Biodiv Sci ›› 2009, Vol. 17 ›› Issue (6): 652-663. DOI: 10.3724/SP.J.1003.2009.09065
Special Issue: 群落中的物种多样性:格局与机制; 青藏高原生物多样性与生态安全
• Articles • Previous Articles Next Articles
Xin Lin*(), Zhiheng Wang, Zhiyao Tang, Shuqing Zhao, Jingyun Fang
Received:
2009-03-21
Accepted:
2009-05-13
Online:
2009-11-20
Published:
2009-11-20
Contact:
Xin Lin
Xin Lin, Zhiheng Wang, Zhiyao Tang, Shuqing Zhao, Jingyun Fang. Geographic patterns and environmental correlates of terrestrial mammal species richness in China[J]. Biodiv Sci, 2009, 17(6): 652-663.
最小值Minimum | 最大值Maximum | 平均值 Mean | 标准差 SD | |
---|---|---|---|---|
物种丰富度 Species richness | ||||
陆栖哺乳类 Terrestrial mammals | 16 | 177 | 59.2 | 31.0 |
食虫目 Eulipotyphla | 0 | 27 | 5.8 | 5.1 |
翼手目 Chiroptera | 0 | 45 | 9.7 | 10.5 |
灵长目 Primates | 0 | 9 | 0.9 | 1.6 |
食肉目 Carnivora | 3 | 34 | 14.5 | 6.7 |
偶蹄目 Artiodactyla | 1 | 18 | 6.0 | 2.8 |
兔形目 Lagomorpha | 0 | 10 | 3.1 | 2.1 |
啮齿目 Rodentia | 2 | 52 | 18.1 | 9.8 |
环境因子 Environmental variables | ||||
年均温 Mean annual temperature (MAT, ℃)1 | -8.3 | 24.1 | 6.8 | 7.8 |
最热月均温 Mean temperature of the warmest month (MTWM, ℃)2 | 10.0 | 36.5 | 25.1 | 7.0 |
最冷月均温 Mean temperature of the coldest month (MTCM, ℃)3 | -37.7 | 14.4 | -13.7 | 11.1 |
潜在蒸散量 Potential evapotranspiration (PET, mm)4 | 257.2 | 1,320.2 | 627.9 | 220.6 |
年降水量 Annual precipitation (AP, mm)5 | 17.7 | 2,542.7 | 596.3 | 506.9 |
实际蒸散量 Actual evapotranspiration (AET, mm)6 | 17.7 | 1,298.8 | 452.9 | 311.0 |
归一化植被指数 Normalized difference vegetation index (NDVI)7 | 0.043 | 0.667 | 0.286 | 0.166 |
气温年较差 Annual range of temperature (ART, ℃)8 | 16.4 | 60.6 | 38.9 | 9.4 |
海拔变幅 Elevational range (ER, m)9 | 41 | 6,717 | 1,645.6 | 1,148.0 |
生态系统类型数 Number of ecosystems (VEGE)10 | 1 | 55 | 15.8 | 8.2 |
Table 1 Descriptive statistics of species richness and environmental variables in 100 km×100 km grid system (n = 900)
最小值Minimum | 最大值Maximum | 平均值 Mean | 标准差 SD | |
---|---|---|---|---|
物种丰富度 Species richness | ||||
陆栖哺乳类 Terrestrial mammals | 16 | 177 | 59.2 | 31.0 |
食虫目 Eulipotyphla | 0 | 27 | 5.8 | 5.1 |
翼手目 Chiroptera | 0 | 45 | 9.7 | 10.5 |
灵长目 Primates | 0 | 9 | 0.9 | 1.6 |
食肉目 Carnivora | 3 | 34 | 14.5 | 6.7 |
偶蹄目 Artiodactyla | 1 | 18 | 6.0 | 2.8 |
兔形目 Lagomorpha | 0 | 10 | 3.1 | 2.1 |
啮齿目 Rodentia | 2 | 52 | 18.1 | 9.8 |
环境因子 Environmental variables | ||||
年均温 Mean annual temperature (MAT, ℃)1 | -8.3 | 24.1 | 6.8 | 7.8 |
最热月均温 Mean temperature of the warmest month (MTWM, ℃)2 | 10.0 | 36.5 | 25.1 | 7.0 |
最冷月均温 Mean temperature of the coldest month (MTCM, ℃)3 | -37.7 | 14.4 | -13.7 | 11.1 |
潜在蒸散量 Potential evapotranspiration (PET, mm)4 | 257.2 | 1,320.2 | 627.9 | 220.6 |
年降水量 Annual precipitation (AP, mm)5 | 17.7 | 2,542.7 | 596.3 | 506.9 |
实际蒸散量 Actual evapotranspiration (AET, mm)6 | 17.7 | 1,298.8 | 452.9 | 311.0 |
归一化植被指数 Normalized difference vegetation index (NDVI)7 | 0.043 | 0.667 | 0.286 | 0.166 |
气温年较差 Annual range of temperature (ART, ℃)8 | 16.4 | 60.6 | 38.9 | 9.4 |
海拔变幅 Elevational range (ER, m)9 | 41 | 6,717 | 1,645.6 | 1,148.0 |
生态系统类型数 Number of ecosystems (VEGE)10 | 1 | 55 | 15.8 | 8.2 |
Fig. 1 Patterns of terrestrial mammal species richness in China (100 km×100 km). A, Terrestrial mammals; B, Eulipotyphla; C, Chiroptera; D, Primates; E, Carnivora; F, Artiodactyla; G, Lagomorpha; H, Rodentia.
陆栖哺乳类Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | 1.000 | |||||||
食虫目 Eulipotyphla | 0.801*** | 1.000 | ||||||
翼手目 Chiroptera | 0.845*** | 0.548* | 1.000 | |||||
灵长目 Primates | 0.839*** | 0.530* | 0.811*** | 1.000 | ||||
食肉目 Carnivora | 0.920*** | 0.690*** | 0.755** | 0.815*** | 1.000 | |||
偶蹄目 Artiodactyla | 0.589* | 0.350ns | 0.302ns | 0.567** | 0.685** | 1.000 | ||
兔形目 Lagomorpha | 0.018ns | 0.018ns | -0.332ns | -0.051ns | 0.117ns | 0.575** | 1.000 | |
啮齿目 Rodentia | 0.847*** | 0.743*** | 0.581* | 0.573* | 0.654** | 0.360ns | -0.027ns | 1.000 |
Table 2 Correlation matrix among species richness of all terrestrial mammals and major orders (n = 900)
陆栖哺乳类Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | 1.000 | |||||||
食虫目 Eulipotyphla | 0.801*** | 1.000 | ||||||
翼手目 Chiroptera | 0.845*** | 0.548* | 1.000 | |||||
灵长目 Primates | 0.839*** | 0.530* | 0.811*** | 1.000 | ||||
食肉目 Carnivora | 0.920*** | 0.690*** | 0.755** | 0.815*** | 1.000 | |||
偶蹄目 Artiodactyla | 0.589* | 0.350ns | 0.302ns | 0.567** | 0.685** | 1.000 | ||
兔形目 Lagomorpha | 0.018ns | 0.018ns | -0.332ns | -0.051ns | 0.117ns | 0.575** | 1.000 | |
啮齿目 Rodentia | 0.847*** | 0.743*** | 0.581* | 0.573* | 0.654** | 0.360ns | -0.027ns | 1.000 |
陆栖哺乳类 Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
年均温 (MAT, ℃) | 0.541ns | 0.345ns | 0.742** | 0.515* | 0.434ns | -0.087ns | -0.593** | 0.458ns |
最热月均温 (MTWM, ℃) | 0.209ns | 0.218ns | 0.371ns | 0.092ns | 0.074ns | -0.439ns | -0.653*** | 0.337ns |
最冷月均温 (MTCM, ℃) | 0.627* | 0.328ns | 0.839** | 0.669** | 0.550* | 0.134ns | -0.464* | 0.424ns |
潜在蒸散量 (PET, mm) | 0.432ns | 0.268ns | 0.671* | 0.401ns | 0.327ns | -0.224ns | -0.660*** | 0.381ns |
年降水量 (AP, mm) | 0.686* | 0.411ns | 0.863** | 0.678* | 0.687* | 0.282ns | -0.349ns | 0.390ns |
实际蒸散量 (AET, mm) | 0.651* | 0.440ns | 0.821** | 0.610* | 0.645* | 0.186ns | -0.391ns | 0.395ns |
植被指数 (NDVI) | 0.691* | 0.579* | 0.744* | 0.558* | 0.683* | 0.242ns | -0.272ns | 0.482ns |
气温年较差 (ART, ℃) | -0.587* | -0.226ns | -0.718** | -0.725** | -0.598* | -0.488** | -0.061ns | -0.251ns |
海拔变幅 (ER, m) | 0.318ns | 0.159ns | 0.091ns | 0.257ns | 0.402** | 0.591*** | 0.482*** | 0.214ns |
生态系统类型数 (VEGE) | 0.426** | 0.410** | 0.116ns | 0.142ns | 0.382* | 0.347* | 0.248ns | 0.577*** |
Table 3 Bivariate correlation coefficients (r) between species richness of terrestrial mammals (for overall terrestrial mammals and each major mammalian order, respectively) and environmental variables (n = 900)
陆栖哺乳类 Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
年均温 (MAT, ℃) | 0.541ns | 0.345ns | 0.742** | 0.515* | 0.434ns | -0.087ns | -0.593** | 0.458ns |
最热月均温 (MTWM, ℃) | 0.209ns | 0.218ns | 0.371ns | 0.092ns | 0.074ns | -0.439ns | -0.653*** | 0.337ns |
最冷月均温 (MTCM, ℃) | 0.627* | 0.328ns | 0.839** | 0.669** | 0.550* | 0.134ns | -0.464* | 0.424ns |
潜在蒸散量 (PET, mm) | 0.432ns | 0.268ns | 0.671* | 0.401ns | 0.327ns | -0.224ns | -0.660*** | 0.381ns |
年降水量 (AP, mm) | 0.686* | 0.411ns | 0.863** | 0.678* | 0.687* | 0.282ns | -0.349ns | 0.390ns |
实际蒸散量 (AET, mm) | 0.651* | 0.440ns | 0.821** | 0.610* | 0.645* | 0.186ns | -0.391ns | 0.395ns |
植被指数 (NDVI) | 0.691* | 0.579* | 0.744* | 0.558* | 0.683* | 0.242ns | -0.272ns | 0.482ns |
气温年较差 (ART, ℃) | -0.587* | -0.226ns | -0.718** | -0.725** | -0.598* | -0.488** | -0.061ns | -0.251ns |
海拔变幅 (ER, m) | 0.318ns | 0.159ns | 0.091ns | 0.257ns | 0.402** | 0.591*** | 0.482*** | 0.214ns |
生态系统类型数 (VEGE) | 0.426** | 0.410** | 0.116ns | 0.142ns | 0.382* | 0.347* | 0.248ns | 0.577*** |
环境因子 Environmental variables | 标准化系数 Standardized coefficient | 偏决定系数 Partial r2 | 模型解释率 (校正后) Adjusted R2 | 显著性水平 (校正后) Adjusted P | ||
---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.461 0.324 -0.351 | 0.318 0.231 0.218 | 0.662 | 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.525 0.348 0.300 | 0.332 0.262 0.141 | 0.660 | 0.001 | |
食虫目 Eulipotyphla | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.545 0.310 0.050 | 0.279 0.140 0.003 | 0.430 | 0.002 |
Model II | 植被指数 (NDVI) 生态系统类型数 (VEGE) 海拔变幅 (ER) | 0.528 0.287 0.049 | 0.315 0.094 0.003 | 0.430 | 0.002 | |
翼手目 Chiroptera | Model I | 最冷月均温 (MTCM) 植被指数 (NDVI) 海拔变幅 (ER) | 0.606 0.375 0.112 | 0.527 0.298 0.058 | 0.797 | < 0.001 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.574 0.364 0.306 | 0.526 0.286 0.267 | 0.796 | < 0.001 | |
灵长目 Primates | Model I | 气温年较差 (ART) 植被指数 (NDVI) 海拔变幅 (ER) | -0.548 0.301 0.104 | 0.324 0.137 0.022 | 0.590 | 0.002 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.620 0.234 0.076 | 0.390 0.075 0.011 | 0.586 | 0.002 | |
食肉目 Carnivora | Model I | 植被指数 (NDVI) 海拔变幅 (ER) 气温年较差 (ART) | 0.619 0.382 -0.180 | 0.467 0.282 0.063 | 0.684 | < 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.599 0.437 0.178 | 0.408 0.375 0.058 | 0.682 | < 0.001 | |
偶蹄目 Artiodactyla | Model I | 年降水量 (AP) 海拔变幅 (ER) 最热月均温 (MTWM) | 0.418 0.420 -0.407 | 0.248 0.237 0.206 | 0.543 | < 0.001 |
Model II | 海拔变幅 (ER) 植被指数 (NDVI) 最热月均温 (MTWM) | 0.454 0.400 -0.387 | 0.266 0.232 0.190 | 0.533 | < 0.001 | |
兔形目 Lagomorpha | Model I | 最热月均温 (MTWM) 生态系统类型数 (VEGE) 实际蒸散量 (AET) | -0.599 0.289 -0.182 | 0.398 0.152 0.058 | 0.532 | < 0.001 |
Model II | 潜在蒸散量 (PET) 海拔变幅 (ER) 生态系统类型数 (VEGE) | -0.589 0.299 0.139 | 0.393 0.069 0.030 | 0.532 | < 0.001 | |
啮齿目 Rodentia | Model I | 生态系统类型数 (VEGE) 年均温 (MAT) 植被指数 (NDVI) | 0.514 0.291 0.214 | 0.352 0.105 0.058 | 0.531 | < 0.001 |
Model II | 生态系统类型数 (VEGE) 植被指数 (NDVI) 潜在蒸散量 (PET) | 0.528 0.251 0.238 | 0.354 0.078 0.074 | 0.514 | < 0.001 |
Table 4 Determinants of species richness for terrestrial mammals and different orders from best-fit explanatory models
环境因子 Environmental variables | 标准化系数 Standardized coefficient | 偏决定系数 Partial r2 | 模型解释率 (校正后) Adjusted R2 | 显著性水平 (校正后) Adjusted P | ||
---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.461 0.324 -0.351 | 0.318 0.231 0.218 | 0.662 | 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.525 0.348 0.300 | 0.332 0.262 0.141 | 0.660 | 0.001 | |
食虫目 Eulipotyphla | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.545 0.310 0.050 | 0.279 0.140 0.003 | 0.430 | 0.002 |
Model II | 植被指数 (NDVI) 生态系统类型数 (VEGE) 海拔变幅 (ER) | 0.528 0.287 0.049 | 0.315 0.094 0.003 | 0.430 | 0.002 | |
翼手目 Chiroptera | Model I | 最冷月均温 (MTCM) 植被指数 (NDVI) 海拔变幅 (ER) | 0.606 0.375 0.112 | 0.527 0.298 0.058 | 0.797 | < 0.001 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.574 0.364 0.306 | 0.526 0.286 0.267 | 0.796 | < 0.001 | |
灵长目 Primates | Model I | 气温年较差 (ART) 植被指数 (NDVI) 海拔变幅 (ER) | -0.548 0.301 0.104 | 0.324 0.137 0.022 | 0.590 | 0.002 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.620 0.234 0.076 | 0.390 0.075 0.011 | 0.586 | 0.002 | |
食肉目 Carnivora | Model I | 植被指数 (NDVI) 海拔变幅 (ER) 气温年较差 (ART) | 0.619 0.382 -0.180 | 0.467 0.282 0.063 | 0.684 | < 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.599 0.437 0.178 | 0.408 0.375 0.058 | 0.682 | < 0.001 | |
偶蹄目 Artiodactyla | Model I | 年降水量 (AP) 海拔变幅 (ER) 最热月均温 (MTWM) | 0.418 0.420 -0.407 | 0.248 0.237 0.206 | 0.543 | < 0.001 |
Model II | 海拔变幅 (ER) 植被指数 (NDVI) 最热月均温 (MTWM) | 0.454 0.400 -0.387 | 0.266 0.232 0.190 | 0.533 | < 0.001 | |
兔形目 Lagomorpha | Model I | 最热月均温 (MTWM) 生态系统类型数 (VEGE) 实际蒸散量 (AET) | -0.599 0.289 -0.182 | 0.398 0.152 0.058 | 0.532 | < 0.001 |
Model II | 潜在蒸散量 (PET) 海拔变幅 (ER) 生态系统类型数 (VEGE) | -0.589 0.299 0.139 | 0.393 0.069 0.030 | 0.532 | < 0.001 | |
啮齿目 Rodentia | Model I | 生态系统类型数 (VEGE) 年均温 (MAT) 植被指数 (NDVI) | 0.514 0.291 0.214 | 0.352 0.105 0.058 | 0.531 | < 0.001 |
Model II | 生态系统类型数 (VEGE) 植被指数 (NDVI) 潜在蒸散量 (PET) | 0.528 0.251 0.238 | 0.354 0.078 0.074 | 0.514 | < 0.001 |
[1] |
Andrews P, O’Brien EM (2000) Climate, vegetation, and predictable gradients in mammal species richness in Southern Africa. Journal of Zoology, 251, 205-231.
DOI URL |
[2] |
Badgley C, Fox DL (2000) Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography, 27, 1437-1467.
DOI URL |
[3] |
Brown JH (1981) Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist, 21, 877-888.
DOI URL |
[4] |
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
DOI URL |
[5] | Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer, Sunderland, Mass. |
[6] |
Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1167-1173.
DOI URL PMID |
[7] | Chen CD (陈昌笃) (1998) China’s Biodiversity: A Country Study (中国生物多样性国情研究报告). China Environmental Science Press, Beijing. (in Chinese) |
[8] | China Wildlife Conservation Association (中国野生动物保护协会) (2005) Atlas of Mammals of China (中国哺乳动物图鉴). He’nan Science and Technology Press, Zhengzhou. (in Chinese) |
[9] | Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 273, 2257-2266. |
[10] |
Connell JH, Orias E (1964) The ecological regulation of species diversity. The American Naturalist, 98, 399-414.
DOI URL |
[11] |
Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
DOI URL |
[12] |
Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature, 329, 326-327.
DOI URL |
[13] |
Defries RS, Townshend JRG (1994) NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing, 15, 3567-3586.
DOI URL |
[14] |
Ding TS, Yuan HW, Geng S, Koh CN, Lee PF (2006) Macro-scale bird species richness patterns of the East Asian mainland and islands: energy, area and isolation. Journal of Biogeography, 33, 683-693.
DOI URL |
[15] |
Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 12, 53-64.
DOI URL |
[16] |
Dutilleul P, Clifford P, Richardson S, Hemon D (1993) Modifying the t-test for assessing the correlation between two spatial processes. Biometrics, 49, 305-314.
DOI URL |
[17] | Editorial Board of Vegetation Map of China, Chinese Academy of Sciences (中国科学院中国植被图编辑委员会) (2001) Vegetation Atlas of China (中国植被图集). Science Press, Beijing. (in Chinese) |
[18] |
Fang JY, Yoda K (1990) Water balance and distribution of vegetation (Climate and vegetation of China III). Ecological Research, 5, 9-23.
DOI URL |
[19] | Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF (2004) Mammalogy: Adaptation, Diversity, Ecology, 2nd edn. McGraw-Hill Higher Education, New York. |
[20] |
Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536.
DOI URL PMID |
[21] |
Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
DOI URL PMID |
[22] |
Hawkins BA, Porter EE, Diniz-Filho JAF (2003a) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84, 1608-1623.
DOI URL |
[23] |
Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003b) Energy, water, and broad scale geographic patterns of species richness. Ecology, 84, 3105-3117.
DOI URL |
[24] |
Hawkins BA, Porter EE (2003) Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology and Biogeography, 12, 475-481.
DOI URL |
[25] |
He FL, Legendre P (1996) On species-area relations. The American Naturalist, 148, 719-737.
DOI URL |
[26] | IUCN (2008) 2008 IUCN Red List of Threatened Species. http://www.iucnredlist.org, accessed Mar 25, 2009. |
[27] |
Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
DOI URL PMID |
[28] |
Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254.
DOI URL |
[29] |
Kerr JT, Southwood TRE, Cihlar J (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proceedings of the National Academy of Sciences, USA, 98, 11365-11370.
DOI URL |
[30] |
Klopfer PH (1959) Environmental determinants of faunal diversity. The American Naturalist, 93, 337-342.
DOI URL |
[31] |
Klopfer PH, MacArthur R (1960) Niche size and faunal diversity. The American Naturalist, 94, 293-300.
DOI URL |
[32] |
Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: energy diversity theory does not account for variation in species richness. Oikos, 67, 325-333.
DOI URL |
[33] | MacArthur RH, Wilson EO(1967) The Theory of Island Biogeography. Princeton University Press, Princeton. |
[34] |
Oberdorff T, Guegan JF, Hugueny B (1995) Global scale patterns of fish species richness in rivers. Ecography, 18, 345-352.
DOI URL |
[35] |
O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography, 25, 379-398.
DOI URL |
[36] |
Owen JG (1988) On productivity as a predictor of rodent and carnivore diversity. Ecology, 69, 1161-1165.
DOI URL |
[37] |
Owen JG (1990) Patterns of mammalian species richness in relation to temperature, productivity, and variance in elevation. Journal of Mammalogy, 71, 1-13.
DOI URL |
[38] | Pan QH (潘清华), Wang YX (王应祥), Yan K (岩崑) (2007) A Field Guide to the Mammals of China (中国哺乳动物彩色图鉴). China Forestry Publishing House, Beijing. (in Chinese) |
[39] |
Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. The American Naturalist, 100, 33-46.
DOI URL |
[40] |
Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 180-182.
DOI URL PMID |
[41] |
Qian H, Wang XH, Wang SL (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography, 30, 471-482.
DOI URL |
[42] | Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge. |
[43] | R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. |
[44] |
Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences, USA, 98, 4534-4539.
DOI URL |
[45] |
Real R, Barbosa AM, Porras D, Kin MS, Marquez AL, Guerrero JC, Palomo JP, Justo ER, Vargas JM (2003) Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. Journal of Biogeography, 30, 939-947.
DOI URL |
[46] |
Rensburg BJ, Chown SL, Gaston KJ (2002) Species richness, environmental correlates, and spatial scale: a test using South African birds. The American Naturalist, 159, 566-577.
DOI URL PMID |
[47] |
Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science, 235, 167-171.
DOI URL PMID |
[48] |
Ricklefs RE, Latham RE, Qian H (1999) Global patterns of tree species richness in moist forest: distinguishing ecological influences and historical contingency. Oikos, 86, 369-373.
DOI URL |
[49] |
Rodriguez MA, Belmontes JA, Hawkins BA (2005) Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecologica, 28, 65-70.
DOI URL |
[50] | Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge. |
[51] |
Rosenzweig ML, Ziv Y (1999) The echo pattern of species diversity: pattern and processes. Ecography, 22, 614-628.
DOI URL |
[52] |
Ruggiero A, Kitzberger T (2004) Environmental correlates of mammal species in South America: effects of spatial structure, taxonomy and geographic range. Ecography, 27, 401-416.
DOI URL |
[53] |
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Nobuo I, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Georgina MM, Mallon DP, Masi M, McKnight MW, Medellin RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, Silva ND, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vie JC, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science, 322, 225-230.
DOI URL PMID |
[54] |
Shmida A, Wilson MV (1985) Biological determinants of species diversity. Journal of Biogeography, 12, 1-20.
DOI URL |
[55] |
Simpson GG (1964) Species density of North American recent mammals. Systematic Zoology, 13, 57-73.
DOI URL |
[56] |
Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256.
DOI URL |
[57] | Thornthwaite CW (1948) An approach toward a rational classification of climate. Geographical Review, 38, 57-94. |
[58] |
Tognelli MF, Kelt D (2004) Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427-436.
DOI URL |
[59] |
Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos, 48, 195-205.
DOI URL |
[60] |
White P, Kerr JT (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century . Ecography, 29, 908-918.
DOI URL |
[61] |
Whittaker RH, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.
DOI URL |
[62] | Wildlife Conservation Society (WCS), Institute of Zoology, Chinese Academy of Sciences (中国科学院动物研究所) (2005) China Species Information System (CSIS) (中国物种信息服务). http://www.chinabiodiversity.com. (in Chinese) |
[63] |
Wilson JW (1974) Analytical zoogeography of North American mammals. Evolution, 28, 124-140.
URL PMID |
[64] |
Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506.
DOI URL |
[65] | Zhang RZ (张荣祖) (1999) Zoogeography of China (中国动物地理). Science Press, Beijing. (in Chinese) |
[66] | Zhang RZ (张荣祖), Lin YL (林永烈) (1985) The distribution tendency of land mammals in China and adjacent areas. Acta Zoologica Sinica (动物学报), 31, 187-197. (in Chinese with English abstract) |
[67] |
Zhao SQ, Fang JY, Peng CH, Tang ZY (2006a) The relationships between terrestrial vertebrate species richness in China’s nature reserves and environmental variables. Canadian Journal of Zoology, 84, 1368-1374.
DOI URL |
[68] |
Zhao SQ, Fang JY, Peng CH, Tang ZY, Piao SL (2006b) Patterns of fish species richness in China’s lakes. Global Ecology and Biogeography, 15, 386-394.
DOI URL |
[1] | Chang Deng, Jiewei Hao, De Gao, Mingxun Ren, Lina Zhang. Identification and protection of suitable habitat hotspots for threatened bryophytes in Hainan [J]. Biodiv Sci, 2023, 31(4): 22580-. |
[2] | Lu Liu, Yao Chi, Zhaoning Wu, Tianlu Qian, Jiechen Wang. Research progress on the geographical isolation of terrestrial mammals [J]. Biodiv Sci, 2021, 29(8): 1134-1145. |
[3] | Xiaqiu Tao, Shaopeng Cui, Zhigang Jiang, Hongjun Chu, Na Li, Daode Yang, Chunwang Li. Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China [J]. Biodiv Sci, 2018, 26(6): 578-589. |
[4] | Chunyan Qin,Yong Zhang,Haiyan Yu,Beixin Wang. Concordance among different aquatic insect assemblages and the relative role of spatial and environmental variables [J]. Biodiv Sci, 2013, 21(3): 326-333. |
[5] | Gongqi Sun,Yi Qu,Meiqing Tang,Xiao Liu,Xiaofeng Luan. Priority conservation plans of ecological function areas for terrestrial endangered mammals in China [J]. Biodiv Sci, 2013, 21(1): 47-53. |
[6] | Zhiheng Wang, Zhiyao Tang, Jingyun Fang. The species-energy hypothesis as a mechanism for species richness patterns [J]. Biodiv Sci, 2009, 17(6): 613-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn