Biodiv Sci ›› 2022, Vol. 30 ›› Issue (5): 22100. DOI: 10.17520/biods.2022100
Special Issue: 青藏高原生物多样性与生态安全
• Original Papers: Plant Diversity • Previous Articles Next Articles
Xiang Liu, Peng Zhang, Jianquan Liu()
Received:
2022-03-04
Accepted:
2022-04-09
Online:
2022-05-20
Published:
2022-04-12
Contact:
Jianquan Liu
Xiang Liu, Peng Zhang, Jianquan Liu. Inorganic fertilizers are limiting factors of vegetation restoration of Qinghai Tala Shoal Photovoltaic Power Station[J]. Biodiv Sci, 2022, 30(5): 22100.
Fig. 1 Experimental design diagram of Qinghai Tala Shoal photovoltaic power station. CK, Control; IF, Inorganic fertilizer; MI, Microbial inoculum; TE, Trace element; IF+MI, Inorganic fertilizer + microbial inoculum; IF+TE, Inorganic fertilizer + trace element; MI+TE, Microbial inoculum + trace elements; IF+MI+TE, Inorganic fertilizer + microbial inoculum + trace elements. The capital letters in the plots represent different blocks. The blue blocks represent under the photovoltaic panel, and the yellow represent outside the photovoltaic panel. Photographed by Peng Zhang (DJI Mavic Air 2).
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F1,5 | P | F1,5 | P | F1,5 | P | |
Habitats | 19.513 | < 0.001 | 7.285 | 0.009 | 2.887 | 0.093 |
IF | 40.598 | < 0.001 | 0.279 | 0.599 | 5.133 | 0.026 |
MI | 0.116 | 0.735 | 0.045 | 0.832 | 0.570 | 0.452 |
TE | <0.001 | 0.993 | 2.133 | 0.148 | 0.891 | 0.348 |
Habitats : IF | 1.284 | 0.261 | 0.666 | 0.417 | 0.570 | 0.452 |
Habitats : MI | 0.084 | 0.772 | 0.358 | 0.551 | 5.133 | 0.026 |
IF : MI | 0.442 | 0.508 | 3.461 | 0.067 | 1.747 | 0.190 |
Habitats : TE | 2.144 | 0.147 | 0.234 | 0.630 | 0.036 | 0.851 |
IF : TE | 2.000 | 0.161 | 0.351 | 0.555 | 0.570 | 0.452 |
MI : TE | 12.073 | 0.001 | 0.907 | 0.344 | 6.987 | 0.010 |
Habitats : IF : MI | 0.278 | 0.599 | 0.055 | 0.816 | 0.036 | 0.851 |
Habitats : IF : TE | 0.011 | 0.918 | 0.285 | 0.595 | <0.001 | 1.000 |
Habitats : MI : TE | 0.459 | 0.500 | 0.093 | 0.762 | 3.565 | 0.063 |
IF : MI : TE | 0.253 | 0.617 | 0.917 | 0.341 | 0.891 | 0.348 |
Habitats : IF : MI : TE | 1.475 | 0.228 | 0.712 | 0.401 | 0.036 | 0.851 |
Table 1 Multivariate ANOVA results of the effect of different habitats (outside the photovoltaic panel and under the photovoltaic panel) and different limiting factors on community cover, aboveground biomass and plant species richness
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F1,5 | P | F1,5 | P | F1,5 | P | |
Habitats | 19.513 | < 0.001 | 7.285 | 0.009 | 2.887 | 0.093 |
IF | 40.598 | < 0.001 | 0.279 | 0.599 | 5.133 | 0.026 |
MI | 0.116 | 0.735 | 0.045 | 0.832 | 0.570 | 0.452 |
TE | <0.001 | 0.993 | 2.133 | 0.148 | 0.891 | 0.348 |
Habitats : IF | 1.284 | 0.261 | 0.666 | 0.417 | 0.570 | 0.452 |
Habitats : MI | 0.084 | 0.772 | 0.358 | 0.551 | 5.133 | 0.026 |
IF : MI | 0.442 | 0.508 | 3.461 | 0.067 | 1.747 | 0.190 |
Habitats : TE | 2.144 | 0.147 | 0.234 | 0.630 | 0.036 | 0.851 |
IF : TE | 2.000 | 0.161 | 0.351 | 0.555 | 0.570 | 0.452 |
MI : TE | 12.073 | 0.001 | 0.907 | 0.344 | 6.987 | 0.010 |
Habitats : IF : MI | 0.278 | 0.599 | 0.055 | 0.816 | 0.036 | 0.851 |
Habitats : IF : TE | 0.011 | 0.918 | 0.285 | 0.595 | <0.001 | 1.000 |
Habitats : MI : TE | 0.459 | 0.500 | 0.093 | 0.762 | 3.565 | 0.063 |
IF : MI : TE | 0.253 | 0.617 | 0.917 | 0.341 | 0.891 | 0.348 |
Habitats : IF : MI : TE | 1.475 | 0.228 | 0.712 | 0.401 | 0.036 | 0.851 |
Fig. 2 Effect of different limiting factors on community cover, aboveground biomass, and plant species richness at different habitats (outside the photovoltaic panel and under the photovoltaic panel). Abbreviations are the same as denoted in the legend of Fig. 1.
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F7,40 | P | F7,40 | P | F7,40 | P | |
光伏电板外 Outside the photovoltaic panel | ||||||
限制因子 Limiting factors | 2.869 | 0.016 | 1.444 | 0.215 | 0.672 | 0.694 |
光伏电板下 Under the photovoltaic panel | ||||||
限制因子 Limiting factors | 1.247 | 0.301 | 0.197 | 0.984 | 1.986 | 0.081 |
Table 2 One-way ANOVA results of the effect of limiting factors on community cover, aboveground biomass and plant species richness in different habitats (outside the photovoltaic panel and under the photovoltaic panel)
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F7,40 | P | F7,40 | P | F7,40 | P | |
光伏电板外 Outside the photovoltaic panel | ||||||
限制因子 Limiting factors | 2.869 | 0.016 | 1.444 | 0.215 | 0.672 | 0.694 |
光伏电板下 Under the photovoltaic panel | ||||||
限制因子 Limiting factors | 1.247 | 0.301 | 0.197 | 0.984 | 1.986 | 0.081 |
[1] |
Adeh EH, Selker JS, Higgins CW (2018) Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE, 13, e0203256.
DOI URL |
[2] |
Armstrong A, Ostle NJ, Whitaker J (2016) Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11, 074016.
DOI URL |
[3] |
Armstrong A, Waldron S, Whitaker J, Ostle NJ (2014) Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Change Biology, 20, 1699-1706.
DOI PMID |
[4] |
Borer ET, Harpole WS, Adler PB, Arnillas CA, Bugalho MN, Cadotte MW, Caldeira MC, Campana S, Dickman CR, Dickson TL, Donohue I, Eskelinen A, Firn JL, Graff P, Gruner DS, Heckman RW, Koltz AM, Komatsu KJ, Lannes LS, MacDougall AS, Martina JP, Moore JL, Mortensen B, Ochoa-Hueso R, Olde Venterink H, Power SA, Price JN, Risch AC, Sankaran M, Schütz M, Sitters J, Stevens CJ, Virtanen R, Wilfahrt PA, Seabloom EW (2020) Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 11, 6036.
DOI PMID |
[5] |
Chalcraft DR, Wilsey BJ, Bowles C, Willig MR (2009) The relationship between productivity and multiple aspects of biodiversity in six grassland communities. Biodiversity and Conservation, 18, 91-104.
DOI URL |
[6] |
Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111-2119.
DOI PMID |
[7] |
Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology, 27, 282-288.
DOI URL |
[8] |
Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
DOI URL |
[9] |
Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI PMID |
[10] | He J-S, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020) Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. (in Chinese with English abstract) |
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020) 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.] | |
[11] | Hong J, Kim J (2008) Simulation of surface radiation balance on the Tibetan Plateau. Geophysical Research Letters, 35, L08814. |
[12] | Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, USA, 110, 11911-11916. |
[13] | Li QS (2021) Discussion on the path of China’s energy transformation under the goal of carbon neutrality. China Coal, 47(8), 1-7. (in Chinese with English abstract) |
[李全生 (2021) 碳中和目标下我国能源转型路径探讨. 中国煤炭, 47(8), 1-7.] | |
[14] |
Li Y, Kalnay E, Motesharrei S, Rivas J, Kucharski F, Kirk-Davidoff D, Bach E, Zeng N (2018) Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science, 361, 1019-1022.
DOI URL |
[15] |
Liu Y, Zhang RQ, Huang Z, Cheng Z, López-Vicente M, Ma XR, Wu GL (2019) Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degradation & Development, 30, 2177-2186.
DOI URL |
[16] |
Liu Y, Zhang RQ, Ma XR, Wu GL (2020) Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems. Journal of Cleaner Production, 262, 121376.
DOI URL |
[17] | Qinghai Provincial Bureau of Statistics (2021) Statistical Communiqué of the Qinghai Province on the 2020 National Economic and Social Development. (in Chinese) |
[青海省统计局 (2021) 青海省2020年国民经济和社会发展统计公报.] http://www.gzswzys.gov.cn/Content.aspx?id=f6f3abe7-e671-4189-8133-dcf1ea0fed5b. (accessed on 2022-05-08) | |
[18] | Sun HL, Zheng D (1998) Formation, Evolution and Development of the Qinghai-Tibet Plateau. Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
[孙鸿烈, [郑度 (1998) 青藏高原形成演化与发展. 广东科技出版社, 广州.] | |
[19] |
Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH (2016) A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
DOI URL |
[20] |
Veen GF, van der Putten WH, Bezemer TM (2018) Biodiversity-ecosystem functioning relationships in a long-term non-weeded field experiment. Ecology, 99, 1836-1846.
DOI PMID |
[21] |
Wang HH, Yue C, Mao QQ, Zhao J, Ciais P, Li W, Yu Q, Mu XM (2020) Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China. Geoderma, 371, 114389.
DOI URL |
[22] | Wang XM (2021) Desert Ecosystem Maps in the Tibetan Plateau. Sinomap Press, Beijing. (in Chinese) |
[王训明 (2021) 青藏高原荒漠生态系统系列图. 中国地图出版社, 北京.] | |
[23] | Wang XQ, Yin SL, Yang ZW, Lu Q, Yang HH, Chen Q (2015) Community composition and soil properties of different grassland types on the Tala Shoal in Gonghe Basin. Forest Research, 28, 346-351. (in Chinese with English abstract) |
[王学全, 尹书乐, 杨占武, 卢琦, 杨恒华, 陈琦 (2015) 共和盆地塔拉滩不同类型草地群落组成与土壤特性. 林业科学研究, 28, 346-351.] | |
[24] |
Xiao Y, Liu X, Zhang L, Song ZP, Zhou SR (2021) The allometry of plant height explains species loss under nitrogen addition. Ecology Letters, 24, 553-562.
DOI PMID |
[25] |
Yang L, Wei W, Chen LD, Chen WL, Wang JL (2014) Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena, 115, 123-133.
DOI URL |
[26] |
Yue SJ, Guo MJ, Zou PH, Wu W, Zhou XD (2021) Effects of photovoltaic panels on soil temperature and moisture in desert areas. Environmental Science and Pollution Research, 28, 17506-17518.
DOI URL |
[1] | Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn