生物多样性, 2022, 30(10): 22434 doi: 10.17520/biods.2022434

综述

全球视角下的中国生物多样性监测进展与展望

吴慧,1, 徐学红,1, 冯晓娟,1,*, 米湘成1, 苏艳军1, 肖治术,2, 朱朝东2, 曹垒3, 高欣4, 宋创业1, 郭良栋5, 吴东辉6, 江建平,7, 沈浩8, 马克平,1

1.中国科学院植物研究所, 北京 100093

2.中国科学院动物研究所, 北京 100101

3.中国科学院生态环境研究中心, 北京 100085

4.中国科学院水生生物研究所, 武汉 430072

5.中国科学院微生物研究所, 北京 100101

6.中国科学院东北地理与农业生态研究所, 长春 130102

7.中国科学院成都生物研究所, 成都 610041

8.中国科学院华南植物园, 广州 510650

Progress and prospect of China biodiversity monitoring from a global perspective

Hui Wu,1, Xuehong Xu,1, Xiaojuan Feng,1,*, Xiangcheng Mi1, Yanjun Su1, Zhishu Xiao,2, Chaodong Zhu2, Lei Cao3, Xin Gao4, Chuangye Song1, Liangdong Guo5, Donghui Wu6, Jianping Jiang,7, Hao Shen8, Keping Ma,1

1. Institute of Botany, Chinese Academy of Sciences, Beijing 100093

2. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101

3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085

4. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072

5. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101

6. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102

7. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

8. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650

通讯作者: * E-mail:xfeng@ibcas.ac.cn

编委: 贺金生

责任编辑: 周玉荣

收稿日期: 2022-07-29   接受日期: 2022-10-6  

基金资助: 中国科学院战略生物资源计划
中国科学院战略性先导专项(XDA19050403)

Corresponding authors: * E-mail:xfeng@ibcas.ac.cn

Received: 2022-07-29   Accepted: 2022-10-6  

摘要

生物多样性强烈的时空尺度依赖性和多层次性决定了生物多样性现状与变量的分析需要在不同生态系统进行多空间尺度、全面和连续的监测。因此, 构建生物多样性研究监测网络是生物多样性保护和研究的基础工作。近年来, 对地观测组织-生物多样性观测网络(GEO BON)、亚太生物多样性监测网络(APBON)等全球、区域以及国家尺度的生物多样性监测网络蓬勃发展。中国陆续在国家尺度上建立了针对生态系统和物种的长期监测网络, 其中, 中国生物多样性监测与研究网络(China Biodiversity Observation and Research Network, Sino BON)于2013年启动建设, 在我国主要生态系统和环境梯度设置30个监测主点和60个监测辅点, 目前已建成10个专项网对动物、植物和微生物进行监测, 并建立了以数据标准与汇交、近地面遥感为核心的综合监测中心。Sino BON打造了从地下、地面到森林林冠的多尺度、多类群(功能群)以及多营养级交互为重点的监测与研究平台, 为理解生物多样性变化趋势及其驱动因素、研究生物多样性维持机制, 以及国家履行《生物多样性公约》、保护生物多样性和生物资源提供详实可靠的生物多样性变化数据。为进一步支撑国家生物多样性治理能力、深化全球多样性保护合作, 我国生物多样性监测亟需在监测技术、监测区域、数据标准、综合信息平台等方向谋求更大的发展。

关键词: 生物多样性; 监测与研究; Sino BON; 可持续利用

Abstract

Background & Aim: Analyzing biodiversity status requires multi-spatial scale, continuous monitoring across different ecosystems due to its heterogenous nature in both space and time. Therefore, monitoring networks are necessary for biodiversity conservation research. Biodiversity monitoring networks at the global, regional, and national scales, represented by GEO BON and APBON, have flourished. China has established a long-term monitoring network for ecosystems and species at the national scale. and the China Biodiversity Observation and Research Network (Sino BON) was launched in 2013 with strong support from the Chinese Academy of Sciences and the Ministry of Finance.
Review Results: Sino BON includes 10 subnetworks specialized at monitoring animals, plants and microbes and an additional network for near-ground remote sensing, which covers 30 main sites and 60 affiliated sites in China. Currently, Sino BON has created a research platform for multi-trophic interactions among soil microorganisms, insects, large mammals, underground forests to forest canopies. This platform provides an understanding of biodiversity change and its driving factors at the national level and may be used in protecting biodiversity and sustainable utilization of biological resources.
Perspectives: For further progresses, monitoring technology, monitoring areas, data standards and integrated information platforms require further development.

Keywords: biodiversity; monitoring and research; Sino BON; sustainable utilization

PDF (1953KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平 (2022) 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 30, 22434. doi:10.17520/biods.2022434.

Hui Wu, Xuehong Xu, Xiaojuan Feng, Xiangcheng Mi, Yanjun Su, Zhishu Xiao, Chaodong Zhu, Lei Cao, Xin Gao, Chuangye Song, Liangdong Guo, Donghui Wu, Jianping Jiang, Hao Shen, Keping Ma (2022) Progress and prospect of China biodiversity monitoring from a global perspective. Biodiversity Science, 30, 22434. doi:10.17520/biods.2022434.

生物多样性监测是理解生物多样性维持机制、生物多样性丧失驱动因素及其对生态系统服务功能影响的关键基础。我国是生物多样性最丰富的国家之一, 随着人口增加、生境破坏和全球气候变化, 正面临生物栖息地丧失、生物多样性下降的严峻局面。在此背景下, 对我国关键生态系统类型以及重要栖息地的生物多样性进行长时期、全方位、多类群、多尺度的综合监测、研究与评估, 对于摸清我国生物多样性的资源家底、时空动态、威胁因子和保护现状具有重要的战略意义, 也将为我国生物多样性及重要生物资源的保护管理和有效利用提供科技支撑。

2013年, Pereira等30位科学家在Science上发表文章, 联合倡导通过确立“核心生物多样性指标” (essential biodiversity variables, EBVs)来推动全球生物多样性联合监测。对地观测组织-生物多样性观测网络(Group on Earth Observations Biodiversity Observation Network, GEO BON, https://geobon.org)、全球森林监测网络(Forest Global Earth Observatory, ForestGEO)、亚太生物多样性监测网络(Asia Pacific Biodiversity Observation Network, APBON)、欧洲生物多样性监测网络(Europa Biodiversity Observation Network, EuropaBON)、美国生命与环境数据网络(Data Observation Network for Earth, DataONE)等蓬勃发展。因此, 作为最早签署和被批准《生物多样性公约》的缔约方之一, 我国也建立了国家尺度的生物多样性监测网络, 如中国生物多样性监测与研究网络(China Biodiversity Observation and Research Network, Sino BON)、全国生物多样性观测网络(China Biodiversity Observing Network, China BON)。其中, Sino BON由中国科学院于2013年启动建设, 建成了囊括动物多样性、植物多样性和微生物多样性监测的10个专项网和1个综合监测中心。Sino BON借助分子生物学技术、森林塔吊、卫星追踪、红外相机、身份识别、遥感等监测技术与设备, 从基因、物种、种群、群落、生态系统和景观等水平上对生物多样性进行长时序、多层次的全面监测与系统研究, 支撑全国典型区域重要类群中长期变化态势分析, 并入选了2021年10月国务院发布的《中国的生物多样性保护》白皮书, 为我国生物多样性保护战略提供了多样化的信息服务与决策支撑。目前, 我国政府将生物多样性保护上升为国家战略, 正在建设以国家公园为主体的自然保护地体系, 并把生物多样性保护纳入各地区、各领域中长期规划。为进一步支撑生物多样性治理能力、深化全球多样性保护合作, 我国生物多样性监测亟需在监测规范、数据标准、信息综合等方向谋求更大发展, 在生物多样性格局、变化预测等研究方向发挥引领作用。为此, 本文以全球典型的生物多样性监测网络为代表, 综述了生物多样性监测的发展与进程, 并聚焦Sino BON监测和研究工作的进展, 展望中国生物多样性监测的未来发展趋势。

1 全球生物多样性监测网络的相关进展

1.1 全球生物多样性监测网络

在《生物多样性公约》爱知生物多样性目标(2011-2020生物多样性战略规划, www.cbd.int/sp) 的推动下, 生物多样性监测网络在全球、区域、国家尺度快速发展。

图1

图1   全球生物多样性监测网络发展史。CTFS: 热带森林科学中心; RAINFOR: 亚马逊森林清查网络; TEAM: 热带生态评估与监测网络; CForBio: 中国森林生物多样性监测网络; ForestGEO: 全球森林监测网络; Sino BON: 中国生物多样性监测与研究网络; GEO BON: 对地观测组织-生物多样性观测网络; APBON: 亚太生物多样性监测网络; Arctic BON: 北极生物多样性观测网络; EuropaBON: 欧洲生物多样性监测网络。

Fig. 1   Timeline of history of global biodiversity monitoring network. CTFS, Center for Tropical Forest Science; RAINFOR, Amazonian Forest Inventory Network; TEAM, Tropical Ecology Assessment and Monitoring Network; CForBio, Chinese Forest Biodiversity Monitoring Network; ForestGEO, The Forest Global Earth Observatory; Sino BON, China Biodiversity Observation and Research Network; GEO BON, The Group on Earth Observations-Biodiversity Observation Network; APBON, Asia Pacific Biodiversity Observation Network; Arctic BON, Arctic Biodiversity Observation Network; EuropaBON, Europa Biodiversity Observation Network.


对地观测组织-生物多样性观测网络(GEO BON) 2008年在联合国生物多样性公约缔约方大会(CBD COP)倡议下组织成立, 旨在为决策部门和学术界提供生物多样性观测和相关服务(Scholes et al, 2008)。截至目前, GEO BON在全球有2,000多个成员, 设有秘书处和7个工作组, 已成为地球观测组织(GEO)的旗舰组织之一。GEO BON提出“核心生物多样性指标” (EBVs)及其概念框架, 提高了全球生物多样性观测能力, 协调全球生物多样性监测战略, 动态评估生态系统结构和功能(Navarro et al, 2017)。在此基础上, 以支撑全球生物多样性和生态系统服务的有效管理和政策为目标, 进一步提出了融合生物多样性观测、遥感数据和模型的全球生物多样性变化指标, 促进对于地方、国家和全球空间尺度的生物多样性变化的理解(GEO BON’s 2025 Vision Statement and Goals, https://geobon.org/about/vision-goals/)。

全球森林监测网络(ForestGEO, https://www.forestgeo.si.edu)成立于1980年, 依托美国史密森热带研究所管理, 目标是建立和维持全球大型森林动态样地网络及相关监测, 研究森林生物多样性、生态、进化和保护, 探究其对全球生态系统服务功能的影响, 为森林保护与利用的相关政策制定和管理提供科学支持(Davies et al, 2021)。ForestGEO与全球100多家研究机构合作, 在美洲、非洲、亚洲、欧洲、大洋洲的28个国家建立了74个森林动态样地, 覆盖了全球主要森林类型(Anderson-Teixeira et al, 2015), 总面积大约1,900 ha, 监测植物达13,000种, 占全球已知植物的20%, 个体数超过700万株, 结合对生物(如节肢动物)和非生物(如土壤)等驱动因素的监测, 为全球森林生态研究提供平台(Davies et al, 2021)。此外, ForestGEO引领了森林植物的监测规范和数据的标准化, 促进了数据共享和样地间的比较研究, 并通过对样地研究人员培训, 提升了网络的科学研究能力。截至目前, ForestGEO已发表学术论文1,400多篇, 在物种共存和多样性以及生态系统功能研究领域做出了突出的贡献(Davies et al, 2021)。

热带生态评估与监测网络(TEAM, http://www.teamnetwork.org)建于2002年, 由保护国际、密苏里植物园、史密森研究院和野生生物保护区学会共同发起(Baru et al, 2013), 旨在建立热带雨林生物多样性预警系统。TEAM是第一个标准化的全球监测网络, 联合了15个国家80多个学术机构和地方合作伙伴, 以17个样地为平台, 制定了标准化的监测规范, 如陆生脊椎动物监测规范(http:/www.teamnetwork.org)和交叉区监测规范(Zone of Interaction Protocol), 对脊椎动物的群落现状、变化及其驱动因素进行监测(Jansen et al, 2014), 以期回答气候变化和土地利用变化对全球、区域和局域尺度生物多样性的影响。TEAM采用标准化的方法来采集生物多样性、气候和土地利用变化等近实时数据, 获取目标物种和群落在空间和时间上的变化驱动因素数据, 从而提出生物多样性指标, 服务于如爱知生物多样性目标等全球履约行动(Rovero & Ahumada, 2017)。

1.2 区域生物多样性监测网络

作为“网络的网络” (network of networks) (Scholes et al, 2012), GEO BON大力鼓励国家和地区成立不同规模的子网络, 以逐步实现全球水平的生物多样性监测, 并均衡区域、国家和全球尺度的角色定位。

(1)亚太生物多样性监测网络(APBON, http://www.esabii.biodic.go.jp/ap-bon/index.html)是GEO BON的区域网络, 2009年由日本名古屋大学召开的亚太地区生物多样性观测联网行动国际研讨会发起, 受到日本环境部支持, 涵盖了亚太地区大部分国家。APBON先后发布了《APBON行动计划2012-2015》(Yahara et al, 2014)和《战略计划2020-2030》(Takeuchi et al, 2021), 以工作组和研讨会的形式推动APBON的发展, 并发动日本、韩国、中国等亚洲国家在国家尺度建立生物多样性观测网络。

(2)极地生物多样性监测项目(CBMP, http://www.cbmp.is/)于2005年由北极理事会北极动植物保护工作组发起, 关注泛北极区域的主要生态系统, 并建成北极生物多样性观测网络(Arctic BON), 促进北极生物多样性的发现、认知、预测和交流, 反映北极重要生物多样性变化趋势。

(3)欧洲生物多样性监测网络(EuropaBON, https://europabon.org/)于2022年5月被GEO BON接受为正式区域网络, 旨在汇总欧洲开展的各类生物多样性与生态系统服务监测, 评估当前生物多样性监测成效, 分析监测空缺、工作流瓶颈及不同监测方案的成本效益, 整合监测数据以支持政策决议(Pereira et al, 2022)。

除上述GEO BON的区域网络外, 还有一些全球、区域或国家水平的专题监测网络的建设也颇具成效, 如全球珊瑚礁监测网络(GCRMN, https://www.icriforum.org/gcrmn)、全球高山环境观察研究倡议(GLORIA, https://www.wsl.ch/en/projects/gloria.html)、欧洲蚜虫监测网络(EXAMINE, https://www.rothamsted.ac.uk/examine/)、英国蝴蝶监测网络(https://www.ukbms.org/)等, 以及GEO BON的专题监测网络, 如海洋生物多样性观测网络(MBON)、淡水生物多样性观测网络(FWBON)和土壤生物多样性观测网络(Soil BON)。

瑞士、英国、法国、加拿大、日本等国也陆续建立了全国性的监测计划, 用于监测整个国家所有层次的生物多样性变化。上述全球、区域和国家的生物多样性监测网络在设计和运行上值得认真研究和效仿。中国是世界上生物多样性最丰富的国家之一, 是世界上唯一具备几乎所有生态系统类型的国家。中国监测起步于20世纪80年代末, 陆续在国家尺度上建立了针对生态系统和物种的长期监测网络。中国科学院于1988年建立中国生态系统研究网络(CERN), 该网络对我国生态系统开展长期定位研究, 成为生态系统与全球变化科学研究以及自然资源利用与保护研究的野外科技平台。2004年, 中国科学院开始牵头建设中国森林生物多样性监测网络(CForBio), 目前CForBio已经是ForestGEO最活跃的组成部分, 在此基础上于2013年开始建设中国生物多样性监测与研究网络(Sino BON) (马克平, 2015)。生态环境部南京环境科学研究所于2011年牵头建立中国生物多样性观测网络(China BON), 搭建了包括4个子网(兽类网、鸟类网、两栖类网和蝶类网), 以及440个监测点和9,000条样线的监测体系。国家林业和草原局建立了森林、湿地、荒漠生态系统定位研究网络构成的生态系统观测与研究网络, 其中, 森林资源清查体系已有40余年历史, 已经在全国建立了41.5万多个清查样地。

2 中国生物多样性监测与研究网络(Sino BON)相关进展

2013年, 中国科学院在CForBio的基础上, 按照“科学规划、统一布局”的原则启动建设“中国生物多样性监测与研究网络” (Sino BON)。Sino BON旨在形成长期稳定的监测网络系统, 目前已建成10个专项网对动植物和微生物进行监测, 并建立了以数据标准与汇交、近地面遥感为核心的综合监测中心。Sino BON包括位于我国主要生态系统和环境梯度的30个监测主点和60个监测辅点, 已成为从地下、地面到森林林冠的多尺度、多类群(功能群)以及多营养级相互作用为重点的监测与研究平台(图2), 为在国家水平上理解生物多样性的变化趋势及驱动因素, 分析生物多样性维持机制以及生物多样性保护与生物资源的可持续利用提供强有力的科技支撑。2014年, Sino BON被APBON和GEO BON正式接受成为其成员网络。在专项网设计框架方面, 如科学目标、总体设计、监测内容方法指标等方面,《生物多样性》期刊已组织“中国生物多样性监测与网络研究”专题分别介绍了森林生物多样性监测专项网(米湘成等, 2016)、草原荒漠植物多样性监测专项网(郭柯等, 2016)、内陆水体鱼类多样性监测专项网(刘焕章等, 2016)、土壤动物多样性监测专项网(潘开文等, 2016)、土壤微生物多样性监测专项网(李香真等, 2016)、两栖爬行动物多样性监测专项网(李成等, 2017)、兽类生物多样性监测专项网(肖治术等, 2017)、林冠生物多样性专项网(沈浩等, 2017)以及近地面遥感(郭庆华等, 2016a, b)等专项网的工作进展, 故本文重点聚焦近年突出进展。

图2

图2   Sino BON 10个专项网(a)在全国30个主点60个辅点对物种、群落和生态系统的动态变化以及多营养级之间互作进行监测, 并通过使用近地面遥感的无人机、测量树木生长的生长环、用于迁徙鸟类的卫星追踪器、用于林冠生物多样性监测的森林塔吊、用于两栖动物的无线电全频跟踪定位仪、用于哺乳动物和地栖鸟类监测的红外相机等设备打造了天-空-地一体化、长时序自动化监测的体系(b)。

Fig. 2   An illustration of how Sino BON is organized for monitoring dynamics of species and ecosystems and multiple trophic interactions through cooperation among the 10 subnetworks (a), and through the use of UAVs for near-ground remote sensing, growth rings for measuring tree growth, satellite trackers for migratory birds, forest tower cranes for canopy biodiversity monitoring, radio full-frequency tracking locators for amphibians, and infrared cameras for mammal and terrestrial bird monitoring to build a sky-ground integrated and long-term automatic monitoring system (b).


2.1 典型生物类群的网络化监测能力建设

Sino BON选取典型的生物类群开展全国网络化监测, 在我国典型植被分布区域设立森林、草原/荒漠植物多样性监测, 以及兽类、鸟类、昆虫、两栖爬行类、淡水鱼类、土壤动物、土壤微生物的交叉研究站点。在我国8个不同纬度的森林监测点设置塔吊, 为Sino BON建设了独具特色的林冠生物多样性监测网络, 监测全球研究薄弱的森林林冠生物多样性。针对关键生物类群的分布与迁徙特点, 建设辅助监测样地, 形成全国尺度的监测网络。

在植物多样性监测方面, CForBio自2004年开始建设, 目前沿纬度梯度已建立了24个大型森林动态监测样地和50多个面积1-5 ha的辅助样地, 是全球第一个具有完整纬度梯度的森林监测研究网络。CForBio结合近地面遥感平台、林冠网塔吊平台, 以及传统的生物多样性观测, 逐渐形成天-空-地一体化监测体系(Mi et al, 2021); 与动物和微生物多样性监测专项网合作, 打造成为了多学科交叉的生物多样性科学综合研究平台, 探究典型地带性森林的生物多样性维持机制及全球气候变化与人类活动对生物多样性变化的效应, 同时对重大生态保护工程生物多样性保护成效进行评估。草原生态系统是我国北方重要的生态屏障, 草原荒漠植物多样性监测专项网在草原/荒漠植被主要群系的典型地段建立植物模式群落监测固定样方, 定期复查, 统一描述规范, 新建植物生长动态观测平台、植被盖度观测平台、根系观测平台, 在物种/群落水平上实现长期自动观测, 长期监测草原荒漠植物多样性变化。

在动物和土壤微生物多样性监测方面, 相应的专项网在森林和草原多样性监测样地内开展了兽类、两栖爬行类、昆虫和土壤动物的多样性监测。尤其是以自动化长时序设备为代表的监测能力提升, 促进了生物多样性研究。(1)兽类生物多样性监测专项网建设了以红外触发相机为核心技术的监测站点, 在全国30个代表性森林(自然保护区)中按公里网格单元分别设置了30-200台红外相机, 并参与制定《全国野生动物自动相机法调查监测技术规程细则》(2017), 推动了全国大型动物监测网络的规范化、标准化监测建设, 为野生动物动态评估和科学保护提供关键科学数据和决策依据。(2)两栖爬行动物多样性监测专项网利用射频电子标签阅读器、鸣声自动记录仪、无线电全频跟踪定位仪等设备重点开展两栖爬行动物个体、种群和群落水平的长期监测和调查工作。(3)昆虫生物多样性监测专项网利用飞行阻断器列阵、太阳能吸虫塔、人工蜂巢列阵和马来氏网列阵等设备对地表和林冠的昆虫种类和数量进行长期监测。(4)土壤微生物多样性监测专项网, 采用现代高通量测序技术、生物信息学技术和传统的微生物学方法, 对不同植被类型的土壤微生物及典型森林系统中的大型真菌组成、多样性的时空分布等开展长期定点监测。(5)针对鸟类、鱼类等关键生物类群的分布与迁徙特点: 鸟类生物多样性专项网通过卫星追踪技术的应用, 对全球最受威胁的迁徙路线东亚-澳大利西亚(East Asia- Australasia)迁徙路线开展迁徙鸟类迁徙规律的监测与研究, 设立16个国际监测点和38个国内监测点, 监测63种候鸟的2,569个个体的迁徙, 填补了国外合作监测位点的空白; 同时利用鸟类鸣声记录仪等设备开展山区留鸟沿海拔带分布及变化监测。(6)内陆水体鱼类多样性监测专项网在七大流域选取重点区域, 运用水下机器人视频追踪、鱼探仪无线探测等先进监测技术, 针对重要水域的指示性鱼类开展鱼类数量、个体大小、遗传多样性、早期资源量及其生存环境因子等内容的监测。(7)综合中心近地面遥感平台通过探索利用近地面遥感和卫星遥感技术, 为三维生境、生物多样性与生产力的关系等研究带来了新技术和新方法, 实现生物多样性信息的跨尺度监测。通过研制低成本的无人机激光雷达技术, 实现了树高、覆盖度、叶面积指数和地上生物量等三维生境参数准确获取(Guo et al, 2017; Hu et al, 2021), 降低了三维生境监测门槛。

近几年, 在Sino BON的推动下, 浙江钱江源森林生物多样性野外科学观测研究站、秦岭大熊猫金丝猴生物多样性野外科学观测台站、云南丽江森林生物多样性野外科学观测研究站已被正式批复成为国家级野外台站, 赤水河珍稀特有鱼类保护与水生生物多样性观测研究站已被批复成为中国科学院生物多样性野外台站。

为进一步推动相关人员科研能力提升, 在全国范围内和相关自然保护区开展了“激光雷达森林生态应用培训班” “野生动物多样性监测学术研讨会暨红外相机技术培训” “中国生物圈保护区生物多样性监测培训班” “陕西自然保护地红外相机数据分析培训班”等不同层次的监测技术培训和“CForBio讲坛” “Sino BON-Mammal全球变化与野生动物交叉科学前沿论坛”等专业学术论坛, 累计超过100次, 参与人数达10,000余人次。

2.2 监测数据汇交与共享

在数据标准规范和综合信息平台建设方面, Sino BON设立综合监测管理中心, 组织标准规范制定、信息管理平台建设以与近地面遥感监测的相关工作(附录1)。

监测技术规范和数据质量控制是实现网络化合作的重要保障, 随着长时序自动监测设备在生物多样性监测中的应用普及, 相应的技术规范需求日益凸显。Sino BON针对主要生物类群多样性监测的内容和特点, 集成了监测经验与专家意见, 涵盖传统人工调查技术与新兴技术的监测规范, 编写了规范化的监测和数据质量控制的技术手册, 以期推动国内国际生物多样性监测与研究的规范化、网络化的合作(将由高等教育出版社出版)。

监测数据共享是实现网络化研究的重要保障, 是实现跨团队、跨研究机构、跨研究领域合作的重要支撑条件。Sino BON结合综合服务与生物类群特色的需求, 分别设立综合集成式的数据平台与专业特色数据库。综合数据平台旨在实现所有生物类群数据资源汇聚、数据产品加工分析以及数据服务的一站式体系。专业特色数据库侧重于设备原始数据或人工观测数据的存储与整合, 经过质量控制的数据集汇聚于综合平台。目前, 综合数据平台(https://bon.plantplus.cn)已集成441个元数据, 记录总数达964万条, 包括在大兴安岭、小兴安岭、长白山、神农架、古田山、鼎湖山、哀牢山、西双版纳等多个典型森林地带性站点开展三维生境监测并获取的大量无人机影像与激光雷达数据。在专业化平台建设方面, 兽类生物多样性监测专项网组织研发兽类多样性监测的图像数据管理系统CameraData (http://www.gscloud.cn/cameradata/), 已积累图像600多万张, 涉及兽类110多种, 鸟类370多种。此系统为所有上传的图像数据建立了规范的分析标准, 实现了网络化管理和远程共享, 并按监测区域和类群(物种)建立多种类型的数据库、图片库和物种分布地图等, 在全国尺度上集成了我国众多重要大中型动物的分布和种群数据, 为以国家公园为主的自然保护地体系建设提供了科学决策依据(肖治术等, 2017)。鸟类生物多样性专项网主持建立了亚洲最大的鸟类实时在线监测系统和数据库, 整合63种候鸟、2,569个个体、40多亿条迁徙数据, 建立了目前东亚-澳大利西亚迁徙路线的最全数据库,深度参与全球生态环境治理奠定了数据基础。土壤微生物多样性专项网建设微生物组数据库(https://egcloud.cib.cn), 收集环境样品中的高通量测序数据及其与样品相对应的环境因子数据, 为大尺度下微生物多样性研究提供了优质数据源。

2.3 网络化监测支撑前沿科学发现

Sino BON依托CForBio综合研究平台, 使用近地面遥感、卫星追踪、分子生物学等先进技术, 在多种生物类群的生物多样性格局、变化驱动机制以及多样性评估等方面取得了突出的成果。

(1)在植物多样性监测研究工作中, 以CForBio为代表, 通过长期观测和控制实验的数据, 为群落生物多样性维持机制带来了新的认知。CForBio在对幼苗长期监测的基础上, 发现幼苗的存活率不仅由病菌决定, 而且是由病菌和有益菌类相互作用共同决定, 这拓展了Janzen-Connell假说, 成功破译了亚热带森林生物多样性维持“密码” (Chen et al, 2019); 在温带森林中, 幼苗的存活率主要由真菌决定, 同时植食性昆虫和植物的耐阴性也有影响(Jia et al, 2020)。控制实验基于江西新岗山10年20万棵树木的生物多样性-生态系统功能(BEF)长期控制实验发现, 即使在生物多样性较高的亚热带森林中, 生态系统功能也随生物多样性的增加而增加(Huang et al, 2019); 同时, 38个重要功能性状表征的功能多样性能更好地反映BEF关系, 这项研究在拓展BEF假说的同时, 为森林恢复提供了高生态系统功能的“功能混搭”法则(Bongers et al, 2021)。

(2)动物多样性监测方面, 野生动物遥测技术在过去10余年有了长足的发展, 能够采集并回传鸟类等陆生和水生动物行为的高频率和高精度数据, 为动物年生活周期的时空分布、迁徙规律、日活动时间和能量消耗等重要行为模式提供了基础数据。兽类生物多样性监测专项网利用红外相机技术获取了陆生大中型兽类多样性和珍稀物种种群监测数据, 在种群和群落动态、珍稀物种保护、人类活动影响以及物种间相互作用等方面取得了一些重要进展。例如, 揭示了人类活动对同域食肉兽的占域分布以及群落结构和功能有重要影响(Li et al, 2018, 2020a, b), 并可导致哺乳动物功能多样性急剧减少和夜行性行为显著改变(Li et al, 2022)。同时, 红外相机技术为中缅边境地区极度濒危的缅甸金丝猴(Rhinopithecus strykeri)的种群恢复和跨境保护提供了关键数据支撑(Chen et al, 2022)。在食果动物与植物种间互作研究方面, 揭示了森林演替梯度对啮齿动物与种子互作网络结构和功能的影响(Yang et al, 2018), 明确了物种功能性状和分布范围在种子扩散集合网络功能维持中的关键作用(Li HD et al, 2020)。

昆虫生物多样性监测专项网主要聚焦于重要昆虫类群(如植食性昆虫、传粉昆虫、地表甲虫、蚜虫、寄生性昆虫等), 通过多种收集方法和设备描述昆虫物种多样性, 为了解昆虫多样性的基本组成和动态变化及其关键影响因素提供了新的视角。通过对高黎贡山地区蝴蝶物种多样性系统监测, 厘清了蝴蝶多样性随海拔、生境和季节变化的模式, 发现自然保护区中蝴蝶物种数及多样性指数均高于边缘交错带及农业种植区, 为加强区域物种多样性监测、保护生物多样性提供了科学依据(易浪等, 2021)。在BEF控制试验基地的植食性鳞翅目幼虫多样性研究中发现鳞翅目植食者的多度在很大程度上间接调控植物多样性对植食者的多样性的正向作用; 寄主植物的功能属性和系统发生组成在植物-植食者的互作网络中具有重要作用; 并揭示了森林系统中植食性昆虫共存模式的一般机制: 鳞翅目的系统发生关系、宿主植物的功能性状和多样性、空间尺度均对植食者共现有着重要影响(Wang MQ et al, 2019, 2020, 2022)。对热带雨林和橡胶林中种子筑巢蚂蚁的多样性研究发现, 环境资源异质性在塑造蚂蚁多样性形成中起着重要作用, 资源多样性的降低会导致蚂蚁多样性的丧失, 并最终影响该地区的生态系统功能(Miao et al, 2022)。

将监测和遥感数据结合, 或监测数据与遗传数据的结合, 推动了动物栖息地选择机制、迁徙驱动机制等经典和前沿生态学研究, 并催生了“运动生态学” (Movement Ecology)这一新兴学科, 在行为生态学研究创新的同时, 服务于动物保护关键区域识别、全球航空安全保障和野生动物传播疾病及时预警等重大需求。如鸟类生物多样性监测专项网基于鸟类遥测数据证实了野生雁类受困于长江湿地(Yu et al, 2017), 证明了“驱动鸟类迁徙的绿色波浪理论”不具普适性(Wang et al, 2018), 发现中国东北是东亚迁徙路线最重要的停歇地、俄罗斯远东的泰加林是水鸟迁徙的天然屏障(Wang X et al, 2019)。获得了东亚大型水鸟的迁徙路线, 并确定了种群分布范围, 结合长期监测的数据, 获得了东亚大型水鸟的种群趋势; 针对下降种群, 提出了具体的保护措施, 并强调了自然湿地保护和修复的重要性(Cao et al, 2020a, b; Chen et al, 2021; Xi et al, 2021; 嘎日迪等, 2022)。为进一步阐明水鸟栖息地的特征, 开展了水鸟栖息地选择的研究, 发现鸟类在干旱区选择每年固定的湿地, 而不是其他不可预测的土地覆被类型(Meng et al, 2020); 在长江流域, 选择鄱阳湖、洞庭湖等具有更大涨落区的大湖, 水鸟在涨落区停留的时间与涨落区面积成正比, 与湖泊的水域面积无关, 涨落区面积越大, 停留时间越长, 反之则短(Jia et al, 2018; Meng et al, 2019, 2020); 我国作为亚洲水鸟重要的停歇地和越冬地, 利用6条大河流域和江苏沿海湿地支持了20多个国家的迁徙水鸟, 因此要优先在这些区域开展湿地生态系统的保护和生态恢复工作(曹垒等, 2021)。结合遥感和基因组学信息, 发现了北极游隼(Falco peregrinus)迁徙路线的主要形成原因和长距离迁徙关键基因(Gu et al, 2021)。在两栖爬行动物的研究中, 应用简化基因组技术发现中国大鲵(Andrias davidianus)其实包含5-8个支系, 这一发现对中国大鲵的针对性保护具有重大指引作用(Yan et al, 2018)。根据对古田山大鲵种群的监测和研究证实: 放归个体由4个已知的支系组成, 而它们大多数并非来自当地种群, 这样的放归会导致原生种群遗传污染和远交衰退, 这提示中国大鲵的放归计划、人工养殖产业管理等需做相应的科学化调整(Shu et al, 2021)。

(3)土壤微生物多样性监测专项网对我国南北热量梯度下典型森林生态系统中建立的大型固定样地的土壤真菌多样性开展了研究, 揭示了真菌多样性的分布格局与群落构建机制, 其中土壤真菌的多样性主要受到植物多样性和土壤性质的影响, 而真菌群落组成受到植物群落、土壤、空间距离和气候因子的影响(Ji et al, 2019; Zheng et al, 2021)。在长白山垂直带谱上的调查发现, 土壤细菌和真菌多样性随海拔的变化与植物表现出不同的趋势, 其中土壤pH是驱动微生物多样性变异的关键因子(Shen et al, 2013, 2014)。

(4)综合中心近地面遥感平台在样地尺度上, 利用激光雷达数据探讨了古田山森林大样地不同演替阶段下森林冠层的结构多样性和生产力关系的生态学机制, 并发现林冠结构多样性对森林生产力具有重要影响, 估算次生林碳固存速率时应同时考虑叶面积和冠层结构多样性(Yi et al, 2022)。在区域尺度上, 基于从温带到热带区域等8个森林大样地的激光雷达高度数据, 探讨了局地最大树高的限制因素, 并发现从温带到热带区域当地最大树高从温度限制转变成为水分限制(Wang BJ et al, 2022a)。在全国尺度上, 结合全国不同森林类型的无人机激光雷达、星载激光雷达数据, 发展了基于深度学习指导的插值方法并绘制了全国30 m分辨率森林冠层高度分布图(Liu et al, 2022), 为生物多样性研究提供了基础数据。

(5)生物多样性监测也为生物多样性编目提供了数据基础, 发表新物种包括版纳丝蝽(Plokiophiloides bannaensis) (Luo et al, 2021)、无凹带蜉金龟(Airapus rakovici) (Král et al, 2021)、叶氏掌突蟾(Leptobrachella yeae) (Shi et al, 2021)、攀枝花脊蛇(Achalinus panzhihuaensis)和杨氏脊蛇(A. yangdatongi) (Hou et al, 2021)、九寨蝮(Gloydius lateralis) (Zhang et al, 2022)等。两栖爬行动物多样性专项网组织全国同行拟定中国两栖动物名录, 采用IUCN区域评估的规则评估了我国两栖动物生存状况, 2021年《中国生物多样性红色名录: 脊椎动物(第四卷)两栖动物》(上、下册)出版(江建平和谢锋, 2021)。

2.4 相关社会影响

生物多样性保护已上升为国家战略, 我国正在建设以国家公园为主体的自然保护地体系, Sino BON围绕国家战略、行业部门、地方政府、媒体大众的需求开展了一系列支撑服务。

(1)服务《生物多样性公约》缔约方大会第十五次会议(COP15)系列宣传。组织和参与了系列宣传和服务活动, 包括围绕2020后全球生物多样性框架等的战略研究, 在National Science Review、《生物多样性》等刊物分别组织了“生态文明: 人与自然关系新认知”专题、“生物多样性公约COP15”专辑等; 参与了COP15昆明主场馆举办的中国科学院生物多样性成果展和成果发布会; Sino BON科研人员在部长级圆桌会议上发言, 并在“生态文明论坛”作主题报告, 就推动保护和可持续利用生物多样性的能力建设提出了建议; 接受中央广播电视总台《中国在行动》特别节目、新华社独家、CGTN (中国国际电视台)等多家媒体专访, 解读生物多样性保护相关政策和目标; Sino BON的多项研究成果获Nature官网报道, 在世界舞台宣传和展示了我国生物多样性研究的进展。

(2)支撑国家公园和自然保护地监测能力提升。钱江源国家公园是中国首批建立的10个国家公园体制试点区之一, 建立了针对保护地管理有效性的评估指标体系, 以及相应的生物多样性综合监测平台, 通过钱江源国家公园的管理有效性评估发现, 开展跨区合作以保护毗邻地区的常绿阔叶林和濒危动物栖息地, 是提高钱江源国家公园保护有效性的关键措施。在车八岭国家自然保护区建立了首个“中国生物圈保护区野生动物智能监测示范保护区”, 联合中国科学院计算机网络信息中心等科研单位研发了陆生大中型哺乳动物为主的自动监测、实时传输、智能识别和云存储等关键功能为一体的野生动物监测云服务平台, 为以国家公园为主体的自然保护地科研监测技术体系建设提供了示范基地, 为野生动物动态评估和科学保护提供了关键科学数据和决策依据。

(3)面向大众传播生物多样性研究最新成果, 宣传生物多样性保护理念。Sino BON监测成果获得来自ScienceNews、CCTV、新华社、人民日报、光明日报、青海卫视、科技日报、西宁晚报、新京报等中外和地方媒体的关注和报道; 《西藏两栖爬行动物: 多样性与进化》(车静等, 2020)获得“全国优秀科普作品”奖; 古田山样地培训20个亚太区国家和地区的1,500余名汇丰银行员工; 入选为国家林业和草原局三亿青少年进森林研学教育活动基地。

3 趋势与展望

为进一步支撑生物多样性治理能力、深化全球多样性保护合作, 我国的生物多样性监测亟需在监测技术、监测区域、数据标准、综合信息平台方向谋求更大的发展, 包括数据和技术的标准化、统一化, 监测区域的多样化等。

3.1 加强监测新技术和新方法的集成应用和示范, 提升综合监测和研究能力

长时序、多尺度的监测技术发展与推广应用仍是生物多样性监测技术的重要发展方向。当前, Sino BON在近地面遥感的应用方面还局限于单个站点、单个时期、单个传感器的研究, 如何长期、有序地开展多站点、多类型的近地面遥感联网监测, 融合多源、多时序的近地面遥感数据开展研究, 构建生物多样性的遥感监测指标, 实现动态监测是未来Sino BON在近地面遥感监测的主要发展方向。

自动化监测设备推动了野生大型兽类、迁徙鸟类的监测与创新研究, 未来还需要进一步推动技术创新, 包括红外相机技术的图像无线传输、人工智能物种识别和可视化分析等, 真正实现实时监测和共享应用。野生动物遥测技术仍需降低采集终端的重量以覆盖小型物种, 使用智能变频采集数据以满足不同的研究需求等, 最终建立全球“动物物联网”, 对地球动物及其生存环境进行实时监测, 为研究、保护和环境教育提供多维度和高精度数据。

与此同时, 代谢组学、系统发育基因组学、宏基因组学等微观生物学技术已广泛应用于土壤微生物的研究, 并逐步应用于森林多样性研究, 为生态学格局、生理生态过程、物种共存机制等研究提供了新窗口。在鱼类多样性、资源量、珍稀特有物种分布监测和调查中广泛地应用环境DNA技术, 有望在未来与先进的生态模型和遥感技术结合, 提高鱼类资源调查在时空尺度上的广度和精度, 实现数字化、智能化及大尺度的全面普查和在线实时自动化监测, 革新鱼类资源监测体系和技术标准规范, 将鱼类多样性保护工作推上一个新台阶。

3.2 推动联网监测规范和指标应用, 建立动态评估机制

生物多样性数据采集的标准化对生物多样性的跨时空比较至关重要(Ahumada et al, 2011; Beaudrot et al, 2016)。GEO BON、生物多样性指标联盟(Biodiversity Indicators Partnership, BIP)和指标特设专家组为《2011-2020年生物多样性保护战略》建立了反映生物多样性产品和服务现状和变化的指标体系, 状态指标、压力指标、响应指标和效益指标分别应用于评估保护战略及爱知生物多样性目标的进展。但目前全球生物多样性指标仍存在概念不清、在政策制定过程中无法理解或应用的问题(Rochette et al, 2019)。

未来生物多样性监测需要更明确的目标, 尤其是改变以生物多样性度量为核心的方式, 聚焦提升国际、国家战略决策的支撑能力。CBD秘书处和缔约方结合2020后全球生物多样性保护框架(GBF), 建立了评估生物多样性保护进展的指标体系以及相应的生物多样性状态变化和保护效果的监测框架, 确定了衡量生物多样性保护进展的标准, 建立目标和具体目标密切相关的全球生物多样性指标, 使GBF成为更富意义的生物多样性评估方式, 促进保护目标的实现(Jetz et al, 2022)。GEO BON提出了全球生物多样性变化指标, 包括生物多样性生境指数(Biodiversity Habitat Index, BHI)、全球生态系统恢复指数(Global Ecosystem Restoration Index, GERI)和物种保护指数(Species Protection Index, SPI)等8个指数, 其中SPI将为未来政策的制定提供科学支持(Jetz et al, 2022)。Sino BON也需结合2020后全球生物多样性保护框架和国家战略需求, 提出适合我国国情的监测指标体系。

3.3 完善生物多样性综合信息平台, 提升数据共享与服务

海量数据的整理整合和开放共享对于生物资源的研究、保护和利用至关重要。生物多样性大数据作为国家的重要战略生物资源, 已成为国际科技和产业竞争热点和战略制高点。在数据汇聚方面, 生物多样性长时序自动观测设备大大提升全方位长时序自动监测数据的获取能力, 可积累大量图像、声音以及三维点云等类型数据。例如, 红外相机的应用获取了千万张大中型兽类和鸟类图像, 动物鸣声监测技术积累了大量声音数据, 物候相机记录了长时序、多站点的植被物候图像, 近地面遥感设备记录了森林和草地三维结构数据。然而, 生物多样性监测数据却分散在不同数据库、组织以及个人仓储库中, 需要以更有效的形式将之联系起来。因此大量多源异构数据的存储、融合以及一站式的访问面临重大挑战。

在数据分析方面, 生物多样性数据类型多样、集成程度低, 物联网、5G和深度学习为代表的人工智能技术如何更便捷、更广泛地应用于海量生物多样性监测数据的收集、管理和挖掘? 在数据的标准化、算法的通用性、应用程序操作简单性方面仍有大量工作有待开展(郭庆华等, 2020), 从而实现基于人工智能的多源数据分析技术的创新应用, 通过公民科学、标准化监测网络以及自动化分析等基础设施建设来拓展未来生物多样性保护工作。另一方面, 遥感可从景观尺度甚至更大尺度监测生物多样性变化, 将遥感与实地采样、控制实验和监测数据相结合, 可以更全面、更广泛地实现生物多样性保护。

参考文献

Ahumada JA, Silva CEF, Gajapersad K, Hallam C, Hurtado J, Martin E, McWilliam A, Mugerwa B, O’Brien T, Rovero F, Sheil D, Spironello WR, Winarni N, Andelman SJ (2011)

Community structure and diversity of tropical forest mammals: Data from a global camera trap network

Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2703-2711.

DOI:10.1098/rstb.2011.0115      URL     [本文引用: 1]

Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph WS, Kassim AR (2015)

CTFSForestGEO: A worldwide network monitoring forests in an era of global change

Global Change Biology, 21, 528-549.

[本文引用: 1]

Baru C, Bhandarkar M, Nambiar R, Poess M, Rabl T (2013) Setting the direction for big data benchmark standards. Selected Topics in Performance Evaluation and Benchmarking. Springer, Berlin.

[本文引用: 1]

Beaudrot L, Ahumada JA, O’Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, Eichberg D, Espinosa S, Fegraus E, Fletcher C, Gajapersad K, Hallam C, Hurtado J, Jansen PA, Kumar A, Larney E, Lima MGM, Mahony C, Martin EH, McWilliam A, Mugerwa B, Ndoundou- Hockemba M, Razafimahaimodison JC, Romero-Saltos H, Rovero F, Salvador J, Santos F, Sheil D, Spironello WR, Willig MR, Winarni NL, Zvoleff A, Andelman SJ (2016)

Standardized assessment of biodiversity trends in tropical forest protected areas: The end is not in sight

PLoS Biology, 14, e1002357.

DOI:10.1371/journal.pbio.1002357      URL     [本文引用: 1]

Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng AP, Ma KP, Liu XJ (2021)

Functional diversity effects on productivity increase with age in a forest biodiversity experiment

Nature Ecology & Evolution, 5, 1594-1603.

[本文引用: 1]

Cao L, Deng XQ, Meng FJ, Fox A (2020a)

Defining flyways, discerning population trends and assessing conservation challenges of key Far East Asian Anatidae species: An introduction

Wildfowl, Special Issue 6, 1-12.

[本文引用: 1]

Cao L, Meng FJ, Zhang JJ, Deng XQ, Sawa Y, Fox AD (2020b)

Moving forward: How best to use the results of waterbird monitoring and telemetry studies to safeguard the future of Far East Asian Anatidae species

Wildfowl, 6, 293-319.

[本文引用: 1]

Cao L, Meng FJ, Zhao QS (2021)

Understanding effects of large-scale development on bird migration and habitats through cutting edge avian monitoring techniques

Bulletin of the Chinese Academy of Sciences, 36, 436-447. (in Chinese with English abstract)

[本文引用: 1]

[曹垒, 孟凡娟, 赵青山 (2021)

基于前沿监测技术探讨大开发对鸟类迁徙及其栖息地的影响

中国科学院院刊, 36, 436-447.]

[本文引用: 1]

Che J, Jiang K, Yan F, Zhang YP (2020) Amphibians and Reptiles in Tibet—Diversity and Evolutin. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[车静, 蒋珂, 颜芳, 张亚平 (2020) 西藏两栖爬行动物: 多样性与进化. 科学出版社, 北京.]

[本文引用: 1]

Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP (2019)

Differential soil fungus accumulation and density dependence of trees in a subtropical forest

Science, 366, 124-128.

DOI:10.1126/science.aau1361      PMID:31604314      [本文引用: 1]

The mechanisms underlying interspecific variation in conspecific negative density dependence (CNDD) are poorly understood. Using a multilevel modeling approach, we combined long-term seedling demographic data from a subtropical forest plot with soil fungal community data by means of DNA sequencing to address the feedback of various guilds of soil fungi on the density dependence of trees. We show that mycorrhizal type mediates tree neighborhood interactions at the community level, and much of the interspecific variation in CNDD is explained by how tree species differ in their fungal density accumulation rates as they grow. Species with higher accumulation rates of pathogenic fungi suffered more from CNDD, whereas species with lower CNDD had higher accumulation rates of ectomycorrhizal fungi, suggesting that mutualistic and pathogenic fungi play important but opposing roles.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Chen YX, Yu Y, Li C, Xiao ZS, Zhou GW, Zhang ZJ, Wang XW, Xiang ZF, Chang J, Li M (2022)

Population and conservation status of a transboundary group of black snub-nosed monkeys (Rhinopithecus strykeri) between China and Myanmar

Zoological Research, 43, 523-527.

[本文引用: 1]

Chen YW, Yu YT, Meng FJ, Deng XQ, Cao L, Fox AD (2021)

Migration routes population status and important sites used by the globally threatened black-faced spoonbill (Platalea minor): A synthesis of surveys and tracking studies

Avian Research, 12, 74.

DOI:10.1186/s40657-021-00307-z      URL     [本文引用: 1]

Davies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade A, Arellano G, Ashton PS, Baker PJ, Baker ME, Baltzer JL, Basset Y, Bissiengou P, Bohlman S, Bourg NA, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Cao M, Cárdenas D, Chang LW, Chang-Yang CH, Chao KJ, Chao WC, Chapman H, Chen YY, Chisholm RA, Chu CJ, Chuyong G, Clay K, Comita LS, Condit R, Cordell S, Dattaraja HS, de Oliveira AA, den Ouden J, Detto M, Dick C, Du XJ, Duque Á, Ediriweera S, Ellis EC, Obiang NLE, Esufali S, Ewango CEN, Fernando ES, Filip J, Fischer GA, Foster R, Giambelluca T, Giardina C, Gilbert GS, Gonzalez-Akre E, Gunatilleke IAUN, Gunatilleke CVS, Hao ZQ, Hau BCH, He FL, Ni HW, Howe RW, Hubbell SP, Huth A, Inman-Narahari F, Itoh A, Janík D, Jansen PA, Jiang MX, Johnson DJ, Jones FA, Kanzaki M, Kenfack D, Kiratiprayoon S, Král K, Krizel L, Lao S, Larson AJ, Li YD, Li XK, Litton CM, Liu Y, Liu SR, Lum SKY, Luskin MS, Lutz JA, Luu HT, Ma KP, Makana JR, Malhi Y, Martin A, McCarthy C, McMahon SM, McShea WJ, Memiaghe H, Mi XC, Mitre D, Mohamad M, Monks L, Muller-Landau HC, Musili PM, Myers JA, Nathalang A, Ngo KM, Norden N, Novotny V, O’Brien MJ, Orwig D, Ostertag R, Papathanassiou K, Parker GG, Pérez R, Perfecto I, Phillips RP, Pongpattananurak N, Pretzsch H, Ren HB, Reynolds G, Rodriguez LJ, Russo SE, Sack L, Sang WG, Shue J, Singh A, Song GZM, Sukumar R, Sun IF, Suresh HS, Swenson NG, Tan S, Thomas SC, Thomas D, Thompson J, Turner BL, Uowolo A, Uriarte M, Valencia R, Vandermeer J, Vicentini A, Visser M, Vrska T, Wang XG, Wang XH, Weiblen GD, Whitfeld TJS, Wolf A, Wright SJ, Xu H, Yao TL, Yap SL, Ye WH, Yu MJ, Zhang MH, Zhu DG, Zhu L, Zimmerman JK, Zuleta D (2021)

ForestGEO: Understanding forest diversity and dynamics through a global observatory network

Biological Conservation, 253, 108907.

DOI:10.1016/j.biocon.2020.108907      URL     [本文引用: 3]

Garidi, Fan SJ, Cao L, Zhang BX, Wang YX, Zhu BG, Dong SB, Sasin A, Zhao GRLT (2022)

Migration strategy of the Bohai Bay wintering population of juvenile Oriental Storks (Ciconia boyciana)

Biodiversity Science, 30, 21232. (in Chinese with English abstract)

DOI:10.17520/biods.2021232      [本文引用: 1]

<p id="p00010"><strong>Aims:</strong> The Oriental Stork (<i>Ciconia boyciana</i>) primarily breeds in the Far East of Russia and Northeast China. There are two main migratory populations wintering in China, the Yangtze River wintering population, with a migration distance of about 2,600 km, and the Bohai Bay wintering population, with a migration distance of about 1,500 km. This study was conducted to obtain the characteristics of migration strategies and wind utilization of wintering populations in Bohai Bay during spring and autumn migration. </p> <p id="p00015"><strong>Methods:</strong> Based on the satellite tracking data of 14 juveniles from 2016 to 2018, we compared differences in their autumn and spring migration patterns and studied the effects of wind speed and direction at 850 mb on migration speed of the Bohai Bay wintering population. </p> <p id="p00020"><strong>Results:</strong> The migration distances in spring and autumn were similar, and the tailwind conditions in spring (2.2 &#x000b1; 6.3 m/s) were significantly better than that in autumn (-2.4 &#x000b1; 4.1 m/s, <i>P</i> &lt; 0.05), leading to the daily flying speed in spring (280.4 &#x000b1; 62.0 km/d) being significantly faster than that in autumn (185.5 &#x000b1; 72.0 km/d, <i>P</i> &lt; 0.05), and the flight duration of the spring migration (5.9 &#x000b1; 2.9 d) was significantly shorter than that of the autumn migration (10.3 &#x000b1; 6.5 d). Furthermore, the stopover time in spring (5.4 &#x000b1; 9.7 d) was significantly shorter than that in autumn (17.8 &#x000b1; 18.2 d, <i>P</i> = 0.05). Based on the above two points, the migration duration in spring (11.2 &#x000b1; 8.7 d) was significantly shorter than that in autumn (28.0 &#x000b1; 21.2 d, <i>P</i> &lt; 0.05). </p> <p id="p00025"><strong>Conclusion:</strong> When migrating from/to Bohai Bay, the 14 juveniles used tailwinds to reach summering grounds faster in spring, and when they migrated headwinds in autumn, they flied slower and had longer flight and rest times. In conclusion, the Oriental Stork is a migratory soaring bird that primarily relies on thermal flow, while the tailwind also contributes to the migration success.</p>

[嘎日迪, 樊淑娟, 曹垒, 张贝西, 王昱熙, 朱宝光, 董树斌, Sasin A, 赵格日乐图 (2022)

东方白鹳幼鸟渤海湾越冬群体的迁徙策略

生物多样性, 30, 21232.]

DOI:10.17520/biods.2021232      [本文引用: 1]

东方白鹳(Ciconia boyciana)主要在俄罗斯远东和中国东北繁殖, 在中国主要有两个越冬群体(长江越冬群体, 迁徙距离约2,600 km; 渤海湾越冬群体, 迁徙距离约1,500 km)。本文基于2016-2018年的卫星追踪数据(N = 14), 分析了渤海湾越冬群体幼鸟春季和秋季的迁徙策略和利用风的方式, 总结了850 mb压力下风速和风向对日迁徙飞行速度的影响。该群体春秋两季迁徙距离相似, 但春季的顺风条件(2.2 &#x000b1; 6.3 m/s)显著优于秋季的逆风条件(-2.4 &#x000b1; 4.1 m/s, P &lt; 0.05), 这使得春季迁徙飞行速度(280.4 &#x000b1; 62.0 km/d)显著快于秋季(185.5 &#x000b1; 72.0 km/d, P &lt; 0.05), 春季迁徙飞行时间(5.9 &#x000b1; 2.5 d)显著短于秋季(10.3 &#x000b1; 6.5 d, P &lt; 0.05); 同时, 春季停歇时间(5.4 &#x000b1; 9.7 d)短于秋季(17.8 &#x000b1; 18.2 d, P = 0.05)。基于以上原因, 东方白鹳春季迁徙持续时间(11.2 &#x000b1; 8.7 d)显著短于秋季(28.0 &#x000b1; 21.2 d, P &lt; 0.05)。渤海湾越冬群体幼鸟迁徙时, 春季利用顺风更快到达度夏地, 秋季逆风迁徙, 迁徙飞行速度慢, 迁徙飞行时间和停歇时间长。因此, 东方白鹳迁徙时虽然主要利用上升热气流翱翔, 但顺风也是其成功迁徙的有利因素。

Gu ZR, Pan SK, Lin ZZ, Hu L, Dai XY, Chang J, Xue YC, Su H, Long J, Sun MR, Ganusevich S, Sokolov V, Sokolov A, Pokrovsky I, Ji F, Bruford MW, Dixon A, Zhan XJ (2021)

Climate-driven flyway changes and memory-based long- distance migration

Nature, 591, 259-264.

DOI:10.1038/s41586-021-03265-0      URL     [本文引用: 1]

Guo K, Liu CC, Pan QM (2016)

Methods of observing typical plant communities in the Steppe and Desert Biodiversity Observation Network, Sino BON

Biodiversity Science, 24, 1220-1226. (in Chinese with English abstract)

DOI:10.17520/biods.2016190      [本文引用: 1]

A typical plant community that reflects the basic community characteristics of a vegetation classification unit can be designated as the standard for describing a distinct vegetation type. The Steppe and Desert Biodiversity Observation Network of Sino BON aims to establish a series of typical plant community plots for long-term biodiversity observations using standardized methods. This paper emphasizes the importance of plant community observations for the study of biodiversity, defines the concept of a typical plant community, and introduces a system of typical plant community observations including the framework, primary observations, methods, parameters, and predictable output.

[郭柯, 刘长成, 潘庆民 (2016)

中国草原/荒漠植物多样性监测网模式植物群落监测方案

生物多样性, 24, 1220-1226.]

DOI:10.17520/biods.2016190      [本文引用: 1]

&#x0201c;模式群落&#x0201d;是指能够反映某种植被分类单元基本特征, 并可作为准确描述该植被类型&#x0201c;标准&#x0201d;的典型植物群落。中国生物多样性监测网络&#x02014;&#x02014;草原/荒漠植物多样性监测网旨在统一监测方法和技术规范的基础上, 在草原/荒漠植被主要群系分布的典型地段建立模式植物群落监测固定样方, 定期复查, 长期监测草原和荒漠的植物多样性变化。文章强调了典型植物群落监测是生物多样性监测的重要组成部分, 阐述了模式群落的概念, 介绍了草原/荒漠植物多样性监测网的总体思路和布局, 以及主要监测内容、方法、指标和预期产出。

Guo QH, Jin SC, Li M, Yang QL Xu KX, Ju YZ, Zhang J, Xuan J, Liu J, Su YJ, Xu Q, Liu Y (2020)

Application of deep learning in ecological resource research: Theories, methods, and challenges

Scientia Sinica (Terrae), 50, 1354-1373. (in Chinese with English abstract)

[本文引用: 1]

[郭庆华, 金时超, 李敏, 杨秋丽, 徐可心, 巨袁臻, 张菁, 宣晶, 刘瑾, 苏艳军, 许强, 刘瑜 (2020)

深度学习在生态资源研究领域的应用: 理论、方法和挑战

中国科学: 地球科学, 50, 1354-1373.]

[本文引用: 1]

Guo QH, Liu J, Li YM, Zhai QP, Wang YC, Wu FF, Hu TY, Wan HW, Liu HM, Shen WM (2016a)

A near-surface remote sensing platform for biodiversity monitoring: perspectives and prospects

Biodiversity Science, 24, 1249-1266. (in Chinese with English abstract)

DOI:10.17520/biods.2016059      URL     [本文引用: 1]

[郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳, 胡天宇, 万华伟, 刘慧明, 申文明 (2016a)

生物多样性近地面遥感监测: 应用现状与前景展望

生物多样性, 24, 1249-1266.]

[本文引用: 1]

Guo QH, Wu FF, Hu TY, Chen LH, Liu J, Zhao XQ, Gao S, Pang SX (2016b)

Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity

Biodiversity Science, 24, 1267-1278. (in Chinese with English abstract)

DOI:10.17520/biods.2016105      URL     [本文引用: 1]

[郭庆华, 吴芳芳, 胡天宇, 陈琳海, 刘瑾, 赵晓倩, 高上, 庞树鑫 (2016b)

无人机在生物多样性遥感监测中的应用现状与展望

生物多样性, 24, 1267-1278.]

[本文引用: 1]

Guo QH, Su YJ, Hu TY, Zhao XQ, Wu FF, Li YM, Liu J, Chen LH, Xu GC, Lin GH, Zheng Y, Lin YQ, Mi XC, Lin F, Wang XG (2017)

An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China

International Journal of Remote Sensing, 38, 2954-2972.

DOI:10.1080/01431161.2017.1285083      URL     [本文引用: 1]

Hou SB, Wang K, Guo P, Chen JM, Yuan ZY, Che J (2021)

Two new species and a new country record of the genus Achalinus (Reptilia: Squamata: Xenodermidae) from China

Zootaxa, 4950, 528-546.

DOI:10.11646/zootaxa.4950.3.6      URL     [本文引用: 1]

Hu TY, Sun XL, Su YJ, Guan HC, Sun QH, Kelly M, Guo QH (2021)

Development and performance evaluation of a very low-cost UAV-lidar system for forestry applications

Remote Sensing, 13, 77.

DOI:10.3390/rs13010077      URL     [本文引用: 1]

Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Hardtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Honig L, Hu RY, Klein AM, Kuhn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi X, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2019)

Impacts of species richness on productivity in a large-scale subtropical forest experiment

Science, 362, 80-83.

DOI:10.1126/science.aat6405      URL     [本文引用: 1]

Jansen PA, Ahumada J, Fegraus E, O’Brien T (2014)

TEAM: A standardised camera-trap survey to monitor terrestrial vertebrate communities in tropical forests

The 1st International Colloquium on Camera Trapping in Wildlife Management and Research, 263-270.

[本文引用: 1]

Jetz W, McGowan J, Rinnan DS, Possingham HP, Visconti P, O’Donnell B, Londoño-Murcia MC (2022)

Include biodiversity representation indicators in area-based conservation targets

Nature Ecology and Evolution, 6, 123-126.

DOI:10.1038/s41559-021-01620-y      URL     [本文引用: 2]

Ji NN, Gao C, Sandel B, Zheng Y, Chen L, Wu BW, Li XC, Wang YL, Lu PP, Sun X, Guo LD (2019)

Late Quaternary climate change explains soil fungal community composition rather than fungal richness in forest ecosystems

Ecology and Evolution, 9, 6678-6692.

DOI:10.1002/ece3.5247      URL     [本文引用: 1]

Jia Q, Wang X, Zhang Y, Cao L, Fox AD (2018)

Drivers of waterbird communities and their declines on Yangtze River floodplain lakes

Biological Conservation, 218, 240-246.

DOI:10.1016/j.biocon.2017.12.029      URL     [本文引用: 1]

Jia SH, Wang XG, Yuan ZQ, Lin F, Ye J, Lin GG, Hao ZQ, Bagchi R (2020)

Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest

Nature Communications, 11, 286.

DOI:10.1038/s41467-019-14140-y      PMID:31941904      [本文引用: 1]

A prominent tree species coexistence mechanism suggests host-specific natural enemies inhibit seedling recruitment at high conspecific density (negative conspecific density dependence). Natural-enemy-mediated conspecific density dependence affects numerous tree populations, but its strength varies substantially among species. Understanding how conspecific density dependence varies with species' traits and influences the dynamics of whole communities remains a challenge. Using a three-year manipulative community-scale experiment in a temperate forest, we show that plant-associated fungi, and to a lesser extent insect herbivores, reduce seedling recruitment and survival at high adult conspecific density. Plant-associated fungi are primarily responsible for reducing seedling recruitment near conspecific adults in ectomycorrhizal and shade-tolerant species. Insects, in contrast, primarily inhibit seedling recruitment of shade-intolerant species near conspecific adults. Our results suggest that natural enemies drive conspecific density dependence in this temperate forest and that which natural enemies are responsible depends on the mycorrhizal association and shade tolerance of tree species.

Jiang JP, Xie F (2021) China’s Red List of Biodiversity:Vertebrates. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[江建平, 谢锋 (2021) 中国生物多样性红色名录: 脊椎动物(第四卷)两栖动物. 科学出版社, 北京.]

[本文引用: 1]

Král D, Lu YY, Bai M (2021)

Airapus rakovici (Coleoptera: Scarabaeidae: Aphodiinae: Eupariini), a new species from Fujian, China

Zootaxa, 4920, 140-144.

DOI:10.11646/zootaxa.4920.1.8      URL     [本文引用: 1]

Li C, Xie F, Che J, Jiang JP (2017)

Monitoring and research of amphibians and reptiles diversity in key areas of China

Biodiversity Science, 25, 246-254. (in Chinese with English abstract)

DOI:10.17520/biods.2016137      [本文引用: 1]

Amphibians and reptiles are important indicator species of ecosystem health, and they are sensitive to environmental changes and are often regarded as critical “early warning systems”. Many of their populations are undergoing rapid decline and therefore a long-term monitoring system is imperative to identify immediate threats to the animals. Monitoring program on Chinese amphibians began in the Zoige wetlands in 1997. Since 2000, a great number of monitoring studies of amphibians and reptiles have been carried out in mountains of Southwest China, Taiwan, and other regions with rich biodiversity. In 2011, the Ministry of Environmental Protection officially launched the “Amphibian Observation Initiative of China” program, which expanded regional programs to country-wide using both qualitative and quantitative methods to collect amphibian biodiversity data across long-term temporal scales. From an ecosystem viewpoint, long-term monitoring studies should include not only species distribution, richness, and population structure, but also population growth, key life-history traits, species interactions (e.g., predation, competition, and mutualism), community structure, and other dynamic factors. The program “Monitoring and Research of Amphibians and Reptiles in Key Areas of China” will cover 22 key areas with rich biodiversity and high habitat heterogeneity across China. As part of the Chinese Biodiversity Monitoring and Research Network (Sino BON), this program aims to combine intensive field surveys and ecological modeling techniques to evaluate population dynamics and community structures of amphibian and reptile species in the study areas.

[李成, 谢锋, 车静, 江建平 (2017)

中国关键地区两栖爬行动物多样性监测与研究

生物多样性, 25, 246-254.]

DOI:10.17520/biods.2016137      [本文引用: 1]

两栖爬行动物是良好的环境指示物种, 是环境变化的早期预警系统之一, 目前正经历着全球范围的种群快速下降和物种灭绝。为了观测和研究物种及种群下降或灭绝的态势和机制, 亟需对我国两栖爬行动物多样性开展长期监测和研究。在中国, 对两栖爬行动物的监测研究始于1997年对若尔盖湿地两栖动物的监测。此后, 两栖爬行动物监测率先在西南山地、台湾等生物多样性丰富地区开展起来。2011年, 在借鉴美国和英国的两栖爬行动物监测计划的基础上, 环境保护部启动了&#x0201c;两栖类示范观测项目&#x0201d;, 初步实现了由点到面、由定性到定量、由静态向动态的突破。因为单一类群的监测仅代表生态系统的基本组成, 而从生态系统角度考量, 必须深入研究生态系统的结构(食物网中各类群的捕食、竞争、共生等种间关系)和动态(各类群的生长、繁殖、种群波动和致危因素等)。因此, 作为中国生物多样性监测与研究网络(Sino BON)的重要组成部分, &#x0201c;中国关键地区两栖爬行动物监测与研究专项网&#x0201d;项目将在22个生物多样性关键地区对典型生态系统中的两栖爬行动物组成、种群动态和结构进行长期监测与研究, 构建生态模型, 探讨两栖爬行动物的种群现状、群落结构及其动态趋势和相关机制, 制定和不断完善我国两栖爬行动物应对未来环境变化的保护和管理对策。

Li HD, Tang LF, Jia CX, Holyoak M, Frund J, Huang XQ, Xiao ZS (2020a)

The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks

Ecology Letters, 23, 1252-1262.

DOI:10.1111/ele.13529      URL     [本文引用: 1]

Li XY, Bleisch WV, Jiang XL (2018)

Using large spatial scale camera trap data and hierarchical occupancy models to evaluate species richness and occupancy of rare and elusive wildlife communities in southwest China

Diversity and Distributions, 24, 1560-1572.

DOI:10.1111/ddi.12792      URL     [本文引用: 1]

Li XY, Bleisch WV, Liu XW, Hu WQ, Jiang XL (2020a)

Human disturbance and prey occupancy as predictors of carnivore richness and biomass in a Himalayan hotspot: Drivers affecting carnivores richness and biomass

Animal Conservation, 24, 64-72.

DOI:10.1111/acv.12600      URL     [本文引用: 1]

Li XY, Bleisch WV, Liu XW, Jiang XL (2020b)

Camera-trap surveys reveal high diversity of mammals and pheasants in Medog, Tibet

Oryx, 55, 1-4.

DOI:10.1017/S0030605320001337      URL     [本文引用: 1]

Li XY, Hu WQ, Bleisch WV, Li Q, Wang HJ, Lu W, Sun J, Zhang FY, Ti B, Jiang XL (2022)

Functional diversity loss and change in nocturnal behavior of mammals under anthropogenic disturbance

Conservation Biology, 36, e13839.

[本文引用: 1]

Li XZ, Guo LD, Li JB, Yao MJ (2016)

Soil microbial diversity observation in China: Current situation and future consideration

Biodiversity Science, 24, 1240-1248. (in Chinese with English abstract)

DOI:10.17520/biods.2015345      [本文引用: 1]

Soil microbial diversity has not been extensively observed due to technique limitations. With the development of the high-throughput sequencing technique and bioinformatics, much progress has been made in observations of microbial diversity. Currently, international microbiome initiatives have been founded (including the Earth Microbial Project). However, problems in these projects include a lack of dynamic observations, differences in observational methods, and data integration. The soil microbial observation network (SMON) is an important part of the Chinese Biodiversity Monitoring and Research Network (Sino BON). The observational network initially selected field observation sites in forest ecosystems along a temperature and precipitation gradient from south to north, in grassland ecosystems along a precipitation transect from east to west, and in typical wetland and agricultural ecosystems in China. Field ecological observation stations have been established in these selected ecosystems. Key tasks for the SMON are to observe spatial and temporal dynamics of soil microbial communities and functional genes in various ecosystems, including bacteria, archaea, fungi, and lichens. Observational data will be published periodically in the format of database, annals, and illustrated handbooks. Key methods used in the SMON are high- throughput sequencing, metagenomics, and bioinformatics. A soil biota database is currently being constructed to store observational data for public inquiry and analysis. Through the efforts of SMON, we plan to explore the driving mechanisms of spatial and temporal variations of soil microbial communities and their functional genes, and understand the relationships between microbial diversity and ecosystem function, in order to predict microbial dynamics under global environmental change scenarios, and to design strategies to protect soil microbial diversity and properly utilize microbial resources.

[李香真, 郭良栋, 李家宝, 姚敏杰 (2016)

中国土壤微生物多样性监测的现状和思考

生物多样性, 24, 1240-1248.]

DOI:10.17520/biods.2015345      [本文引用: 1]

土壤微生物多样性研究是整个生态系统研究中最薄弱的环节之一。高通量测序技术和生物信息学方法的快速发展极大地促进了土壤微生物多样性监测研究的深度和广度。目前世界范围内已经开展了一些综合的微生物多样性研究计划, 如地球微生物计划。这些计划存在的主要问题是缺少动态的监测、研究方法不统一、数据整合困难等。中国土壤微生物多样性监测网(Soil Microbial Observation Network, SMON)是中国生物多样性监测与研究网络(Chinese Biodiversity Monitoring and Research Network, Sino BON)的重要组成部分, 本文中我们对该监测网的建设提出了一些思考。在监测布局上建议选择我国南北水热梯度下的森林生态系统、东西降雨梯度下的草原生态系统、典型湿地生态系统及重要农田生态系统, 同时依托现已建成的生物多样性监测网络观测点或大样地, 布设监测样点, 利用现代环境基因组学和生物信息学技术, 重点围绕土壤微生物群落和功能基因组的组成与多样性, 开展长期定点的动态监测。监测的结果将以名录、数据集或图鉴的形式发布, 包括中国典型生态系统中土壤细菌、古菌、真菌与地衣、土壤宏基因组和重要功能基因的组成和多样性等数据, 同时建设土壤生物大数据平台, 达到监测数据的储存、查询、分析、下载、成图的功能。通过土壤微生物多样性监测, 将阐明我国重要森林、草地、湿地、农田生态系统中土壤微生物组成、多样性、功能基因的时空变化特征和驱动机制, 建立土壤微生物多样性变化与生态系统功能的关系及相关的模型, 预测全球环境条件变化下土壤微生物的演变规律, 为土壤微生物多样性资源的保护和利用提供科学依据。

Liu HZ, Yang JX, Liu SW, Gao X, Chen YS, Zhang CG, Zhao K, Li XH, Liu W (2016)

Theory and methods on fish diversity monitoring with an introduction to the inland water fish diversity observation in China

Biodiversity Science, 24, 1227-1233. (in Chinese with English abstract)

DOI:10.17520/biods.2016031      [本文引用: 1]

In recent years, the establishment of biodiversity observation networks (BON) has been of great concern. The global scale GEO-BON (Global Earth Observation—Biodiversity Observation Network), regional EBONE (European Biodiversity Observation Network) and AP BON (Asia-Pacific BON), and local networks such as the J-BON (Japanese BON) and French BON have been successful. The introduction of Essential Biodiversity Variables (EBV) has laid a theoretical foundation for biodiversity observations. The fish biodiversity observation theory is embedded in the EBV, and includes work at the genetic, species, and ecosystem levels. Originally designed for fish monitoring, the index of biotic integrity (IBI) has become the most popular index, and emphasizes the identification of different ecological functional groups, which can reflect changes in community structure and function. Fish diversity survey methods include both traditional nets and modern instruments such as a hydroacoustic sonar system. Analysis of monitoring data can be completed as simple comparisons of various indices, modeling long term trends to identify change-points, and exploring ecological regime shifts. As a part of the Chinese Biodiversity Monitoring and Research Network (Sino BON)—Inland Water Fish is designed to conduct fish monitoring work in 8 major drainage basins in China including the Yangtze River, the Yellow River, the Heilongjiang River, the Zhujiang River, the Lancang River, the Nujiang (Salween) River, the Tarim River, and the Qinhaihu Lake. A total of 25 focused areas and 24 targeted species (groups) have been selected as sampling sites and crucial indicators, respectively, and monitoring variables including community structure, population structure and dynamics, biological traits, genetic diversity, and fish early resources.

[刘焕章, 杨君兴, 刘淑伟, 高欣, 陈宇顺, 张春光, 赵凯, 李新辉, 刘伟 (2016)

鱼类多样性监测的理论方法及中国内陆水体鱼类多样性监测

生物多样性, 24, 1227-1233.]

DOI:10.17520/biods.2016031      [本文引用: 1]

近年来, 生物多样性监测网络的建设得到广泛重视, 全球、地区或国家生物多样性观测网不断组建。生物多样性观测的理论框架得到发展, 提出了生物多样性核心监测指标(Essential Biodiversity Variables, EBV)。鱼类多样性监测的理论框架包含于生物多样性核心监测指标之内, 在遗传、物种、生态系统等多层次进行。基于鱼类监测提出的生物完整性指数(index of biotic integrity, IBI)强调不同物种的生态功能, 可以综合反映群落结构和功能的变化, 得到广泛应用。鱼类多样性的监测方法是传统网具和现代水声学等方法的结合。监测结果的分析可以进行简单的指数比较, 也可以进行长期的趋势分析, 寻找关键节点, 探讨宏观生态格局的变化。中国内陆水体鱼类多样性监测网隶属于中国生物多样性监测与研究网络, 拟选取长江、黄河、黑龙江、珠江、澜沧江、怒江、塔里木河及青海湖8大流域, 对25个重要区域和24个重点物种(类群)进行监测, 从重要区域鱼类群落结构、重点物种(类群)种群动态和个体生物学特征、遗传多样性、早期资源等不同层次, 全面监测我国内陆水体鱼类生物多样性状况。

Liu XQ, Su YJ, Hu TY, Yang QL, Liu BB, Deng YF, Tang H, Tang ZY, Fang JY, Guo QH (2022)

Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data

Remote Sensing of Environment, 269, 112844.

DOI:10.1016/j.rse.2021.112844      URL     [本文引用: 1]

Luo JY, Peng YQ, Xie Q (2021)

First record of the cimicomorphan family Plokiophilidae (Hemiptera, Heteroptera) from China, with description of a new species of Plokiophiloides

ZooKeys, 1021, 145-157.

DOI:10.3897/zookeys.1021.56599      PMID:33746530      [本文引用: 1]

, is described from Xishuangbanna, Yunnan Province, representing the first record of the family Plokiophilidae from China. The new species also represents the first record of the genus in the Oriental Region, a second zoogeographical region besides the Afrotropical Region. Photographs of the live individuals inhabiting a spider web within natural habitats, male and female habitus, wings of adult, male genitalic structures, female abdomen structures and scanning electron micrographs of forewing, head, thorax and legs are provided. A key to all known species of is presented, with a distribution map.Jiuyang Luo, Yanqiong Peng, Qiang Xie.

Ma KP (2015)

Biodiversity monitoring in China: From CForBio to Sino BON

Biodiversity Science, 23, 1-2. (in Chinese)

DOI:10.17520/biods.2015025      [本文引用: 1]

[马克平 (2015)

中国生物多样性监测网络建设: 从CForBio到Sino BON

生物多样性, 23, 1-2.]

DOI:10.17520/biods.2015025      [本文引用: 1]

Meng FJ, Wang X, Batbayar N, Natsagdorj T, Davaasuren B, Damba I, Cao L, Fox AD (2020)

Consistent habitat preference underpins the geographically divergent autumn migration of individual Mongolian common shelducks Tadorna tadorna

Current Zoology, 66, 355-362.

DOI:10.1093/cz/zoz056      PMID:32617084      [本文引用: 2]

While many avian populations follow narrow, well-defined "migratory corridors," individuals from other populations undertake highly divergent individual migration routes, using widely dispersed stopover sites en route between breeding and wintering areas, although the reasons for these differences are rarely investigated. We combined individual GPS-tracked migration data from Mongolian-breeding common shelduck and remote sensing datasets, to investigate habitat selection at inland stopover sites used by these birds during dispersed autumn migration, to explain their divergent migration patterns. We used generalized linear mixed models to investigate population-level resource selection, and generalized linear models to investigate stopover-site-level resource selection. The population-level model showed that water recurrence had the strongest positive effect on determining birds' occupancy at staging sites, while cultivated land and grassland land cover type had strongest negative effects; effects of other land cover types were negative but weaker, particularly effects of water seasonality and presence of a human footprint, which were positive but weak or non-significant, respectively. Although stopover-site-level models showed variable resource selection patterns, the variance partitioning and cross-prediction AUC scores corroborated high inter-individual consistency in habitat selection at inland stopover sites during the dispersed autumn migration. These results suggest that the geographically widespread distribution (and generally rarity) of suitable habitats explained the spatially divergent autumn migrations of Mongolian breeding common shelduck, rather than the species showing flexible autumn staging habitat occupancy.© The Author(s) (2019). Published by Oxford University Press on behalf of Editorial Office, Current Zoology.

Meng FJ, Li HB, Wang X, Fang L, Li XH, Cao L, Fox AD (2019)

Size matters: Wintering ducks stay longer and use fewer habitats on largest Chinese lakes

Avian Research, 10, 27.

DOI:10.1186/s40657-019-0167-4      URL     [本文引用: 1]

Mi XC, Guo J, Hao ZQ, Xie ZQ, Guo K, Ma KP (2016)

Chinese forest biodiversity monitoring: Scientific foundations and strategic planning

Biodiversity Science, 24, 1203-1219. (in Chinese with English abstract)

DOI:10.17520/biods.2015313      [本文引用: 1]

The management and restoration of forest biodiversity is strongly dependent on information regarding biodiversity monitoring. The design of a monitoring network consists of monitoring objects and variables, an effective sampling strategy, data collection and analyses, network maintenance, and organization. Firstly, we reviewed the roles of these components in designing an effective monitoring network. We then introduced five large biodiversity networks, namely, GEO BON (Group on Earth Observations-Biodiversity Observation Network), ForestGEO (Forest Global Earth Observatory), TEAM (Tropical Ecology Assessment and Monitoring Network), Pan-European Forest Monitoring Network, and RAINFOR (Amazonian Forest Inventory Network). Finally, we reviewed the history of Chinese forest biodiversity monitoring, and put forward the aims, monitoring variables and methods, and sampling strategy for forests in the Chinese Biodiversity Monitoring Network. Chinese forest biodiversity monitoring was based on a national forest resource inventory and long-term research of forests ecosystem from 1970s to 1980s. Regulations and methods of biodiversity monitoring were defined during the establishment and operation of the Chinese Forest Biodiversity Monitoring Networks (Sino BON-CForBio). Sino BON-CForBio has important achievements in biodiversity monitoring and maintenance. The planning aims of Sino BON-CForBio include: (1) to study biodiversity maintenance mechanisms of typical zonal forests, (2) to monitor trends of forest biodiversity change and to explore mechanisms at the national scale, and (3) to study the effects of biodiversity change based on manipulation experiments. Results will provide scientific foundations for management and restoration of forest biodiversity. The framework and sampling strategy of Sino BON-CForBio are based on the regionalization of forest vegetation. The framework for Sino BON-CForBio includes four levels of forest biodiversity monitoring. We will integrate essential biodiversity variables and indicators of conventional forest surveys as monitoring variables for Sino BON-CForBio. Sino BON-CForBio aims to establish forest biodiversity monitoring networks at the national scale and will continue to explore mechanisms of biodiversity maintenance and the effects of biodiversity change. In addition, Sino BON-CForBio will monitor the effectiveness of biodiversity conservation and validate the mechanisms of biodiversity change for key ecological conservation projects.

[米湘成, 郭静, 郝占庆, 谢宗强, 郭柯, 马克平 (2016)

中国森林生物多样性监测: 科学基础与执行计划

生物多样性, 24, 1203-1219.]

DOI:10.17520/biods.2015313      [本文引用: 1]

中国森林生物多样性保护和恢复措施的制订依赖于生物多样性的监测信息。设计一个有效的生物多样性监测网络是一项复杂的系统工程。监测网络的设计框架可分为监测目标、监测对象、监测指标、取样策略、数据采集和处理、网络维护以及组织工作等几个部分。目前, 国际上已有5个得到广泛认可的生物多样性监测网络, 包括地球观测组织-生物多样性监测网络、全球森林监测网络、热带生态评估与监测网络、泛欧洲森林监测网络和亚马逊森林清查网络, 它们的监测目标、监测内容和方法、样地布局及部分监测成果各有特色。我们试图在全国生物多样性监测、森林资源清查和森林生态系统定位研究的基础上, 通过网络布局、建设和运行, 形成中国森林生物多样性监测网(Chinese Forest Biodiversity Monitoring Network, Sino BON-CForBio)及其监测规范体系。该网络的科学目标是, 在全国尺度上研究不同典型地带性森林的生物多样性维持机制、监测森林生物多样性变化并阐明其机理、研究生物多样性变化的效应。该网络布局以《中国植被区划》中的森林植被区划成果作为顶层设计和监测样地选择的核心依据, 设计了4个层级的监测系统; 其监测指标体系以生物多样性核心指标为主, 并结合我国传统森林群落调查方法进行拓展; 预期建成国家水平上的森林生物多样性监测网络, 阐明森林生物多样性维持机制和生物多样性变化的效应, 同时对重大生态保护工程的生物多样性保护效果进行有效性监测和验证型监测。

Mi XC, Feng G, Hu YB, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi SH, Svenning JC, Ma KP (2021)

The global significance of biodiversity science in China: An overview

National Science Review, 8, nwab032.

[本文引用: 1]

Miao BG, Peng YQ, Yang DR, Guénard B, Liu C (2022)

Diversity begets diversity: Low resource heterogeneity reduces the diversity of nut-nesting ants in rubber plantations

Insect Science, 29, 932-941.

DOI:10.1111/1744-7917.12964      URL     [本文引用: 1]

Navarro LM, Fernández N, Guerra C, Guralnick R, Kissling WD, Londoño MC, Muller-Karger F, Turak E, Balvanera P, Costello MJ, Delavaud A, El Serafy G, Ferrier S, Geijzendorffer I, Geller GN, Jetz W, Kim ES, Kim H, Pereira HM (2017)

Monitoring biodiversity change through effective global coordination

Current Opinion in Environmental Sustainability, 29, 158-169.

DOI:10.1016/j.cosust.2018.02.005      URL     [本文引用: 1]

Pan KW, Zhang L, Shao YH, Fu SL (2016)

Thematic monitoring network of soil fauna diversity in China: Exploring the mystery of soils

Biodiversity Science, 24, 1234-1239. (in Chinese with English abstract)

DOI:10.17520/biods.2016019      [本文引用: 1]

The important roles of soil fauna diversity and associated indicative functions of environment changes have received increasing attention from both academic circles and government decision makers. This paper summarizes the current situation of soil fauna monitoring in developed countries and related work in China. We introduce the objectives and structure of the thematic monitoring network of soil fauna diversity (TMNSFD), and highlighted some aspects that need attention. The TMNSFD proposed to establish permanent monitoring plots within forest plots established by Chinese Forest Biodiversity Monitoring Network for monitoring soil fauna including earthworms, mites, springtails, nematodes and protists. During the years 2016-2020, TMNSFD may choose typical forest ecosystems as priority ecosystems for soil fauna monitoring, which cover temperate forest ecosystems (including broadleaved Korean pine mixed forests in Changbaishan, Jilin Province and warm temperate deciduous broadleaved forests in Donglingshan, Beijing), subtropical forest ecosystems (including typical subtropical evergreen broadleaved forests in Gutianshan, Zhejiang Province, lower subtropical evergreen broadleaved forests in Dinghushan, Guangdong Province, and north subtropical evergreen broad-leaved forests in Dujiangyan, Sichuan Province), tropical forest ecosystems (tropical rainforests in Xishuangbanna, Yunnan Province and Jianfengling, Hainan Province), as well as mountainous dark coniferous forests in Liziping, Sichuan Province. By 2030, TMNSFD soil fauna monitoring plots may cover various ecosystems including forests, grasslands, wetlands, deserts, farmland, urban areas and other typical ecosystems in different regions of China. TMNSFD emphasizes the value of applied molecular biology technology, unified monitoring methods, and manipulation experiments to simulate the effects of global change on soil fauna during the processes of monitoring. We propose monitoring soil fauna diversity once every 5 years in established monitoring plots. The objective of TMNSFD is to provide reliable and integrated data of soil fauna diversity via the establishment of standard monitoring methods and a data-sharing network at the national level, which could support the development of ecological civilization in China.

[潘开文, 张林, 邵元虎, 傅声雷 (2016)

中国土壤动物多样性监测: 探知土壤中的奥秘

生物多样性, 24, 1234-1239.]

DOI:10.17520/biods.2016019      [本文引用: 1]

土壤动物多样性变化及其对环境的指示作用已被学术界和政府决策部门高度关注。本文从土壤动物多样性监测的重要性及面临的挑战、国内外土壤动物多样性监测概况等方面进行了评述, 提出了未来、尤其是2016-2020年我国土壤动物多样性监测的目标、站点布局、样地设置、监测类群和指标等, 并讨论了在制定土壤动物多样性监测方案时需考虑的问题, 有助于在全国开展多点化土壤动物多样性及分布状况的监测工作, 建立标准统一、数据共享的土壤动物监测网, 提供完整的、可信的监测数据, 为国家生态文明建设提供科技支撑。

Pereira H, Junker J, Fernández N, Maes J, Beja P, Bonn A, Breeze T, Brotóns L, Bruelheide H, Buchhorn M, Capinha C, Chow CFY, Dietrich K, Dornelas M, Dubois G, Fernandez M, Frenzel M, Friberg N, Fritz S, Georgieva I, Gobin A, Guerra C, Haande S, Herrando S, Jandt U, Kissling WD, Kühn I, Langer C, Liquete C, Solheim AL, Martí D, Martin JGC, Masur A, McCallum I, Mjelde M, Moe J, Moersberger H, Morán-Ordóñez A, Moreira F, Musche M, Navarro L, Orgiazzi A, Patchett R, Penev L, Pino J, Popova G, Potts S, Ramon A, Sandin L, Santana J, Sapundzhieva A, See L, Shamoun‐Baranes J, Smets B, Stoev P, Tedersoo L, Tiimann L, Valdez J, Vallecillo S, van Grunsven RV, Van De Kerchove R, Villero D, Visconti P, Weinhold C, Zuleger A

Europa Biodiversity Observation Network: Integrating data streams to support policy

doi: 10.3897/arphapreprints.e81207.

[本文引用: 1]

Rochette AJ, Akpona JDT, Akpona HA, Akouehou GS, Kwezi BM, Djagoun CAMS, Habonimana B, Idohou R, Legba IS, Nzigidahera B, Matilo AO, Taleb MS, Bamoninga BT, Ivory S, de Bisthoven LJ, Vanhove MPM (2019)

Developing policy-relevant biodiversity indicators: Lessons learnt from case studies in Africa

Environmental Research Letters, 14, 035002.

DOI:10.1088/1748-9326/aaf495      URL     [本文引用: 1]

Rovero F, Ahumada J (2017)

The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests

Science of the Total Environment, 574, 914-923.

DOI:10.1016/j.scitotenv.2016.09.146      URL     [本文引用: 1]

Scholes RJ, Mace GM, Turner W, Geller GN, Jurgens N, Larigauderie A, Muchoney D, Walther BA, Mooney HA (2008)

Toward a global biodiversity observing system

Science, 321, 1044-1045.

DOI:10.1126/science.1162055      PMID:18719268      [本文引用: 1]

Scholes RJ, Walters M, Turak E, Saarenmaa H, Heip CH, Tuama ÉÓ, Faith DP, Mooney HA, Ferrier S, Jongman RH, Harrison IJ, Yahara T, Pereira HM, Larigauderie A, Geller G (2012)

Building a global observing system for biodiversity

Current Opinion in Environmental Sustainability, 4, 139-146.

DOI:10.1016/j.cosust.2011.12.005      URL     [本文引用: 1]

Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013)

Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain

Soil Biology and Biochemistry, 57, 204-211.

DOI:10.1016/j.soilbio.2012.07.013      URL     [本文引用: 1]

Shen CC, Liang WJ, Shi Y, Lin XG, Zhang HY, Wu X, Xie G, Chain P, Grogan P, Chu HY (2014)

Contrasting elevational diversity patterns between eukaryotic soil microbes and plants

Ecology, 95, 3190-3202.

DOI:10.1890/14-0310.1      URL     [本文引用: 1]

Shen H, Cai JN, Li MJ, Chen Q, Ye WH, Wang ZF, Lian JY, Song L (2017)

On Chinese forest canopy biodiversity monitoring

Biodiversity Science, 25, 229-236. (in Chinese with English abstract)

DOI:10.17520/biods.2016294      [本文引用: 1]

As the most direct and active ecological interface of the interaction between forest and its environment, the forest canopy, known as the earth’s “eighth continent”, contains the greatest forest biological diversity, and plays an important role in the formation and maintenance of biodiversity as well as the processes and functions of the ecosystem. However, the forest canopy is highly sensitive to global climate change and human disturbance. In the wake of increasing human activities and global climate change, the forest ecosystem, especially the forest canopy, is facing a serious threat. Therefore, protection of forest canopy biodiversity and sustainable utilization are increasingly important issues in modern ecology research under the scenarios of climate change, and have gained more and more attention in the fields of forest ecology, climatology, and environmental science. Accordingly, in 2015, the Chinese Forest Canopy Biodiversity Monitoring Network was created within the framework of Sino BON. This network includes biodiversity monitoring plots those were or will be equipped with forest canopy cranes. According to international standards, the network will unify monitoring parameters of forest canopy biodiversity using monitoring standards and norms, and conduct long-term monitoring of plant diversity (including epiphytic seed plants and epispore plants), fauna diversity, microbial diversity and their dynamic changes, through large scale zonal forest canopies. Combined with monitoring of the microclimate, we will build four dynamic databases (including a forest canopy microclimate database, canopy plant, canopy arthropod, and canopy microbial). The network is expected to discern the change patterns of forest canopy biodiversity of typical forest ecosystems in China, and to reveal how they influence the functioning of forest ecosystems and respond to global change.

[沈浩, 蔡佳宁, 李萌姣, 陈青, 叶万辉, 王峥峰, 练琚愉, 宋亮 (2017)

中国森林冠层生物多样性监测

生物多样性, 25, 229-236.]

DOI:10.17520/biods.2016294      [本文引用: 1]

林冠作为森林与外界环境相互作用最直接和最活跃的关键生态界面, 承载了森林生物多样性的主体, 在生物多样性的形成与维持以及生态系统功能过程中发挥着重要的作用, 被称为地球的&#x0201c;第八大洲&#x0201d;。同时, 林冠对气候变化和人为干扰高度敏感, 在人类活动和全球气候变化加剧的背景下, 森林生态系统正面临着严重的威胁, 首当其冲的就是森林冠层。气候变化下的林冠生物多样性保护与可持续利用已成为现代生态学研究的热点问题, 受到森林生态学、气候学、环境科学等研究领域的学者越来越多的关注。据此, 中国生物多样性监测与研究网络以网络内拥有森林冠层塔吊的生物多样性监测样地为平台, 建立了林冠生物多样性监测专项网。该专项网将参照国际标准, 统一监测指标, 规范监测标准, 通过大尺度地带性森林冠层内植物(包括附生种子植物和附生孢子植物)多样性、动物多样性、微生物多样性及其动态变化的长期监测, 结合林冠小气候环境特征监测, 建立林冠小环境特征、植物多样性、节肢动物多样性和微生物多样性等4个动态更新的数据库, 以阐明我国典型森林林冠生物多样性变化的规律, 揭示其对森林生态系统功能过程的影响和对全球变化的响应。

Shi SC, Hou YM, Song ZB, Jiang JP, Wang B (2021)

A new leaf litter toad of Leptobrachella Smith 1925 (Anura Megophryidae) from Sichuan Province, China with supplementary description of L. oshanensis

Asian Herpetological Research, 12, 143-166.

[本文引用: 1]

Shu GC, Liu P, Zhao T, Li C, Hou YM, Zhao CL, Wang J, Shu XX, Chang J, Jiang JP, Xie F (2021)

Disordered translocation is hastening local extinction of the Chinese giant salamander

Asian Herpetological Research, 12, 271-279.

[本文引用: 1]

Wang BJ, Fang S, Wang YY, Guo QH, Hu TY, Mi XC, Lin LX, Jin GZ, Coomes DA, Yuan ZQ, Ye J, Wang XG, Lin F, Hao ZQ (2022)

The shift from energy to water limitation in local canopy height from temperate to tropical forests in China

Forests, 13, 639.

DOI:10.3390/f13050639      URL     [本文引用: 1]

Wang MQ, Anttonen P, Bruelheide H, Chen JT, Chesters D, Durka W, Guo PF, Härdtle W, Li Y, Ma KP, Michalski SG, Schmid B, Schuldt A, von Oheimb G, Wu CS, Zhang NL, Zhou QS, Zhu CD (2019)

Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment

Journal of Ecology, 107, 2697-2712.

DOI:10.1111/1365-2745.13273      URL     [本文引用: 1]

Wang MQ, Li Y, Chesters D, Bruelheide H, Ma KP, Guo PF, Zhou QS, Staab M, Zhu CD, Schuldt A (2020)

Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks

Molecular Ecology, 29, 2747-2762.

DOI:10.1111/mec.15518      URL     [本文引用: 1]

Wang MQ, Yan C, Luo AR, Li Y, Chesters D, Qiao HJ, Chen JT, Zhou QS, Ma KP, Bruelheide H, Schuldt A, Zhang ZB, Zhu CD (2022)

Phylogenetic relatedness functional traits and spatial scale determine herbivore co-occurrence in a subtropical forest

Ecological Monographs, 92, e01492.

[本文引用: 1]

Wang X, Cao L, Bysykatova I, Xu ZG, Rozenfeld S, Jeong W, Vangeluwe D, Zhao YL, Xie TH, Yi KP, Fox AD (2018)

The Far East taiga forest: Unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds?

PeerJ, 6, e4353.

DOI:10.7717/peerj.4353      URL     [本文引用: 1]

Wang X, Cao L, Fox AD, Fuller R, Griffin L, Mitchell C, Zhao YL, Moon OK, Cabot D, Xu ZG, Batbayar N, Kölzsch A, van der Jeugd HP, Madsen J, Chen LD, Nathan R (2019)

Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl

Nature Communications, 10, 2187.

DOI:10.1038/s41467-019-09971-8      PMID:31097711      [本文引用: 1]

Tracking seasonally changing resources is regarded as a widespread proximate mechanism underpinning animal migration. Migrating herbivores, for example, are hypothesized to track seasonal foliage dynamics over large spatial scales. Previous investigations of this green wave hypothesis involved few species and limited geographical extent, and used conventional correlation that cannot disentangle alternative correlated effects. Here, we introduce stochastic simulations to test this hypothesis using 222 individual spring migration episodes of 14 populations of ten species of geese, swans and dabbling ducks throughout Europe, East Asia, and North America. We find that the green wave cannot be considered a ubiquitous driver of herbivorous waterfowl spring migration, as it explains observed migration patterns of only a few grazing populations in specific regions. We suggest that ecological barriers and particularly human disturbance likely constrain the capacity of herbivorous waterfowl to track the green wave in some regions, highlighting key challenges in conserving migratory birds.

Takeuchi Y, Muraoka H, Yamakita T, Kano Y, Nagai S, Bunthang T, Costello MJ, Darnaedi D, Diway B, Ganyai T, Grudpan C, Hughes A, Ishii R, Lim PT, Ma KP, Muslim AM, Nakano SI, Nakaoka M, Nakashizuka T, Onuma M, Park CH, Pungga RS, Saito Y, Shakya MM, Sulaiman MK, Sumi MY, Thach P, Trisurat Y, Xu XH, Yamano H, Yao TL, Kim ES, Vergara S, Yahara T (2021)

The Asia-Pacific Biodiversity Observation Network: 10-year achievements and new strategies to 2030

Ecological Research, 36, 232-257.

DOI:10.1111/1440-1703.12212      URL     [本文引用: 1]

Turner W (2014)

Sensing biodiversity

Science, 346, 301-302.

DOI:10.1126/science.1256014      PMID:25324372     

Xi JR, Deng XQ, Zhao G, Batbayar N, Damba I, Zhao QS, Cui SB, Jiang C, Chen YW, Yu YT, Cao L, Fox AD (2021)

Migration routes behavior and protection status of Eurasian Spoonbills (Platalea leucorodia) wintering in China

Avian Research, 12, 70.

DOI:10.1186/s40657-021-00302-4      URL     [本文引用: 1]

Xiao ZS, Li XY, Xiang ZF, Li M, Jiang XL, Zhang LB (2017)

Overview of the Mammal Diversity Observation Network of Sino BON

Biodiversity Science, 25, 237-245. (in Chinese with English abstract)

DOI:10.17520/biods.2016159      [本文引用: 2]

Mammals are key indicators for biodiversity conservation and management due to their high diversity, wide distribution range, and sensitivity to habitat changes. Recently launched by the Chinese Academy of Sciences, the Mammal Diversity Monitoring Network of Sino BON (Sino BON-Mammal) is a key member of the Biodiversity Monitoring Networks of Sino BON for the monitoring and inventory of terrestrial mammal resources in China. Firstly, this paper reviews several major advances in terrestrial mammal diversity observations in both China and other parts of the world. We then provide an overview of Sino BON-Mammal, including the major scientific goals, monitoring framework, methods, and data products. In addition, we also summarize some working advances of the Mammal Diversity Observation Network of Sino BON since 2011. This overview will be helpful for the development of national observation programs of mammal diversity in China.

[肖治术, 李学友, 向左甫, 李明, 蒋学龙, 张礼标 (2017)

中国兽类多样性监测网的建设规划与进展

生物多样性, 25, 237-245.]

DOI:10.17520/biods.2016159      [本文引用: 2]

兽类类群和物种多样, 分布范围广, 适应于多种生境类型, 对栖息地变化特别敏感, 是生物多样性保护管理与评价的关键指示类群。中国兽类多样性监测网是由中国科学院近年来推动建立的中国生物多样性监测与研究网络的专项网之一, 重点对分布于我国境内的陆生兽类物种多样性及资源进行监测与研究。针对当前我国兽类监测研究面临的三大根本任务(兽类物种有什么? 在哪里? 有多少?), 当务之急是应尽快建立和完善我国兽类各类群的监测技术规范, 制定常态监测计划, 全面建设全国性的兽类多样性监测网络技术体系和监测数据公共信息平台。本文在总结国内外兽类监测研究的基础上, 提出了我国陆生兽类多样性监测网的建设规划, 重点介绍该监测网的科学目标、布局、监测技术和监测数据产品等。本文也总结了近年来我国陆生兽类多样性监测网建设所取得的重要进展及存在的问题, 为全面推动我国兽类多样性联网监测明确发展方向。

Yahara T, Ma KP, Darnaedi D, Miyashita T, Takenaka A, Tachida H, Nakashizuka T, Kim ES, Takamura N, Nakano SI, Shirayama Y, Yamamoto H, Vergara SG (2014)

Developing a regional network of biodiversity observation in the Asia-Pacific region: Achievements and challenges of AP BON

Integrative Observations and Assessments, pp. 3-28. Springer, Tokyo.

[本文引用: 1]

Yan F, JC, Zhang BL, Yuan ZY, Zhao HP, Huang S, Gang W, Mi X, Zou DH, Xu W, Chen S, Wang J, Xie F, Wu MY, Xiao HB, Liang ZQ, Jin JQ, Wu SF, Xu CS, Tapley B, Turvey ST, Papenfuss TJ, Cunningham AA, Murphy RW, Zhang YP, Che J (2018)

The Chinese giant salamander exemplifies the hidden extinction of cryptic species

Current Biology, 28, R1-R3.

DOI:10.1016/j.cub.2017.12.028      URL     [本文引用: 1]

Yang XF, Yan C, Zhao QJ, Holyoak M, Fortuna MA, Bascompted J, Jansene PA, Zhang ZB (2018)

Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests

Forest Ecology and Management, 419, 42-50.

[本文引用: 1]

Yi L, Dong YK, Miao BG, Peng YQ (2021)

Diversity of butterfly communities in Gaoligong region of Yunnan

Biodiversity Science, 29, 950-959. (in Chinese with English abstract)

DOI:10.17520/biods.2020486      [本文引用: 1]

<p id="C3"><strong>Aims:</strong> Gaoligong is located in northwest Yunnan, a mountainous biodiversity hotspot in Southwest China. In this region, insect diversity has not been systematically investigated or summarized. <br> <strong>Methods:</strong> We focused on investigating butterfly diversity using a 1-km transect method at different altitudes, habitats and seasons in Gaoligong region. <br> <strong>Results:</strong> A total of 2,055 butterflies were recorded, belonging to 5 families, 85 genera, and 151 species. Of these, 27 species were recorded for the first time, increasing the total number of recorded butterfly species in Gaoligong to 488 species. Among the five families, the Nymphalidae had the highest species diversity, followed by Lycaenidae, while Hesperiidae had the lowest. The species diversity of butterflies showed the greatest abundance and highest richness at the 1,000-2,000 m altitude. At low elevations species were concentrated, and there was little overlap of species with those at higher elevations. The species and individuals of butterflies in different habitats were also different, the diversity was higher in the nature reserve, followed by the ecotone, and was lowest in the farm area. Additionally, diversity and abundance varied seasonally, with the lowest abundance observed in spring and the lowest diversity in summer, both diversity and abundance were the highest in autumns of two years, but exhibited intra-seasonal variation. Overall, the community composition of butterflies had distinct characteristics at different altitudes, habitats and seasons, only a few species were shared between communities and the community similarity of butterflies was found to be low. The butterflies were comprehensively evaluated in Gaoligong region, including 17 vulnerable species, 50 near-threatened species, and 3 species that were listed as second class protection animals in China. <br> <strong>Conclusion:</strong> This study systematically identified the species of butterflies in Gaoligong region, and obtained the diversity pattern of butterfly communities within different altitudes, habitats and seasons. The results will provide the scientific basis for strengthening regional species monitoring and biodiversity conservation.</p>

[易浪, 董亚坤, 苗白鸽, 彭艳琼 (2021)

云南高黎贡山地区蝴蝶群落多样性

生物多样性, 29, 950-959.]

DOI:10.17520/biods.2020486      [本文引用: 1]

位于滇西北的高黎贡山是全球生物多样性研究和保护的热点地区之一, 然而该地区昆虫多样性缺乏系统调查和总结。本研究聚焦蝴蝶类群, 考虑该区域高山峡谷特点, 结合海拔梯度、生境类型和季节变化, 采用样线法调查、分析蝴蝶物种多样性及群落结构变化。结果显示: 共观测记录到蝴蝶2,055只, 隶属于5科85属151种, 在历史记录上新增27种, 使该地区已知蝴蝶种类达488种; 其中蛱蝶科物种多样性最高, 灰蝶科次之, 凤蝶科最低。蝴蝶群落多样性分析结果表明: 中海拔1,000-2,000 m区域种类丰富、多样性指数最高; 低海拔区蝴蝶分布明显聚集, 并且与高海拔地区空间上分离, 少有重叠。该地区不同生境中蝴蝶的种类及数量差异也较大, 物种数及多样性指数在自然保护区最高、边缘交错带居中及农业种植区最低。此外, 蝴蝶的种类和数量也存在季节差异, 春季调查到的个体数少, 夏季观察到的物种数少, 两年秋季调查到的物种丰富度、多样性均高, 但存在季节内变化。总之, 高黎贡山地区不同海拔、生境、季节间和季节内蝴蝶群落组成有自身特点, 共存物种有限, 蝴蝶群落相似性低。综合评估分布于该地区的蝴蝶保护种类, 包括易危种17种、近危种50种, 有国家二级保护蝴蝶3种。本研究弄清了高黎贡山地区蝴蝶的物种本底, 并调查获得其多样性随海拔、生境和季节变化的模式, 为加强区域物种多样性监测、保护生物多样性提供了科学依据。

Yi XX, Wang NN, Ren HB, Yu JP, Hu TY, Su YJ, Mi XC, Guo QH, Ma KP (2022)

From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession

Journal of Ecology, 110, 457-465.

DOI:10.1111/1365-2745.13813      URL     [本文引用: 1]

Yu H, Wang X, Cao L, Zhang L, Jia Q, Lee H, Xu ZG, Liu GH, Xu WB, Hu BH, Fox AD (2017)

Are declining populations of wild geese in China ‘prisoners’ of their natural habitats?

Current Biology, 27, R376-R377.

DOI:10.1016/j.cub.2017.04.037      URL     [本文引用: 1]

Zhang MH, Shi SC, Li C, Yan P, Wang P, Ding L, Du J, Plenković-Moraj A, Jiang JP, Shi JS (2022)

Exploring cryptic biodiversity in a world heritage site: A new pitviper (Squamata Viperidae Crotalinae) from Jiuzhaigou, Aba, Sichuan, China

ZooKeys, 1114, 59-76.

DOI:10.3897/zookeys.1114.79709      URL     [本文引用: 1]

Zheng Y, Chen L, Ji NN, Wang YL, Gao C, Jin SS, Hu HW, Huang Z, He JZ, Guo LD, Powell JR (2021)

Assembly processes lead to divergent soil fungal communities within and among 12 forest ecosystems along a latitudinal gradient

New Phytologist, 231, 1183-1194.

DOI:10.1111/nph.17457      PMID:33982802      [本文引用: 1]

Latitudinal gradients provide opportunities to better understand soil fungal community assembly and its relationship with vegetation, climate, soil and ecosystem function. Understanding the mechanisms underlying community assembly is essential for predicting compositional responses to changing environments. We quantified the relative importance of stochastic and deterministic processes in structuring soil fungal communities using patterns of community dissimilarity observed within and between twelve natural forests and related these to environmental variation within and among sites. The results revealed that whole fungal communities and communities of arbuscular and ectomycorrhizal fungi consistently exhibited divergent patterns but with less divergence for ectomycorrhizal fungi at most sites. Within those forests, no clear relationships were observed between the degree of divergence within fungal and plant communities. When comparing communities at larger spatial scales, among the twelve forests, we observed distinct separation in all three fungal groups among tropical, subtropical and temperate climatic zones. Soil fungal β-diversity patterns between forests were also greater when comparing forests exhibiting high environmental heterogeneity. Taken together, although large-scale community turnover could be attributed to specific environmental drivers, the differences among fungal communities in soils within forests was high even at local scales.This article is protected by copyright. All rights reserved.

/