生物多样性 ›› 2011, Vol. 19 ›› Issue (3): 369-376.doi: 10.3724/SP.J.1003.2011.08193

• 研究报告 • 上一篇    下一篇

长期定位施肥对石灰性紫色水稻土古菌群落结构的影响

辜运富1, 张小平1*, 涂仕华2, Kristina Lindström3   

  1. 1四川农业大学资源环境学院微生物系, 四川雅安 625014
    2四川省农业科学院土壤肥料研究所, 成都 610066
    3Department of Applied Chemistry and Microbia1, University of Helsinki, SF-00014, Helsinki, Finland
  • 收稿日期:2010-08-06 修回日期:2011-01-27 出版日期:2011-05-20
  • 通讯作者: 张小平 E-mail:aumdwsb@sicau.edu.cn
  • 基金项目:

    国家科技支撑计划课题

Effect of long-term fertilization on archaeal community structure in calcareous purplish paddy soil

Yunfu Gu1, Xiaoping Zhang1*, Shihua Tu2, Kristina Lindström3   

  1. 1 College of Resource and Environment, Sichuan Agricultural University, Ya’an 625014, China
    2 Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
    3 Department of Applied Chemistry and Microbial, University of Helsinki, SF-00014, Helsinki, Finland
  • Received:2010-08-06 Revised:2011-01-27 Online:2011-05-20
  • Contact: Xiaoping Zhang E-mail:aumdwsb@sicau.edu.cn

为了认识长期施肥对石灰性紫色水稻土培肥和肥力演化的作用, 结合变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)和限制性酶切片段长度多态性(RFLP)技术, 研究了稻麦轮作下农家肥(M)、氮肥+农家肥 (NM)、氮磷肥+农家肥(NPM)、氮磷钾肥+农家肥(NPKM)、无肥(CK)、氮肥(N)、氮磷肥(NP)、氮磷钾肥(NPK)等不同施肥制度对石灰性紫色水稻土古菌群落结构的影响。研究结果表明, 长期定位施肥明显影响土壤中的古菌组成。在长期施用氮肥+农家肥、氮磷肥和氮磷钾肥+农家肥处理的土壤中, 古菌多样性指数低于农家肥、氮磷肥+农家肥、无肥、氮肥和氮磷钾肥处理。在DGGE图谱的基础上, 分别选择种植水稻和小麦的氮磷钾肥处理土壤样品, 对古菌克隆子的16S rDNA序列进行了系统发育分析, 发现水稻土古菌与各种土壤及水体环境的古菌极其相似。对DGGE图谱的聚类分析发现, 不管是种植水稻还是小麦, 8种施肥处理的古菌都聚在3个群里。种植水稻时, M和NPK处理下的土壤古菌聚成第一个群, NP处理下的聚成第二个群, 另外5种施肥处理(NPKM, NM, CK, N 和NPM)聚成第三个群。种植小麦时, NPKM和M处理下的土壤古菌聚成一个群, NP处理下的聚成第二个群, N、NPK、NM、NPM和CK处理下的聚成第三个群。聚类分析结果显示, 作物类型会影响土壤古菌群落结构。

关键词: 双歧杆菌, 16S rDNA同源性, 系统发育

To better understand the role that fertilization systems play in soil fertility buildup and evolution, we employed denaturing gradient gel electrophoresis (DGGE) and restriction fragment length polymorphism (RFLP) to determine the influence of different fertilization treatments on archaeal community structure in calcareous purplish paddy soil under rice/wheat rotations. The eight fertilization treatments were as follows: manure only (M), nitrogen plus manure (NM), nitrogen and phosphorus plus manure (NPM), nitrogen, phosphorus and potassium plus manure (NPKM), without fertilization (CK), mineral nitrogen (N), nitrogen-phosphorus (NP) and nitrogen, and phosphorus and potassium (NPK). Our results showed that long-term fertilization significantly affected soil archaeal community structure; the richness and diversity of archaeal community under NM, NP and NPKM were lower than those under the other fertilization treatments (M, NPM, CK, N, and NPK). Based on the DGGE patterns, two soil DNA samples isolated from the NPK-amended soil were used for RFLP analysis of archaea. Phylogenetic analyses showed that archaea in the calcareous purplish paddy soil was highly diverse, and the sequences were closely related to those archaeal sequences isolated from various soils and water environment. Cluster analysis of the DGGE profiles showed that archaeal communities under the eight fertilization treatments clustered into three groups. In soil from paddies currently under rice cultivation, the archaeal communities in the soil amended with M and NPK grouped into the first cluster, while NP was in the second group, and NPKM, NM, CK, N and NPM were in the third. In the soil with wheat cultivation, NP-treated archaeal communities clustered into a cluster, NPKM and M were in the second cluster, and N, NPK, NM, NPM and CK soil communities comprised the third cluster. The cluster analysis showed that crop type impacts the community structure of soil archaea.

Key words: Bifidobacterium, 16S rDNA homology, bacterial phylogeny

中图分类号: 

  • Q938.1

Angers DA, Bissonnette N, Legere A, Samson N(1993)Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Canadian Journal of Soil Science, 73a, 39–50.

Buckley DH, Graber JR, Schmidt TM(1998)Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Applied and Environmental Microbiology, 64, 4333–4339.

Birtrim SB, Donohue TJ, Johandelsman RGP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. Proceedings of the National Academy of Sciences of the United States of America, 94, 277–282.

Hershberger KL, Barns SM, Reysenbach AL, Dawson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature, 384, 420.

Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507-510.

Kennedy AC, Smith KL(1995) Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170, 75–86.

Zhu B, Wang T, You X, Gao MR (2008) Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere, 18, 257–264.

Livia B, UweL, Frank B (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 109, 141–152.

Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73, 127-141.

?vre?s L, Forney L, Daae FL, Torsvik V(1997)Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 63, 3367–3373.

Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science, 276, 734–740.

Riesner D, Steger G, Zimmat R, Owens RA, Wagenh?fer M, Hillen W, Vollbach S, Henco K (1989) Temperature gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis, 10, 377-389.

Saikaly PE, Stroot PG, Oerther DB (2005) Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Applied and Environmental Microbiology, 71, 5814–5822.

Stein LY, Jones G, Alexander B, Elmund K, Wright-Jones C, Nealson KH (2006) Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir. FEMS Microbiology Ecology, 42, 431–440.

Sandaa RA, Enger Torsvik V (1999) Abundance and diversity of archaea in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65, 3293–3297.

Watanabe T, Kimura M, Asakawa S (2006) Community structure of methanogenic archaea in paddy field soil under double cropping (rice–wheat). Soil Biology and Biochemistry, 38, 1264–1274.

Gu YF, Zhang XP, Tu SH, Vestberg M, Lindstr?m K (2009) Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 45, 239-246.

Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied soil ecology, 36, 84–91.
[1] 黄久香 陈文娜 李玉玲 姚纲. (2020) 基于多个叶绿体基因序列片段的广义苋科系统发育关系研究. 植物学报, 55(4): 0-0.
[2] 顾钰峰,金冬梅,刘保东,戴锡玲,严岳鸿. (2020) 蕨类植物的鳞片特征及演化I: 凤尾蕨科. 植物学报, 55(2): 163-176.
[3] 王伟,刘阳. (2020) 植物生命之树重建的现状、问题和对策建议. 生物多样性, 28(2): 176-188.
[4] 柴永福,许金石,刘鸿雁,刘全儒,郑成洋,康慕谊,梁存柱,王仁卿,高贤明,张峰,福臣,刘晓,岳明. (2019) 华北地区主要灌丛群落物种组成及系统发育结构特征. 植物生态学报, 43(9): 793-805.
[5] 曹槟, 李国杰, 赵瑞琳. (2019) 大小兴安岭地区红菇属物种多样性及其地理成分. 生物多样性, 27(8): 854-866.
[6] 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. (2019) 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性. 植物生态学报, 43(6): 543-556.
[7] 赵月梅, 杨振艳, 赵永平, 李筱玲, 赵志新, 赵桂仿. (2019) 木犀科植物叶绿体基因组结构特征和系统发育关系. 植物学报, 54(4): 441-454.
[8] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. (2019) 直刺变豆菜叶绿体全基因组及其特征. 生物多样性, 27(4): 366-372.
[9] 陈志远,刘珺,杨星鹏,刘梦,汪涯,张志斌,朱笃. (2019) 东乡野生稻可培养内生细菌群落组成及多样性. 生物多样性, 27(12): 1320-1329.
[10] 董雪蕊, 张红, 张明罡. (2019) 基于系统发育的黄土高原地区木本植物多样性及特有性格局. 生物多样性, 27(12): 1269-1278.
[11] 王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. (2019) 亚热带常绿阔叶林89种木本植物一级根直径的变异. 植物生态学报, 43(11): 969-978.
[12] 杜新宇, 卢金梅, 李德铢. (2019) 石松类和蕨类植物质体基因组结构演化研究进展. 生物多样性, 27(11): 1172-1183.
[13] 赵国华, 王莹, 商辉, 周喜乐, 王爱华, 李玉峰, 王晖, 刘保东, 严岳鸿. (2019) 祖先性状重建法揭示铁线蕨属植物孢子表面纹饰的形态多样性及其演化. 生物多样性, 27(11): 1228-1235.
[14] 孙德鑫, 刘向, 周淑荣. (2018) 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建. 生物多样性, 26(7): 655-666.
[15] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. (2018) 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护. 生物多样性, 26(3): 217-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed