Please wait a minute...
IMAGE/TABLE DETAILS
Leaf functional traits of Acer mono in Wudalianchi Volcano, China
Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei
Biodiv Sci    2019, 27 (3): 286-296.   DOI: 10.17520/biods.2018300
Abstract   (1422 HTML31 PDF(pc) (1601KB)(659)  

Functional traits reflecting responses and adaptations of plants to their environment can be used as a bridge between plants and the changes occurring in their environment. The analysis of the relationship between plant functional traits and environmental gradients present on hill slopes can improve our understanding of adaptation mechanisms of plant communities under different microtopographic habitats. In this paper, nine leaf functional traits of Acer mono individuals were studied on eight volcanoes in different historical years in Wudalianchi, China. The main leaf functional traits of volcanic plants on shady and sunny slopes were determined. A change in survival strategy and adaptation mechanisms of shady and sunny slope plants was found. The results were as follows: (1) The change of slope direction is an important reason for the difference of leaf functional characteristics of Acer mono. (2) The difference of leaf functional characteristics in volcanoes reflects their different resource environments. At the same time, the growth of Acer mono is mainly limited by nitrogen. (3) Leaf thickness had a significant positive correlation with leaf area between the north-south slopes and between volcanoes. There was a significant positive correlation between leaf thickness and specific leaf area between volcanoes, which is related to the self-protection of Acer mono under volcanic soil conditions. These results suggest that Acer mono can respond to its environment and adapt to express the best combination of functional traits. Acer mono individuals from volcanoes of different ages have increased carbon sequestration capacity, leaf dry matter content, leaf area, leaf thickness, nitrogen and phosphorus content, while also having reduced specific leaf area and nitrogen to phosphorus ratio as an adaptation to abundant light, low water content and poor soil nutrients.


叶干物质浓度 Leaf dry matter content 叶面积
Leaf size
比叶面积
Specific leaf area
叶片厚度
Leaf thickness
叶碳浓度
Leaf carbon content
叶钾浓度
Leaf kalium content
叶氮浓度
Leaf nitrogen content
叶磷浓度
Leaf phosphorus content
叶氮磷比
Ratio of nitrogen and phosphorus
东焦得布山 Dongjiaodebushan (DJDBS) 0.06 0.25 0.10 0.40 0.01 0.03 0.06 0.15 0.10
小孤山 Xiaogushan (XGS) 0.03 0.06 0.09 0.11 0.01 0.13 0.13 0.02 0.12
笔架山 Bijiashan (BJS) 0.04 0.03 0.16 0.05 0.02 0.05 0.07 0.08 0.00
西焦得布山 Xijiaodebushan (XJDBS) 0.12 0.01 0.05 0.01 0.02 0.22 0.09 0.02 0.07
尾山 Weishan (WS) 0.04 0.10 0.01 0.14 0.03 0.20 0.07 0.09 0.16
卧虎山 Wohushan (WHS) 0.03 0.05 0.15 0.07 0.06 0.21 0.05 0.02 0.08
北格拉球山 Beigelaqiushan (BGLQS) 0.00 0.10 0.07 0.18 0.01 0.11 0.06 0.01 0.12
南格拉球山 Nangelaqiushan (NGLQS) 0.08 0.09 0.12 0.15 0.02 0.01 0.07 0.08 0.15
南坡 South slope 0.08 0.10 0.12 0.15 0.03 0.27 0.12 0.07 0.15
北坡 North slope 0.05 0.10 0.11 0.16 0.03 0.18 0.11 0.12 0.18
南北坡向间 South /North 0.06 0.08 0.08 0.12 0.02 0.14 0.08 0.06 0.10
火山间 Between volcanoes 0.05 0.08 0.09 0.12 0.02 0.20 0.10 0.09 0.15
Table 1 Variation coefficient of leaf functional traits of Acer mono on eight volcanoes and its north-south slope in Wudalianchi
Extracts from the Article

植物功能性状反映了植物对生长环境的响应和适应, 是连接植物与环境的桥梁, 研究植物功能性状特征及其随坡向的变化规律, 对认识不同微地形生境下植物群落空间格局形成及适应机制具有重要意义。本文以五大连池不同历史年代的8座火山共有树种色木槭(Acer mono)为研究对象, 测定了9类叶功能性状, 研究了植物叶功能性状在火山间及火山坡向间(阴坡-阳坡)的变化规律, 以期揭示生境对火山植物主要叶功能性状的影响, 以及阴阳坡植物生存策略的变化, 初步探讨了植物对环境的适应机制。结果表明: (1)坡向的变化是造成色木槭叶功能性状差异的重要原因; (2)火山间叶功能性状的差异反映了它们具有不同的资源环境, 色木槭生长主要受氮元素的限制; (3)南北坡向及火山间叶片厚度与叶面积均呈极显著的正相关关系, 叶片厚度与比叶面积在不同火山间均呈显著的正相关关系, 这与色木槭在火山土壤条件下的自我保护密切相关, 色木槭通过这些指标间的功能调节来适应环境的变化, 并形成最佳功能组合。五大连池不同历史年代火山的色木槭采用增加植物叶片叶干物质浓度、叶面积、叶片厚度、叶氮和叶磷浓度提高固碳能力, 通过降低比叶面积和氮磷比来适应干旱、土壤养分贫瘠的环境。

将叶片浸入水中置于5℃的黑暗环境中12 h, 取出后迅速用滤纸吸干叶片表面的水分, 在1/10000的电子天平上称饱和鲜重(leaf fresh weight, FW)。然后将叶片平铺在扫描仪(LA-S, 杭州万深)上扫描得到叶面积; 选取测量完叶面积后的10片叶子用电子数显卡尺(精度为 0.01 mm)分别测量叶片前、中、末端(避开叶片主脉)厚度, 取三者的平均值作为所测叶片的厚度值。最后将叶片放于80℃烘箱内烘干24 h后取出称干重(leaf dry weight, DW), LDMC = DW/FW, SLA = LS/DW。叶碳浓度和叶氮浓度的测定采用元素分析仪(EA3000, 意大利欧维特); 叶磷浓度的测定采用钼锑抗比色法、叶钾浓度的测定采用火焰光度法(鲍士旦, 2010); N/P = LNC/LPC。
南坡叶功能性状的变异系数为0.03-0.27, 北坡叶功能性状的变异系数为0.03-0.18, 南北坡向间叶功能性状的变异系数为0.02-0.14 (表1)。南北坡向间植物叶功能性状没有显著差异(表2)。除南坡间叶钾浓度变异系数为0.27外, 南坡、北坡及南北坡向间植物叶功能性状变异系数都小于0.20。
山体间叶功能性状的变异系数为0.02-0.20 (表1)。总体上, 卧虎山的叶面积、比叶面积、叶厚度最大, 尾山的叶干物质浓度最大, 笔架山的叶碳浓度、叶钾浓度、叶氮浓度和叶氮磷比最大, 北格拉球山的叶磷浓度最大; 南格拉球山的叶面积、比叶面积、叶片厚度、叶碳浓度、叶磷浓度和叶氮磷比最小, 卧虎山的叶干物质浓度最小, 东焦得布山的叶钾浓度最小, 北格拉球山的叶氮磷比最小(图2), 山体的叶功能性状的变异性都小(变异系数≤ 0.2) (表1)。
由表6可知, 南北坡向色木槭叶功能性状各指标的公因子方差均较大, 最小的公因子方差是叶碳浓度(南坡0.588、北坡0.524)。主成分分析表明, 叶干物质浓度、叶面积、比叶面积和叶片厚度在南北坡均与第1主成分呈显著相关, 为叶功能性状的主要指标。
由表7可知, 8座火山间色木槭叶功能性状各指标的公因子方差均较大, 主成分分析表明, 叶面积、比叶面积、叶片厚度和叶磷浓度与第1主成分呈显著正相关, 为叶功能性状的主要指标。
Other Images/Table from this Article