Please wait a minute...
IMAGE/TABLE DETAILS
Leaf functional traits of Acer mono in Wudalianchi Volcano, China
Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei
Biodiv Sci    2019, 27 (3): 286-296.   DOI: 10.17520/biods.2018300
Abstract   (1421 HTML31 PDF(pc) (1601KB)(659)  

Functional traits reflecting responses and adaptations of plants to their environment can be used as a bridge between plants and the changes occurring in their environment. The analysis of the relationship between plant functional traits and environmental gradients present on hill slopes can improve our understanding of adaptation mechanisms of plant communities under different microtopographic habitats. In this paper, nine leaf functional traits of Acer mono individuals were studied on eight volcanoes in different historical years in Wudalianchi, China. The main leaf functional traits of volcanic plants on shady and sunny slopes were determined. A change in survival strategy and adaptation mechanisms of shady and sunny slope plants was found. The results were as follows: (1) The change of slope direction is an important reason for the difference of leaf functional characteristics of Acer mono. (2) The difference of leaf functional characteristics in volcanoes reflects their different resource environments. At the same time, the growth of Acer mono is mainly limited by nitrogen. (3) Leaf thickness had a significant positive correlation with leaf area between the north-south slopes and between volcanoes. There was a significant positive correlation between leaf thickness and specific leaf area between volcanoes, which is related to the self-protection of Acer mono under volcanic soil conditions. These results suggest that Acer mono can respond to its environment and adapt to express the best combination of functional traits. Acer mono individuals from volcanoes of different ages have increased carbon sequestration capacity, leaf dry matter content, leaf area, leaf thickness, nitrogen and phosphorus content, while also having reduced specific leaf area and nitrogen to phosphorus ratio as an adaptation to abundant light, low water content and poor soil nutrients.


Fig. 2 Leaf functional traits of Acer mono on eight volcanoes in Wudalianchi. The different capital letter shows that there is significant difference in leaf functional traits between volcanoes, the different small letter shows that there is significant difference in leaf functional traits between north and south slopes. DJDBS, XGS, BJS, XJDBS, WS, WHS, BGLQS and NGLQS are the same as in Fig. 1.
Extracts from the Article
总体上, 叶干物质浓度、叶面积、叶片厚度南坡大于北坡(图2), 叶碳浓度、叶钾浓度、叶氮浓度和叶磷浓度的最大值都出现在山体的南坡, 叶氮磷比的最大值出现在山体的北坡(图2)。叶干物质浓度只有东焦得布山和小孤山是南坡小于北坡, 其他都是南坡大于北坡; 西焦得布山为南坡最大(337.69 ± 7.77 mg/g), 卧虎山为北坡最小(266.55 ± 16.14 mg/g)。叶面积只有南格拉球山是南坡小于北坡, 卧虎山为南坡最大(4,859.69 ± 596.45 mm2), 东焦得布山为北坡最小(3,143.20 ± 650.34 mm2)。比叶面积在笔架山、西焦得布山、卧虎山和南格拉球山是南坡小于北坡; 卧虎山的北坡最大(24.93 ± 2.18 mm2/mg), 南格拉球山的南坡最小(16.08 ± 2.76 mm2/mg)。叶片厚度只有南格拉球山是南坡小于北坡; 卧虎山南坡最大(0.126 ± 0.022 mm), 东焦得布山北坡最小(0.063 ± 0.024 mm)。叶碳浓度在东焦得布山、西焦得布山、尾山和南格拉球山是南坡小于北坡; 笔架山南坡最大(509.54 ± 5.38 mg/g), 卧虎山北坡最小(462.72 ± 21.40 mg/g)。叶钾浓度在东焦得布山、笔架山、西焦得布山、尾山和卧虎山是南坡小于北坡; 小孤山南坡最大(13.66 ± 2.82 mg/g), 卧虎山南坡最小(7.13 ± 2.98 mg/g)。叶氮浓度在西焦得布山、尾山、卧虎山和南格拉球山是南坡小于北坡; 笔架山南坡最大(23.66 ± 1.68 mg/g), 尾山南坡最小(15.34 ± 2.21 mg/g)。叶磷浓度在小孤山、西焦得布山、卧虎山是南坡小于北坡; 北格拉球山南坡最大(8.91 ± 1.13 mg/g), 南格拉球山北坡最小(6.29 ± 0.44 mg/g)。叶氮磷比在东焦得布山、西焦得布山、尾山、卧虎山、南格拉球山是南坡小于北坡; 南格拉球山北坡最大(3.43 ± 0.49), 北格拉球山北坡最小(1.98 ± 0.42)。
由图2可知, 叶干物质浓度在尾山最大(320.51 ± 13.76 mg/g), 卧虎山最小(272.53 ± 8.45 mg/g)。 叶面积在卧虎山最大(4,700.31 ± 225.39 mm2), 南格拉球山最小(3,714.48 ± 339.00 mm2)。比叶面积在卧虎山最大(22.61 ± 3.28 mm2/mg), 南格拉球山最小(17.51 ± 2.03 mm2/mg)。叶片厚度在卧虎山最大(0.120 ± 0.008 mm), 南格拉球山最小(0.084 ± 0.012 mm)。叶碳浓度在笔架山最大(502.20 ± 10.39 mg/g) , 南格拉球山最小(477.43 ± 10.63 mg/g)。叶钾浓度在笔架山最大(12.85 ± 0.58 mg/g), 东焦得布山最小(7.42 ± 0.22 mg/g)。叶氮浓度在笔架山最大(22.57 ± 1.54 mg/g), 尾山最小(16.18 ± 1.19 mg/g)。叶磷浓度在北格拉球山最大(8.87 ± 0.06 mg/g), 南格拉球山最小(6.69 ± 0.57 mg/g)。叶氮磷比在笔架山最大(3.26 ± 0.02), 北格拉球山最小(2.17 ± 0.26)。
山体间叶功能性状的变异系数为0.02-0.20 (表1)。总体上, 卧虎山的叶面积、比叶面积、叶厚度最大, 尾山的叶干物质浓度最大, 笔架山的叶碳浓度、叶钾浓度、叶氮浓度和叶氮磷比最大, 北格拉球山的叶磷浓度最大; 南格拉球山的叶面积、比叶面积、叶片厚度、叶碳浓度、叶磷浓度和叶氮磷比最小, 卧虎山的叶干物质浓度最小, 东焦得布山的叶钾浓度最小, 北格拉球山的叶氮磷比最小(图2), 山体的叶功能性状的变异性都小(变异系数≤ 0.2) (表1)。
Other Images/Table from this Article