生物多样性 ›› 2019, Vol. 27 ›› Issue (5): 567-575.doi: 10.17520/biods.2018211

• 方法 • 上一篇    下一篇

基于Nextflow构建的宏条形码自动化分析流程EPPS

李诣远*(), DavidC.Molik, MichaelE.Pfrender   

  1. (Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46554, USA)
  • 收稿日期:2018-08-01 接受日期:2019-03-05 出版日期:2019-05-20

EPPS, a metabarcoding bioinformatics pipeline using Nextflow

Li Yiyuan()*, C. Molik David, E. Pfrender Michael   

  1. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46554, USA)Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46554, USA
  • Received:2018-08-01 Accepted:2019-03-05 Online:2019-05-20

基于宏条形码技术的物种快速检测有助于生物多样性的评估、预测和保护。本文介绍了常用宏条形码分析的步骤和参数设定方法。我们利用Nextflow搭建了一款宏条形码分析流程EPPS, 可以自动化地运行从原始数据的质量控制到环境多样性的比较。Nextflow软件还拥有流程监控的功能, 可视化输出每个进程所消耗的时间与内存。本文还使用测试数据和已发表数据证明该平台能够有效地分析宏条形码数据并可靠地分析环境生物多样性的相似性。

关键词: 环境DNA, USEARCH, Trimmomatic, 主成分分析

Metabarcoding helps to quickly assess biodiversity. In this study, we discuss popular metabarcoding analytical tools and parameter settings. We also develop a metabarcoding bioinformatics pipeline, EPPS, to process data from quality control of raw reads to biodiversity comparisons between samples using a pipeline building program, Nextflow. The EPPS pipeline can summarize the time and memory cost of each process in the pipeline. We also apply the pipeline on a test dataset and a public dataset from a previous study. The result suggests that this pipeline can reliably analyze metabarcoding data and facilitate pipeline sharing of metabarcoding studies.

Key words: environmental DNA, USEARCH, Trimmomatic, principal component analysis

图1

EPPS的主要分析步骤。OTU聚类分析还包括去除重复序列、OTU聚类和嵌合体的检测。"

图2

EPPS流程每一个进程的时间消耗。横坐标代表时间, 单位是秒。最左列的名称分别对应了宏条形码分析的流程。filter: 测序质量控制; demultiplex: PCR引物的删除, 如果有多个引物则将各个引物分开; merge: 合并正向和反向序列; otu_clustering/map: OTU聚类分析; plot: 主成分分析。由于测试数据有4个样品, 因此每个进程的右侧括号里有1-4的序号。浅色进度条代表进程所消耗的系统时间。深色进度条代表的是每个进程的CPU时间。每个进度条包含有两个数字, 第1个数字代表每个进度的系统时间, 第2个数字代表虚拟内存的峰值。"

图3

基于测试数据的主成分分析结果。图中每一个点代表一个测试数据的样品。点与点之间距离越近代表样品之间的物种组成相似度越高。例如, test3和test4的相似度大于test3和test1的相似度。"

图4

公共数据的分析结果。样品的名称编号1-8分别代表从最上游到下游的8个采样点。编号的后缀a, b, c分别代表同一个采样地点的3次独立的重复取样。基于图中的结果, 最上游的样品Location1有独特的鱼类多样性组成。Location 3-6有类似的鱼类多样性组成。最下游的样品Location 7-8有类似的鱼类多样性组成。"

[1] Bazinet AL, Cummings MP ( 2012) A comparative evaluation of sequence classification programs. BMC Bioinformatics, 13, 92.
doi: 10.1186/1471-2105-13-92
[2] Berger SA, Krompass D, Stamatakis A ( 2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Systematic Biology, 60, 291-302.
doi: 10.1093/sysbio/syr010
[3] Bik HM, Interactive Pitch Inc . ( 2014) Phinch: An interactive, exploratory data visualization framework for-Omic datasets. bioRxiv, 009944.
[4] Bista I, Carvalho GR, Tang M, Walsh K, Zhou X, Hajibabaei M, Shokralla S, Seymour M, Bradley D, Liu S, Christmas M ( 2018) Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Molecular Ecology Resources, 18, 1020-1034.
doi: 10.1111/men.2018.18.issue-5
[5] Bohmann K, Evans A, Gilbert MT, Carvalho GR, Creer S, Knapp M, Douglas WY, De Bruyn M ( 2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29, 358-367.
[6] Bolger AM, Lohse M, Usadel B ( 2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
doi: 10.1093/bioinformatics/btu170
[7] Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E ( 2016) obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16, 176-182.
doi: 10.1111/1755-0998.12428
[8] Brady A, Salzberg SL ( 2009) Phymm and PhymmBL: Metagenomic phylogenetic classification with interpolated Markov models. Nature Methods, 6, 673.
doi: 10.1038/nmeth.1358
[9] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP ( 2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581.
doi: 10.1038/nmeth.3869
[10] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL ( 2009) BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421.
doi: 10.1186/1471-2105-10-421
[11] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R ( 2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, USA, 108, 4516-4522.
doi: 10.1073/pnas.1000080107
[12] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA ( 2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335.
doi: 10.1038/nmeth.f.303
[13] Cardoso P, Borges PA, Veech JA ( 2009) Testing the performance of beta diversity measures based on incidence data: The robustness to undersampling. Diversity and Distributions, 15, 1081-1090.
doi: 10.1111/ddi.2009.15.issue-6
[14] Collen B, Whitton F, Dyer EE, Baillie JE, Cumberlidge N, Darwall WR, Pollock C, Richman NI, Soulsby AM, Böhm M ( 2014) Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography, 23, 40-51.
doi: 10.1111/geb.12096
[15] Crampton-Platt A, Timmermans MJ, Gimmel ML, Kutty SN, Cockerill TD, Vun Khen C, Vogler AP ( 2015) Soup to tree: The phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample. Molecular Biology and Evolution, 32, 2302-2316.
doi: 10.1093/molbev/msv111
[16] Crampton-Platt A, Douglas WY, Zhou X, Vogler AP ( 2016) Mitochondrial metagenomics: Letting the genes out of the bottle. GigaScience, 5, 15.
doi: 10.1186/s13742-016-0120-y
[17] Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière- Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME ( 2017 a) Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26, 5872-5895.
doi: 10.1111/mec.2017.26.issue-21
[18] Deiner K, Renshaw MA, Li Y, Olds BP, Lodge DM, Pfrender ME ( 2017 b) Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods in Ecology and Evolution, 8, 1888-1898.
doi: 10.1111/2041-210X.12836
[19] Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C ( 2017) Nextflow enables reproducible computational workflows. Nature Biotechnology, 35, 316.
doi: 10.1038/nbt.3820
[20] Dowle EJ, Pochon X, Banks JC, Shearer K, Wood SA ( 2016) Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: A case study using freshwater macroinvertebrates. Molecular Ecology Resources, 16, 1240-1254.
doi: 10.1111/1755-0998.12488
[21] Edgar RC ( 2016) SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv, 074161.
[22] Edgar RC ( 2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.
doi: 10.1093/bioinformatics/btq461
[23] Edgar RC ( 2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996.
doi: 10.1038/nmeth.2604
[24] Evans NT, Li Y, Renshaw MA, Olds BP, Deiner K, Turner CR, Jerde CL, Lodge DM, Lamberti GA, Pfrender ME ( 2017) Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 74, 1362-1374.
doi: 10.1139/cjfas-2016-0306
[25] Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM ( 2016) Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources, 16, 29-41.
doi: 10.1111/1755-0998.12433
[26] Gerlach W, Stoye J ( 2011) Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Research, 39, e91.
doi: 10.1093/nar/gkr225
[27] Huson DH, Auch AF, Qi J, Schuster SC ( 2007) MEGAN analysis of metagenomic data. Genome Research, 17, 377-386.
doi: 10.1101/gr.5969107
[28] Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, Larsen TH ( 2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16, 1245-1257.
doi: 10.1111/ele.12162
[29] Li Y, Evans NT, Renshaw MA, Jerde CL, Olds BP, Shogren AJ, Deiner K, Lodge DM, Lamberti GA, Pfrender ME ( 2018) Estimating fish alpha- and beta-diversity along a small stream with environmental DNA metabarcoding. Metabarcoding and Metagenomics, 2, e24262.
doi: 10.3897/mbmg.2.24262
[30] Liu B, Gibbons T, Ghodsi M, Pop M ( 2010) MetaPhyler: Taxonomic profiling for metagenomic sequences. In: Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 95-100.
[31] Liu S, Wang X, Xie L, Tan M, Li Z, Su X, Zhang H, Misof B, Kjer KM, Tang M, Niehuis O ( 2016) Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Molecular Ecology Resources, 16, 470-479.
doi: 10.1111/men.2016.16.issue-2
[32] Liu S, Li Y, Lu J, Su X, Tang M, Zhang R, Zhou L, Zhou C, Yang Q, Ji Y, Yu DW ( 2013) SOAPBarcode: Revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution, 4, 1142-1150.
doi: 10.1111/mee3.2013.4.issue-12
[33] Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP, Feder JL, Mahon AR, Pfrender ME ( 2012) Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA. Molecular Ecology, 21, 2555-2558.
doi: 10.1111/j.1365-294X.2012.05600.x
[34] Martin M ( 2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal, 17, 10-12.
[35] Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD ( 2012) PANDAseq: Paired-end assembler for Illumina sequences. BMC Bioinformatics, 13, 31.
doi: 10.1186/1471-2105-13-31
[36] Matsen FA, Kodner RB, Armbrust EV ( 2010) pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics, 11, 538.
doi: 10.1186/1471-2105-11-538
[37] Millennium Ecosystem Assessment ( 2005) Ecosystem and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC.
[38] Munch K, Boomsma W, Huelsenbeck JP, Willerslev E, Nielsen R ( 2008) Statistical assignment of DNA sequences using Bayesian phylogenetics. Systematic Biology, 57, 750-757.
doi: 10.1080/10635150802422316
[39] Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J ( 2015) Global effects of land use on local terrestrial biodiversity. Nature, 520, 45.
doi: 10.1038/nature14324
[40] Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H ( 2013) Package ‘vegan’. Community Ecology Package, version. 2. ( accessed on 2018-08-01)
[41] Olds BP, Jerde CL, Renshaw MA, Li Y, Evans NT, Turner CR, Deiner K, Mahon AR, Brueseke MA, Shirey PD, Pfrender ME ( 2016) Estimating species richness using environmental DNA. Ecology and Evolution, 6, 4214-4226.
doi: 10.1002/ece3.2186
[42] Patil KR, Roune L, McHardy AC ( 2012) The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS ONE, 7, e38581.
doi: 10.1371/journal.pone.0038581
[43] Pfrender M, Hawkins C, Bagley M, Courtney G, Creutzburg B, Epler J, Fend S, Ferrington L Jr, Hartzell P, Jackson S, Larsen D ( 2010) Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in DNA-based approaches. The Quarterly Review of Biology, 85, 319-340.
doi: 10.1086/655118
[44] Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO ( 2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.
doi: 10.1126/science.1246752
[45] Piro VC, Matschkowski M, Renard BY ( 2017) MetaMeta: Integrating metagenome analysis tools to improve taxonomic profiling. Microbiome, 5, 101.
doi: 10.1186/s40168-017-0318-y
[46] Price MN, Dehal PS, Arkin AP ( 2009) FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641-1650.
doi: 10.1093/molbev/msp077
[47] R Core Team ( 2016) R: A Language and Environment for Statistical Computing. https://www.R-project.org/. ( accessed on 2018-08-01)
[48] Rognes T, Flouri T, Nichols B, Quince C, Mahé F ( 2016) VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584.
doi: 10.7717/peerj.2584
[49] Rosen GL, Reichenberger ER, Rosenfeld AM ( 2010) NBC: The Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics, 27, 127-129.
[50] Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W ( 2018) MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Molecular Biology and Evolution, 35, 1553-1555.
doi: 10.1093/molbev/msy074
[51] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW ( 2009) Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537-7541.
doi: 10.1128/AEM.01541-09
[52] Simon TP, Evans NT ( 2017) Environmental quality assessment using stream fishes. In: Methods in Stream Ecology, 3rd edn. (eds Hauer FR, Lamberti G), pp. 319-334. Elsevier, London.
[53] Slowikowski K ( 2018) ggrepel: Automatically Position Non- Overlapping Text Labels with ‘ggplot2’. https://CRAN.R- project.org/package=ggrepel. ( accessed on 2018-08-01)
[54] Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH ( 2012) Environmental DNA. Molecular Ecology, 21, 1789-1793.
doi: 10.1111/j.1365-294X.2012.05542.x
[55] Tang M, Hardman CJ, Ji Y, Meng G, Liu S, Tan M, Yang S, Moss ED, Wang J, Yang C, Bruce C ( 2015) High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 6, 1034-1043.
doi: 10.1111/2041-210X.12416
[56] Thomsen PF, Kielgast JO, Iversen LL, Wiuf C, Rasmussen M, Gilbert MT, Orlando L, Willerslev E ( 2012) Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21, 2565-2573.
doi: 10.1111/j.1365-294X.2011.05418.x
[57] Thomsen PF, Willerslev E ( 2015) Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18.
doi: 10.1016/j.biocon.2014.11.019
[58] Uritskiy GV, DiRuggiero J, Taylor J ( 2018) MetaWRAP—A flexible pipeline for genome-resolved metagenomic data analysis. bioRxiv, 277442.
[59] Visconti A, Martin TC, Falchi M ( 2018) YAMP: A containerised workflow enabling reproducibility in metagenomics research. GigaScience, 7, giy072.
[60] Wang Q, Garrity GM, Tiedje JM, Cole JR ( 2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267.
doi: 10.1128/AEM.00062-07
[61] Wickham H ( 2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. 2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
[62] Wilcox TM, Zarn KE, Piggott MP, Young MK, McKelvey KS, Schwartz MK ( 2018) Capture enrichment of aquatic environmental DNA: A first proof of concept. Molecular Ecology Resources, 18, 1392-1401.
doi: 10.1111/men.2018.18.issue-6
[63] Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR, Sala E ( 2006) Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787-790.
doi: 10.1126/science.1132294
[64] Zhou HW, Li DF, Tam NF, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F ( 2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. The ISME Journal, 5, 741.
doi: 10.1038/ismej.2010.160
[65] Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q ( 2013) Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience, 2, 4.
doi: 10.1186/2047-217X-2-4
[1] 何杰丽 石甜甜 陈凌 王海岗 乔治军 王瑞云. 糜子EST-SSR的开发及种质资源遗传多样性分析[J]. 植物学报, 2019, 54(5): 0-0.
[2] 刘勋, 张娇, 沈昱辰, 谢德斌, 李宏利, 李春明, 易小平, 赵勇, 唐道彬, 吕长文, 王季春. 基于光合系统参数建立马铃薯耐荫性综合评价体系[J]. 植物学报, 2019, 54(3): 360-370.
[3] 董正武, 赵英, 雷加强, 喜银巧. 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素[J]. 植物生态学报, 2018, 42(8): 873-884.
[4] 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系[J]. 植物学报, 2017, 52(4): 520-529.
[5] 徐世琴, 吉喜斌, 金博文. 典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应[J]. 植物生态学报, 2015, 39(9): 890-900.
[6] 陈天翌, 刘增辉, 娄安如. 刺萼龙葵种群在中国不同分布地区的表型变异[J]. 植物生态学报, 2013, 37(4): 344-353.
[7] 慈敦伟, 戴良香, 宋文武, 张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027.
[8] 徐承香, 李子忠, 黎道洪. 贵州织金洞洞穴动物群落多样性与光照强度及土壤重金属含量的关系[J]. 生物多样性, 2013, 21(1): 62-70.
[9] 李贺, 张维康, 王国宏. 中国云杉林的地理分布与气候因子间的关系[J]. 植物生态学报, 2012, 36(5): 372-381.
[10] 王鹏飞, 王倩倩, 李先恩, 秦民坚. GC-MS技术在延胡索块茎代谢产物研究中的应用[J]. 植物学报, 2012, 47(2): 149-154.
[11] 魏丽萍, 王孝安, 王世雄, 朱志红, 郭华, 孙嘉男, 郝江勃. 黄土高原马栏林区基于不同植被组织尺度的群落物种多样性[J]. 植物生态学报, 2011, 35(1): 17-26.
[12] 王玉, 高光彩, 付必谦, 吴专. 北京野鸭湖湿地地表甲虫群落组成与空间分布格局[J]. 生物多样性, 2009, 17(1): 30-42.
[13] 周志强, 魏晓雪, 刘彤. 新疆奇台荒漠植物群落的数量分类及土壤环境解释[J]. 生物多样性, 2007, 15(3): 264-270.
[14] 杨娟, 葛剑平, 刘丽娟, 丁易, 谭迎春. 卧龙自然保护区针阔混交林林隙更新规律[J]. 植物生态学报, 2007, 31(3): 425-430.
[15] 金伟栋, 洪德林. 太湖流域粳稻地方品种遗传多样性研究[J]. 生物多样性, 2006, 14(6): 479-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈亚军;张教林;曹坤芳*. 两种热带木质藤本幼苗形态、生长和光合能力对光强和养分的响应[J]. 植物学报, 2008, 25(02): 185 -194 .
[2] 马剑敏;李今;张改娜;杨柯金;王琳;吴振斌. Hg2+ 与POD 复合处理对小麦萌发及幼苗生长的影响[J]. 植物学报, 2004, 21(05): 531 -538 .
[3] 章镇 褚孟嫄. 中国李果实发育的解剖学观察 (简报)[J]. 植物学报, 1991, 8(04): 52 -53 .
[4] 郑文光 耿宇 李常保 李传友. 茉莉酸信号转导突变体ber15 的分离和基因克隆表明油菜素内酯的合成影响茉莉酸信号转导[J]. 植物学报, 2006, 23(5): 603 -610 .
[5] 陈建敏 孙德兰. 从单分子到细胞的生物膜与膜蛋白研究--美国Purdue大学关于生物膜的研究计划简介[J]. 植物学报, 2003, 20(06): 763 -765 .
[6] . 专辑图版I[J]. 植物学报, 2000, 17(专辑): 302 -311 .
[7] 王忠华 舒庆尧 叶庆富 崔海瑞 夏英武. 转基因植物外源基因逃逸的途径[J]. 植物学报, 2001, 18(02): 137 -142 .
[8] 张锡延 吴青艳. 使用抗寒剂育秧为我县水稻更高产开辟了新途径[J]. 植物学报, 1994, 11(特辑): 94 -96 .
[9] 黄艳 赵德修 李佐虎. 利用生物反应器培养植物细胞的研究进展(Ⅱ)[J]. 植物学报, 2001, 18(06): 665 -671 .
[10] 郭尚敬 陈娜 孟庆伟. 叶绿体小分子量热激蛋白介绍[J]. 植物学报, 2005, 22(02): 223 -230 .