生物多样性 ›› 2018, Vol. 26 ›› Issue (5): 468-475.doi: 10.17520/biods.2018037

• 综述 • 上一篇    下一篇

克隆生长对被子植物传粉过程的影响

田昊, 廖万金*()   

  1. 北京师范大学生命科学学院, 生物多样性与生态工程教育部重点实验室, 北京 100875
  • 收稿日期:2018-02-05 接受日期:2018-03-23 出版日期:2018-05-20
  • 通讯作者: 廖万金 E-mail:liaowj@bnu.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(31770253)

Consequences of clonal growth on pollinator visitation in flowering plants

Hao Tian, Wanjin Liao*()   

  1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875
  • Received:2018-02-05 Accepted:2018-03-23 Online:2018-05-20
  • Contact: Liao Wanjin E-mail:liaowj@bnu.edu.cn
  • About author:

    # Co-first authors

克隆植物与其传粉者的相互作用是植物繁殖生态学的重要研究领域之一。植物克隆生长与有性繁殖通常相伴进行, 往往产生较大的花展示与复杂的克隆空间结构, 通过传粉过程对有性繁殖过程产生影响, 共同决定植物的适合度。本文回顾了克隆生长对被子植物传粉过程影响的国内外研究进展, 从植物克隆大小、花资源空间配置、克隆构型与种群遗传结构四个方面讨论了克隆生长对传粉过程的影响及其生态学与进化生物学意义。早期研究预期, 随着克隆增大, 同株异花授粉水平增加, 因而通过增大自交率或花粉阻塞效应降低植物的适合度。但是, 后来的一些模拟与野外实验研究发现, 传粉者在同一克隆内访问的花数量并不会随克隆增大而一直增加, 访花行为也主要发生在分株内; 而且分子标记的自交率组分分析也表明自交主要发生在分株内。另一方面, 人工模型模拟以及传粉者访问行为研究表明, 当花朵数量相同时, 与所有花集中生长在同一分株上相比, 将花朵分散在多个分株上的克隆生长方式不会增加, 反而降低了同株异花授粉的发生水平。如果花序内花雌雄同熟, 花朵同时提供与接收花粉, 克隆生长会使植物接收到更高比例的异交花粉, 在提高后代质量的同时不增加同株异花授粉概率。这是从传粉生物学角度对植物克隆生长习性进化的一个全新的解释。今后, 克隆植物传粉生物学研究需要针对传粉者与克隆生长之间的相互作用建立理论模型, 探究克隆大小、克隆构型、花资源空间配置模式对传粉者访问频率和行为、花粉散布、交配格局的影响。同时, 需要在自然种群中, 尤其是克隆与非克隆的近缘类群、同一物种克隆与非克隆种群开展比较研究, 利用更高效的分子标记来研究克隆生长的生态与进化意义。

关键词: 克隆构型, 克隆生长, 花资源空间配置, 同株异花授粉, 交配系统, 传粉者行为

Clonal plants reproduce asexually via clonal growth and simultaneously reproduce sexually, and the consequences of clonal growth on pollination and mating have been one of the essential questions in ecology and evolution of plant reproduction. An increasing number of studies report the effects of clonal size, architecture, genetic diversity, and floral deployments on pollinator visit and behavior. The most common view is that clonal growth produces large floral displays and therefore increases attraction to pollinators. Consequently, clonal growth may help to maximize male reproductive success by dispersing more pollen. On the other hand, geitonogamy, pollination among flowers within one individual plant, is an inevitable byproduct with an increase in clone size. More frequent geitonogamous pollination has been expected in clonal plants with large floral displays and leads to a reduction in female fitness because of inbreeding depression or pollen clogging. However, some recent theoretical and empirical studies suggest new ideas on this issue. First, the number of flowers visited by individual pollinator within a clone did not increase proportionally with clone size in clumped clonal plants, and pollinator movements within a single bout mainly occurred within ramet. The selfing component analyses based on molecular markers further evidenced that within-ramet geitonogamy was the largest contributing factor to the total geitonogamy in two clonal species. Second, the experimental study of bumblebees foraging on artificial flowers showed that when the same amount of flowers was distributed among multiple ramets, geitonogamy was not higher but in fact, lower compared with one single inflorescence. The model-based simulation suggested clonal growth could promote pollination quality without increasing geitonogamy when flowers simultaneously received and donated pollen. These studies support a novel explanation of the evolution of clonality in plants. Future studies on the pollination ecology of clonal plants may focus on the effects of clonal growth on pollinator behavior and plant mating from multiple angles. Comparative studies between clonal and non-clonal taxa or between clonal and non-clonal populations of the same species are required to evaluate the ecological and evolutionary consequences of clonal growth.

Key words: clonal architecture, clonal growth, floral deployments, geitonogamous pollination, mating system, pollinator behavior

1 Ackerman JD (2000) Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives. Plant Systematics and Evolution, 222, 167-185.
2 Aizen MA (1993) Self-pollination shortens flower lifespan in Portulaca umbraticola H. B. K. (Portulacaceae). International Journal of Plant Sciences, 154, 412-415.
3 Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology, 88, 271-281.
4 Albert T, Raspé O, Jacquemart AL (2008) Influence of clonal growth on selfing rate in Vaccinium myrtillus L. Plant Biology, 10, 643-649.
5 Baker HG (1963) Evolutionary mechanisms in pollination biology: Origins and functions of floral systems are being elucidated by genetical and ecological studies. Science, 139, 877-883.
6 Barrett SCH (2002) Sexual interference of the floral kind. Heredity, 88, 154-159.
7 Barrett SCH (2015) Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences, USA, 112, 8859-8866.
8 Barrett SCH, Harder LD (1996) Ecology and evolution of plant mating. Trends in Ecology and Evolution, 11, 73-79.
9 Charlesworth B, Nordborg M, Charlesworth D (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genetics Research, 70, 155-174.
10 Charlesworth D, Charlesworth B (1995) Quantitative genetics in plants: The effect of breeding system on genetic variability. Evolution, 49, 911-920.
11 Charpentier A (2002) Consequences of clonal growth for plant mating. Evolutionary Ecology, 15, 521-530.
12 Cox PA (1993) Water-pollinated plants. Scientific American, 269, 68-74.
13 Darwin CR (1862) The Various Contrivances by Which Orchids Are Fertilized by Insects. John Murray, London.
14 Darwin CR (1877) The Different Forms of Flowers on Plants of the Same Species. John Murray, London.
15 de Jong TJ, Waser NM, Klinkhamer PGL (1993) Geitonogamy: The neglected side of selfing. Trends in Ecology and Evolution, 8, 321-325.
16 Dodd SC (1997) Genetic diversity in Delphinium variegatum (Ranunculaceae): A comparison of two island endemic subspecies and their widespread mainland relative. American Journal of Botany, 89, 613-622.
17 Eckert CG (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology, 81, 532-542.
18 Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403.
19 Genung MA, Lessard JP, Brown CB, Bunn WA, Cregger MA, Reynolds WN, Quinn EF, Stevenson ML, Hartley AS, Crutsinger GM, Schweitzer JA, Bailey JK (2010) Non-additive effects of genotypic diversity increase floral abundance and abundance of floral visitors. PLoS ONE, 5, e8711.
20 Ghazoul J (2006) Floral diversity and the facilitation of pollination. Journal of Ecology, 94, 295-304.
21 Gonzalez-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyorgyi H, Woyciechowski M, Vila M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 28, 524-530.
22 Hafdahl CE, Craig TP (2014) Flowering phenology in Solidago altissima: Adaptive strategies against temporal variation in temperature. Journal of Plant Interactions, 9, 122-127.
23 Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society: Biological Sciences, 351, 1291-1298.
24 Handel SN (1985) The intrusion of clonal growth patterns on plant breeding systems. The American Naturalist, 125, 367-384.
25 Hao YQ, Zhao XF, She DY, Xu B, Zhang DY, Liao WJ (2012) The role of late-acting self-incompatibility and early-acting inbreeding depression in governing female fertility in monkshood, Aconitum kusnezoffii. PLoS ONE, 7, e47034.
26 Harder LD, Barrett SCH, Cole WW (2000) The mating consequences of sexual segregation within inflorescences of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 267, 315-320.
27 Harder LD, Barrett SCH (1995) Mating cost of large floral displays in hermaphrodite plants. Nature, 373, 512-515.
28 Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plant. Proceedings of the Royal Society B: Biological Sciences, 272, 2651-2657.
29 Harder LD, Jordan CY, Gross WE, Routley MB (2004) Beyond floricentrism: The pollination function of inflorescences. Plant Species Biology, 19, 137-148.
30 Hu Y, Barrett SCH, Zhang DY, Liao WJ (2015) Experimental analysis of mating patterns in a clonal plant reveals contrasting modes of self-pollination. Ecology and Evolution, 5, 5423-5431.
31 Huang SQ, Guo YH (2000) Advances in the studies of pollination biology. Chinese Science Bulletin, 45, 225-237.
32 Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution, 50, 54-70.
33 Ishii HS, Hirabayashi Y, Kudo G (2008) Combined effects of inflorescence architecture, display size, plant density and empty flowers on bumble bee behaviour: Experimental study with artificial inflorescences. Oecologia, 156, 341-350.
34 Ito E, Kikuzawa K (2003) Reduction of geitonogamy: Flower abscission for departure of pollinators. Ecological Research, 18, 177-183.
35 Iwata T, Nagasaki O, Ishii HS, Ushimaru A (2012) Inflorescence architecture affects pollinator behaviour and mating success in Spiranthes sinensis (Orchidaceae). New Phytologist, 193, 196-203.
36 Jain SK (1976) The evolution of inbreeding in plants. Annual Review of Ecology and Systematics, 7, 469-495.
37 Jersáková J, Johnson SD (2006) Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia, 147, 60-68.
38 Jordan CY, Harder LD (2006) Manipulation of bee behavior by inflorescence architecture and its consequences for plant mating. The American Naturalist, 167, 496-509.
39 Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: An explanation for the biodiversity and ecosystem functioning relationship. Ecology, 87, 1244-1255.
40 Karron JD, Mitchell RJ (2012) Effects of floral display size on male and female reproductive success in Mimulus ringens. Annals of Botany, 109, 563-570.
41 Kevan PG (1990) How large bees, Bombus and Xylocopa (Apoidea Hymenoptera) forage on trees: Optimality and patterns of movement in temperate and tropical climates. Ethology Ecology & Evolution, 2, 233-242.
42 Klimeš L, Klimešová J, Hendriks R, Groenendael JV (1997) Clonal plant architecture: A comparative analysis of form and function. In: The Ecology and Evolution of Clonal Plants (eds de Kroon H, van Groenendael J), pp. 1-29. Backhuys Publishers, Leiden.
43 Klinkhamer PGL, de Jong T (1993) Attractiveness to pollinators: A plant’s dilemma. Oikos, 66, 180-184.
44 Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T (2005) Pollen limitation of plant reproduction: Pattern and process. Annual Review of Ecology, Evolution, and Systematics, 36, 467-497.
45 Li XM, She DY, Zhang DY, Liao WJ (2015) Life history trait differentiation and local adaptation in invasive populations of Ambrosia artemisiifolia in China. Oecologia, 177, 669-677.
46 Liao WJ, Harder LD (2014) Consequences of multiple inflorescences and clonality for pollinator behavior and plant mating. The American Naturalist, 184, 580-592.
47 Liao WJ, Hu Y, Zhu BR, Zhao XQ, Zeng YF, Zhang DY (2009) Female reproductive success decreases with display size in monkshood, Aconitum kusnezoffii (Ranunculaceae). Annals of Botany, 104, 1405-1412.
48 Lovett-Doust L (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens). I. The dynamic of ramets in contrasting habitats. Journal of Ecology, 69, 743-755.
49 Ma HP, Zhao DH, Liao WJ (2012) Flight patterns of bumblebees (Bombus ignitus) on vertical inflorescences of Aconitum kusnezoffii. Biodiversity Science, 20, 405-408. (in Chinese with English abstract)
[马海萍, 赵大贺, 廖万金 (2012) 草乌花蜜产量的梯度分布及熊蜂自下而上的访花行为. 生物多样性, 20, 405-408.]
50 Mori Y, Nagamitsu T, Kubo T (2009) Clonal growth and its effects on male and female reproductive success in Prunus ssiori (Rosaceae). Population Ecology, 51, 175-186.
51 Nuortila C, Tuomi J, Laine K (2002) Inter-parent distance affects reproductive success in two clonal dwarf shrubs, Vaccinium myrtillus and Vaccinium vitis-idaea (Ericaceae). Canadian Journal of Botany, 80, 875-884.
52 Ohashi K, Yahara T (1998) Effects of variation in flower number on pollinator visits in Cirsium purpuratum (Asteraceae). American Journal of Botany, 85, 219-224.
53 Ohashi K, Yahara T (2002) Visit larger displays but probe proportionally fewer flowers: Counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Functional Ecology, 16, 492-503.
54 Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
55 Pan JJ, Price JS (2001) Fitness and evolution in clonal plants: The impact of clonal growth. Evolutionary Ecology, 15, 583-600.
56 Peakall R, Beattie AJ (1991) The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution, 45, 1837-1848.
57 Porcher E, Lande R (2005) The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. Journal of Evolutionary Biology, 18, 497-508.
58 Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345-353.
59 Pyke GH (1978) Optimal foraging in bumblebees and coevolution with their plants. Oecologia, 36, 281-293.
60 Richter TS, Soltis PS, Soltis DE (1994) Genetic variation within and among populations of the narrow endemic, Delphinium viridescens (Ranunculaceae). American Journal of Botany, 81, 1070-1076.
61 Rosas-Guerrero V, Aguilar R, Marten-Rodriguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: Do floral traits predict effective pollinators? Ecology Letters, 17, 388-400.
62 Routley MB, Kron P, Husband BC (2004) The consequences of clone size for paternal and maternal success in domestic apple (Malus × domestica). American Journal of Botany, 91, 1326-1332.
63 Sage TL, Strumas F, Cole WW, Barrett SCH (1999) Differential ovule development following self- and cross-pollination: The basis of self-sterility in Narcissus triandrus (Amaryllidaceae). American Journal of Botany, 86, 855-870.
64 Schoen DL, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences, USA, 88, 4494-4497.
65 Snow AA, Spira TP, Simpson R, Klips RA (1996) The ecology of geitonogamous pollination. In: Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants (eds Lloyd DG, Barrett SCH), pp. 191-216. Chapman and Hall, New York.
66 Stebbins GL (1950) Variation and Evolution in Plants. Oxford University Press, London.
67 Tarasjev A (2005) Impact of genet size and flowering stage on fruit set in Iris pumila L. clones in wild. Acta Oecologica, 27, 93-98.
68 Vallejo-Marín M, Dorken ME, Barrett SCH (2010) The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics, 41, 193-213.
69 van Drunen WE, van Kleunen M, Dorken ME (2015) Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal. Proceedings of the National Academy of Sciences, USA, 112, 8929-8936.
70 Vaughton G, Ramsey M (2010) Pollinator-mediated selfing erodes the flexibility of the best-of-both-worlds mating strategy in Bulbine vagans. Functional Ecology, 24, 374-382.
71 Waser NM, Ollerton J (2006) Plant-Pollinator Interactions From Specialization to Generalization. University of Chicago Press, Chicago.
72 Werner PA, Bradbury IK, Gross RS (1980) The biology of Canadian weeds. 45. Solidago canadensis L. Canadian Journal of Plant Science, 60, 1393-1409.
73 Williams CF, Ruvinsky J, Scott PE, Hews DK (2001) Pollination, breeding system, and genetic structure in two sympatric Delphinium (Ranunculaceae) species. American Journal of Botany, 88, 1623-1633.
74 Zhang DY, Jiang XH (2001) Mating system evolution, resource allocation, and genetic diversity in plants. Acta Phytoecologica Sinica, 25, 130-143. (in Chinese with English abstract)
[张大勇, 姜新华 (2001) 植物交配系统的进化、资源分配对策与遗传多样性. 植物生态学报, 25, 130-143.]
75 Zhang YF, Zhang DY (2006) Asexual and sexual reproductive strategies in clonal plants. Acta Phytoecologica Sinica, 30, 174-183. (in Chinese with English abstract)
[张玉芬, 张大勇 (2006) 克隆植物的无性与有性繁殖对策. 植物生态学报, 30, 174-183.]
[1] 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43(5): 383-395.
[2] 胡文昭, 赵骥民, 张彦文. (2019) 二态混合交配系统的适合度优势及其维持机制研究进展. 生物多样性, 27(4): 468-474.
[3] 黎磊, 耿宇鹏, 兰志春, 陈家宽, 宋志平. (2016) 异质生境中水生植物表型可塑性的研究进展. 生物多样性, 24(2): 216-227.
[4] 宁伟, 张建, 吴志刚, 马铭, 赵鑫, 李天来. (2014) 丹东蒲公英专性无融合生殖特性. 植物学报, 49(4): 417-423.
[5] 刘广路, 范少辉, 蔡春菊, 张大鹏. (2013) 撑绿杂交竹和硬头黄竹克隆生长特性比较. 植物学报, 48(3): 288-294.
[6] 葛俊, 邢福. (2012) 克隆植物对种间竞争的适应策略. 植物生态学报, 36(6): 587-596.
[7] 王霞, 王静, 蒋敬虎, 康明. (2012) 观光木片断化居群的遗传多样性和交配系统. 生物多样性, 20(6): 676-684.
[8] 高江云, 盛春玲, 杨淑霞. (2012) 红姜花(姜科)同步大量开花的适应意义. 生物多样性, 20(3): 376-385.
[9] 陈玲玲, 高江云. (2011) 芳香石豆兰的繁殖生态学. 植物生态学报, 35(11): 1202-1208.
[10] 贾昕, 杨兴中, 潘晓云, 李博, 陈家宽. (2008) 喜旱莲子草营养繁殖特征对干扰的响应. 生物多样性, 16(3): 229-235.
[11] 程瑾, 刘世勇, 何荣, 韦新莲, 罗毅波. (2007) 兔耳兰食源性欺骗传粉的研究. 生物多样性, 15(6): 608-617.
[12] 申瑞玲, 关保华, 蔡颖, 安树青, 蒋金辉, 董蕾. (2007) 底泥高磷浓度提高了喜旱莲子草的入侵性. 植物生态学报, 31(4): 665-672.
[13] 魏晓慧, 殷东生, 祝宁. (2007) 自然条件下风箱果的克隆构型. 植物生态学报, 31(4): 625-629.
[14] 向悟生, 李先琨, 苏宗明, 欧祖兰, 陆树华. (2007) 元宝山南方红豆杉克隆种群分布格局的分形特征. 植物生态学报, 31(4): 568-575.
[15] 宋利霞, 陶建平, 冉春燕, 余小红, 王永健, 李媛. (2007) 卧龙亚高山暗针叶林不同林冠环境下华西箭竹的克隆生长. 植物生态学报, 31(4): 637-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed