamaejasme along an elevation gradient in a degraded alpine grassland. Chinese Journal of Plant Ecology, 38, 452-459. (in Chinese with English abstract)
[张茜, 赵成章, 董小刚, 马小丽, 侯兆疆, 李钰 (2014) 高寒退化草地狼毒种群不同海拔花大小-数量的权衡关系. 植物生态学报, 38, 452-459.]
[1] Chen Xing, Zhao Lianjun, Hu Xixi, Luo Chunping, Liang Chunping, Jiang Shiwei, Liang Lei, Zheng Weichao, Guan Tianpei. Impact of livestock terrain utilization patterns on wildlife: A case study of Wanglang National Nature Reserve [J]. Biodiv Sci, 2019, 27(6): 630-637.
[2] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[3] Chen Qiangqiang, Li Meiling, Wang Xu, Mueen Qamer Faisal, Wang Peng, Yang Jianwei, Wang Muyang, Yang Weikang. Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China [J]. Biodiv Sci, 2019, 27(2): 186-199.
[4] NING Yao, LEI Jin-Rui, SONG Xi-Qiang, HAN Shu-Mei, ZHONG Yun-Fang. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant [J]. Chin J Plan Ecolo, 2018, 42(9): 946-954.
[5] Chenchen Ding,Yiming Hu,Chunwang Li,Zhigang Jiang. Distribution and habitat suitability assessment of the gaur Bos gaurus in China [J]. Biodiv Sci, 2018, 26(9): 951-961.
[6] Qian Lei, Jinya Li, Keming Ma. Applications of remote sensing technology in avian ecology [J]. Biodiv Sci, 2018, 26(8): 862-877.
[7] Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677.
[8] Yu Zhang, Gang Feng. Distribution pattern and mechanism of insect species diversity in Inner Mongolia [J]. Biodiv Sci, 2018, 26(7): 701-706.
[9] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[10] MENG Ling-Jun, YAO Jie, QIN Jiang-Huan, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Drivers of composition and density pattern of tree seedlings in a secondary mixed conifer and broad-leaved forest, Jiaohe, Jilin, China [J]. Chin J Plan Ecolo, 2018, 42(6): 653-662.
[11] SUN Xiao-Wei,YANG Qing-Song,LIU He-Ming,WANG Xi-Hua. Classification of plant associations based on a 20 hm2 dynamics plot of evergreen broad- leaved forest in Mt. Tiantong, Zhejiang, China [J]. Chin J Plan Ecolo, 2018, 42(5): 550-561.
[12] ZHONG Qiao-Lian,LIU Li-Bin,XU Xin,YANG Yong,GUO Yin-Ming,XU Hai-Yang,CAI Xian-Li,NI Jian. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plan Ecolo, 2018, 42(5): 562-572.
[13] Wei Hua, Wang Yan, Liu Baohui, Wang Lei. Deciphering the Underlying Mechanism of the Plant Circadian System and Its Regulation on Plant Growth and Development [J]. Chin Bull Bot, 2018, 53(4): 456-467.
[14] ZHENG Shan-Shan, CHEN Xu-Bo, XU Wei-Nan, LUO Zheng-Rong, XIA Geng-Shou. Effects of exotic-native species relationship on naturalization and invasion of exotic plant species [J]. Chin J Plant Ecol, 2018, 42(10): 990-999.
[15] SUN Xiao-Mei, CHEN Jing-Jing, LI Jin-Xia, LI Liang, HAN Guo-Jun, CHEN Nian-Lai. Hierarchical responses of plant stoichiometry to phosphorus addition in an alpine meadow community [J]. Chin J Plan Ecolo, 2018, 42(1): 78-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Verónica Minaya, Gerald Corzo, Hugo Romero-Saltos, Johannes van der Kwast, Egbert Lantinga, Remigio Galárraga-Sánchez, Arthur Mynett. Altitudinal analysis of carbon stocks in the Antisana páramo, Ecuadorian Andes[J]. J Plant Ecol, 2016, 9(5): 553 -563 .
[2] Li Ping-Tao, Wang Xue-Ming. A New Species of Gongronema (Asclepiadaceae) from Guizhou[J]. J Syst Evol, 1987, 25(6): 476 -477 .
[3] . [J]. Chin J Plan Ecolo, 1964, (2): 253 -255 .
[4] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[5] Mark P. Simmons. Relative benefits of amino-acid, codon, degeneracy, DNA, and purine-pyrimidine character coding for phylogenetic analyses of exons[J]. J Syst Evol, 2017, 55(2): 85 -109 .
[6] Adam D. Chupp, Loretta L. Battaglia. Bird-plant interactions and vulnerability to biological invasions[J]. J Plant Ecol, 2016, 9(6): 692 -702 .
[7] Han Fu-Shan, Chen Wei-Qun. Some new taxa of Nitelleae from Yunnan[J]. J Syst Evol, 1982, 20(3): 354 -370 .
[8] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[9] Shen Ze-hao, Jin Yi-xing. The Early Restoration of Vegetation and Soil Environment in Felling-Field of the Fagus engerliana Forest[J]. Chin J Plan Ecolo, 1995, 19(4): 375 -383 .
[10] HAN Hou-Wei, JIANG Xin, PAN Jin-Hua, CONG Wei, SUN Juan, ZHANG Zhuang-Zhi, SONG Shao-Feng, SHENG Bao-Li, WANG Qing-Yan, and LI Xiao-Jie. Characteristics of seagrass seed and restoration of seagrass bed[J]. Chin J Plan Ecolo, 2012, 36(8): 909 -917 .