Biodiv Sci ›› 2025, Vol. 33 ›› Issue (4): 24174. DOI: 10.17520/biods.2024174 cstr: 32101.14.biods.2024174
• Special Feature: Three-dimensional Ecology • Previous Articles Next Articles
Liu Yonghua1,2,3, Tong Guangrong4, Yu Hangyuan4, Wang Ningning1,2, Ren Haibao1,2, Chen Lei1,2,3, Ma Keping1,2,3(), Mi Xiangcheng1,2,*(
)
Received:
2024-05-09
Accepted:
2024-06-28
Online:
2025-04-20
Published:
2024-07-18
Contact:
Mi Xiangcheng
Supported by:
Liu Yonghua, Tong Guangrong, Yu Hangyuan, Wang Ningning, Ren Haibao, Chen Lei, Ma Keping, Mi Xiangcheng. Responses of canopy three-dimensional structural and spectral characteristics to anthropogenic disturbance in the Qianjiangyuan section of the Qianjiangyuan- Baishanzu National Park candidate area[J]. Biodiv Sci, 2025, 33(4): 24174.
参数 Parameters | 值 Values |
---|---|
飞行速度 Flight speed (km/h) | 250 |
飞行高度 Flight height (m) | 1,960 |
相对航高 Relative flight height (m) | 1,660 |
脉冲频率 Pulse repetition rate (kHz) | 700 |
视场角 Field angle of view | 58.52° |
扫描速率 Scanning rate (lps) | 246 |
扫描幅宽 Scanning width (m) | 1,860 |
点密度 Point density (points/m2) | > 4 |
旁向重叠度 Side overlap (%) | 20 |
Table 1 Technical parameters of airborne LiDAR system
参数 Parameters | 值 Values |
---|---|
飞行速度 Flight speed (km/h) | 250 |
飞行高度 Flight height (m) | 1,960 |
相对航高 Relative flight height (m) | 1,660 |
脉冲频率 Pulse repetition rate (kHz) | 700 |
视场角 Field angle of view | 58.52° |
扫描速率 Scanning rate (lps) | 246 |
扫描幅宽 Scanning width (m) | 1,860 |
点密度 Point density (points/m2) | > 4 |
旁向重叠度 Side overlap (%) | 20 |
参数 Parameters | 值 Values |
---|---|
光谱范围 Spectral range (nm) | 400-1,000 |
光谱分辨率 Spectral resolution (nm) | 8.8-9.7 |
视场角 Field angle of view | 37.7° |
瞬时视场角 Momentary field angle of view (mrad) | 0.646 |
焦距 Focal length (mm) | 18.5 |
空间分辨率 Spatial resolution (m) | 1 |
波段数 Number of bands | 64 |
空间像元数Number of spatial pixels | 1,024 |
光谱采样间隔 Spectral sampling interval (nm) | 9.2 |
数字分辨率 Digital number (bit) | 16 |
相对航高 Relative airspeed (m) | 1,000 |
旁向重叠度 Side overlap (%) | 20 |
Table 2 Technical parameters of airborne hyperspectral system
参数 Parameters | 值 Values |
---|---|
光谱范围 Spectral range (nm) | 400-1,000 |
光谱分辨率 Spectral resolution (nm) | 8.8-9.7 |
视场角 Field angle of view | 37.7° |
瞬时视场角 Momentary field angle of view (mrad) | 0.646 |
焦距 Focal length (mm) | 18.5 |
空间分辨率 Spatial resolution (m) | 1 |
波段数 Number of bands | 64 |
空间像元数Number of spatial pixels | 1,024 |
光谱采样间隔 Spectral sampling interval (nm) | 9.2 |
数字分辨率 Digital number (bit) | 16 |
相对航高 Relative airspeed (m) | 1,000 |
旁向重叠度 Side overlap (%) | 20 |
植被指数 Vegetation indices | 计算公式 Formulas | 参考文献 Reference |
---|---|---|
归一化植被指数 Normalized difference vegetation index (NDVI) | Rouse et al, | |
红边归一化植被指数 Red-edge normalized difference vegetation index (NDVI705) | Elvidge & Chen, | |
光化学反射指数 Photochemical reflectance index (PRI) | Gamon et al, | |
植被衰减指数 Plant senescence reflectance index (PSRI) | Merzlyak et al, |
Table 3 Hyperspectral vegetation indices
植被指数 Vegetation indices | 计算公式 Formulas | 参考文献 Reference |
---|---|---|
归一化植被指数 Normalized difference vegetation index (NDVI) | Rouse et al, | |
红边归一化植被指数 Red-edge normalized difference vegetation index (NDVI705) | Elvidge & Chen, | |
光化学反射指数 Photochemical reflectance index (PRI) | Gamon et al, | |
植被衰减指数 Plant senescence reflectance index (PSRI) | Merzlyak et al, |
Fig. 1 Functional divisions and their main subareas (the yellow area is the core protection area, and the blue area is the general control area) in Qianjiangyuan section of the Qianjiangyuan-Baishanzu National Park candidate area, and naturalness of the 2018 subcompartment survey of the section. Meanings of different naturalness: 1, Zonal climax forests in pristine condition or with slight anthropogenic disturbances (broad-leaved evergreen forests); 2, Anthropogenically disturbed natural forests or secondary forests in the middle or late successional stages with obvious anthropogenic disturbances (deciduous broad-leaved forests, shrub forests, etc.); 3, Heavily disturbed or degraded coniferous forests in a highly fragmented secondary forests or plantation forests).
Fig. 2 Spatial patterns of canopy three-dimensional structural characteristics in Qianjiangyuan section of the Qianjiangyuan-Baishanzu National Park candidate area. (A) Leaf area index; (B) Mean height of canopy; (C) Normalized Shannon vertical complexity index; (D) First principal component.
Fig. 3 Spatial patterns of canopy spectral characteristics in Qianjiangyuan section of the Qianjiangyuan-Baishanzu National Park candidate area. (A) Normalized difference vegetation index; (B) Red-edge normalized difference vegetation index; (C) Photochemical reflectance index; (D) Plant senescence reflectance index.
Fig. 4 Differences in canopy three-dimensional structural characteristics among different degrees of naturalness in Qianjiangyuan section of the Qianjiangyuan-Baishanzu National Park candidate area. (A) Leaf area index; (B) Mean height of canopy; (C) Normalized Shannon vertical complexity index; (D) First principal component. Different letters indicate significant differences at P < 0.001.
Fig. 5 Differences in canopy spectral characteristics among different degrees of naturalness in Qianjiangyuan section of the Qianjiangyuan-Baishanzu National Park candidate area. (A) Normalized difference vegetation index; (B) Red-edge normalized difference vegetation index; (C) Photochemical reflectance index; (D) Plant senescence reflectance index. Different letters indicate significant differences at least at P < 0.01.
[1] | Ali A (2019) Forest stand structure and functioning: Current knowledge and future challenges. Ecological Indicators, 98, 665-677. |
[2] | Aponte C, Kasel S, Nitschke CR, Tanase MA, Vickers H, Parker L, Fedrigo M, Kohout M, Ruiz-Benito P, Zavala MA, Bennett LT (2020) Structural diversity underpins carbon storage in Australian temperate forests. Global Ecology and Biogeography, 29, 789-802. |
[3] | Atkins JW, Costanza J, Dahlin KM, Dannenberg MP, Elmore AJ, Fitzpatrick MC, Hakkenberg CR, Hardiman BS, Kamoske A, LaRue EA, Silva CA, Stovall AEL, Tielens EK (2023) Scale dependency of LiDAR-derived forest structural diversity. Methods in Ecology and Evolution, 14, 708-723. |
[4] | Barrette M, Dumais D, Auger I, Boucher Y, Bouchard M, Bouliane J (2020) Naturalness assessment performed using forestry maps to validate forest management sustainability. Ecological Indicators, 119, 106832. |
[5] | Bisht S, Bargali SS, Bargali K, Rawat GS, Rawat YS, Fartyal A (2022) Influence of anthropogenic activities on forest carbon stocks—A case study from Gori Valley, Western Himalaya. Sustainability, 14, 16918. |
[6] | Blackburn RC, Buscaglia R, Sánchez Meador AJ(2021) Mixtures of airborne LiDAR-based approaches improve predictions of forest structure. Canadian Journal of Forest Research, 51, 1106-1116. |
[7] | Chen GZ, Huang Y, Zhao XW, Tian MR (2022) Research on forest canopy height inversion based on GEDI, Sentinel-2 and DJI-L1 data. Geomatics & Spatial Information Technology, 45(S1), 235-238. (in Chinese with English abstract) |
[陈贵珍, 黄杨, 赵晓伟, 田梦然 (2022) 基于GEDI、Sentinel-2和机载激光雷达的森林冠层高度反演研究. 测绘与空间地理信息, 45(S1), 235-238.] | |
[8] | Chen SW, Ren HB, Tong GR, Wang NN, Lan WC, Xue JH, Mi XC (2023) Spatial patterns in woody species diversity in the Qianjiangyuan National Park. Biodiversity Science, 31, 22587. (in Chinese with English abstract) |
[陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成 (2023) 钱江源国家公园木本植物物种多样性空间分布格局. 生物多样性, 31, 22587.] | |
[9] | Chen XN, Li QW, Yu JP, Yu SH, Li S, Cao MC (2022) Habitat suitability assessment of Syrmaticus ellioti in the Qiangjiangyuan National Park. Ecology and Environmental Sciences, 31, 1832-1839. (in Chinese with English abstract) |
[陈小南, 李琼雯, 余建平, 余顺海, 李双, 曹铭昌 (2022) 钱江源国家公园白颈长尾雉生境适宜性评价研究. 生态环境学报, 31, 1832-1839.] | |
[10] | Stark SC, Shao G, Schietti J, Nelson BW, Silva CA, Gorgens EB, Valbuena R, Papa DA, Brancalion PHS (2019) Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: Leaf area profile sensitivity to pulse density and spatial sampling. Remote Sensing, 11, 92. |
[11] | de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41, 393-408. |
[12] | Dubayah R, Blair JB, Goetz S, Fatoyinbo L, Hansen M, Healey S, Hofton M, Hurtt G, Kellner J, Luthcke S, Armston J, Tang H, Duncanson L, Hancock S, Jantz P, Marselis S, Patterson PL, Qi WL, Silva C (2020) The global ecosystem dynamics investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, 1, 100002. |
[13] | Elvidge CD, Chen Z (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54, 38-48. |
[14] | Evangelides C, Nobajas A (2020) Red-edge normalized difference vegetation index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration. Remote Sensing Applications: Society and Environment, 17, 100283. |
[15] | Fernández-Manso A, Fernández-Manso O, Quintano C (2016) Sentinel-2A red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation, 50, 170-175. |
[16] | Fischer R, Knapp N, Bohn F, Shugart HH, Huth A (2019) The relevance of forest structure for biomass and productivity in temperate forests: New perspectives for remote sensing. Surveys in Geophysics, 40, 709-734. |
[17] | Gairola S, Rawal RS, Todaria NP (2015) Effect of anthropogenic disturbance on vegetation characteristics of sub-alpine forests in and around Valley of Flowers National Park, a world heritage site of India. Tropical Ecology, 56, 357-365. |
[18] | Galia Selaya N, Oomen RJ, Netten JJC, Werger MJA, Anten NPR (2008) Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology, 96, 1211-1221. |
[19] | Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: An optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient levels. Oecologia, 112, 492-501. |
[20] | Gogoi A, Sahoo UK (2018) Impact of anthropogenic disturbance on species diversity and vegetation structure of a lowland tropical rainforest of eastern Himalaya, India. Journal of Mountain Science, 15, 2453-2465. |
[21] | Guo QH, Su YJ, Hu TY, Liu J (2018) LiDAR Principles, Processing and Applications in Forest Ecology. Higher Education Press, Beijing. (in Chinese) |
[郭庆华, 苏艳军, 胡天宇, 刘瑾 (2018) 激光雷达森林生态应用——理论、方法和实例. 高等教育出版社, 北京.] | |
[22] | Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 492-501. |
[23] | Han T, Ren H, Wang J, Lu H, Song G, Chazdon RL (2020) Variations of leaf eco-physiological traits in relation to environmental factors during forest succession. Ecological Indicators, 117, 106511. |
[24] | Haq SM, Calixto ES, Rashid I, Khuroo AA (2021) Human-driven disturbances change the vegetation characteristics of temperate forest stands: A case study from Pir Panchal Mountain range in Kashmir Himalaya. Trees, Forests and People, 6, 100134. |
[25] | Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis PS (2013) Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. Forest Ecology and Management, 298, 111-119. |
[26] | Harding DJ, Lefsky MA, Parker GG, Blair JB (2001) Laser altimeter canopy height profiles: Methods and validation for closed-canopy, broadleaf forests. Remote Sensing of Environment, 76, 283-297. |
[27] | Hijmans RJ (2023) terra: Spatial Data Analysis. https://CRAN.R-project.org/package=terra. (accessed on 2024-04-17) |
[28] | Li LC, Zhou GS (2020) Response of forest vegetation to scenic activities in Wuyishan National Park. Acta Ecologica Sinica, 40, 7267-7276. (in Chinese with English abstract) |
[李丽纯, 周广胜 (2020) 武夷山国家公园森林植被对景区活动的响应. 生态学报, 40, 7267-7276.] | |
[29] | Li YC, Li ZX, Zhang XP, Yang AL, Gui J, Xue J (2023) Spatial and temporal changes in vegetation cover and response to human activities in Qilian Mountain National Park. Acta Ecologica Sinica, 43, 219-233. (in Chinese with English abstract) |
[李玉辰, 李宗省, 张小平, 杨安乐, 桂娟, 薛健 (2023) 祁连山国家公园植被时空变化及其对人类活动的响应. 生态学报, 43, 219-233.] | |
[30] | Liu H, Gu LJ, Ren RZ (2021) Research progress of forest parameter acquisition based on UAV remote sensing technology. Remote Sensing Technology and Application, 36, 489-501. (in Chinese with English abstract) |
[刘鹤, 顾玲嘉, 任瑞治 (2021) 基于无人机遥感技术的森林参数获取研究进展. 遥感技术与应用, 36, 489-501.] | |
[31] | Liu XZ, Ma S, Lu YC (2015) Research of forest naturalness assessment. Journal of Southwest Forestry University, 35, 99-105. (in Chinese with English abstract) |
[刘宪钊, 马帅, 陆元昌 (2015) 森林自然度评价研究. 西南林业大学学报, 35, 99-105.] | |
[32] | Malik ZA, Pandey R, Bhatt AB (2016) Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. Journal of Mountain Science, 13, 69-82. |
[33] | Matsuo T, Martínez-Ramos M, Bongers F, van der Sande MT, Poorter L (2021) Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 109, 2871-2884. |
[34] | Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135-141. |
[35] | Moravčík M, Sarvašová Z, Merganič J, Schwarz M (2010) Forest naturalness: Criterion for decision support in designation and management of protected forest areas. Environmental Management, 46, 908-919. |
[36] | Narine LL, Popescu SC, Malambo L (2023) A methodological framework for mapping canopy cover using ICESat-2 in the Southern USA. Remote Sensing, 15, 1548. |
[37] | Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: A global view of forest canopies. Science, 301, 183-186. |
[38] | Piao SL, Wang XH, Park T, Chen C, Lian X, He Y, Bjerke JW, Chen AP, Ciais P, Tømmervik H, Nemani RR, Myneni RB (2020) Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 14-27. |
[39] | Pinheiro J, Bates D, R Core Team (2023) nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme. (accessed on 2024-04-17) |
[40] | Prăvălie R, Sîrodoev I, Nita IA, Patriche C, Dumitraşcu M, Roşca B, Tişcovschi A, Bandoc G, Săvulescu I, Mănoiu V, Birsan MV (2022) NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987-2018. Ecological Indicators, 136, 108629. |
[41] | Ren SL, Chen XQ, An S (2017) Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. International Journal of Biometeorology, 61, 601-612. |
[42] | Roberts DA, Ustin SL, Ogunjemiyo S, Greenberg J, Dobrowski SZ, Chen JQ, Hinckley TM (2004) Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems, 7, 545-562. |
[43] | Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS Symposium (ed NASA), pp. 309-317. NASA SP-351, NASA, Washington, DC. |
[44] | Roussel JR, Auty D, Coops NC, Tompalski P, Goodbody TRH, Meador AS, Bourdon JF, de Boissieu F, Achim A (2020) lidR: An R package for analysis of airborne laser scanning (ALS) data. Remote Sensing of Environment, 251, 112061. |
[45] | Ruiz-Jaen MC, Potvin C (2011) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytologist, 189, 978-987. |
[46] | Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423. |
[47] | Thenkabail PS, Lyon JG, Huete A (2018) Hyperspectral Indices and Image Classifications for Agriculture and Vegetation. CRC Press, Boca Raton. |
[48] | Wang C, Jia D, Lei S, Numata I, Tian L (2023) Accuracy assessment and impact factor analysis of GEDI leaf area index product in temperate forest. Remote Sensing, 15, 1535. |
[49] | Wang JJ, Lan PT, Tao C, Jin Y (2023) Changes of landscape pattern in Qianjiangyuan National Park. Journal of Zhejiang Forestry Science and Technology, 43(1), 77-81. (in Chinese with English abstract) |
[汪家军, 兰朋涛, 陶聪, 金艳 (2023) 钱江源国家公园景观格局变化探析. 浙江林业科技, 43(1), 77-81.] | |
[50] | Wang Q, Adiku S, Tenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94, 244-255. |
[51] | Winter S (2012) Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry, 85, 293-304. |
[52] | Wu YL, Li JZ, Yang YP, Zhou ZX (2010) Research advances in assessment of forest naturalness. Chinese Journal of Ecology, 29, 2065-2071. (in Chinese with English abstract) |
[吴银莲, 李景中, 杨玉萍, 周志翔 (2010) 森林自然度评价研究进展. 生态学杂志, 29, 2065-2071.] | |
[53] | Yi X, Wang N, Ren H, Yu J, Hu T, Su Y, Mi XC, Guo Q, Ma KP (2022) From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. Journal of Ecology, 110, 457-465. |
[54] | Yu MJ, Hu ZH, Yu JP, Ding BY, Fang T (2001) Forest vegetation types in Gutianshan Natural Reserve in Zhejiang. Journal of Zhejiang University (Agriculture and Life Sciences), 27, 375-380. (in Chinese with English abstract) |
[于明坚, 胡正华, 余建平, 丁炳扬, 方腾 (2001) 浙江古田山自然保护区森林植被类型. 浙江大学学报(农业与生命科学版), 27, 375-380.] | |
[55] | Yue CY, Zheng YC, Xing YQ, Pang Y, Li SM, Cai LT, He HY (2020) Technical and application development study of space-borne LiDAR in forestry remote sensing. Infrared and Laser Engineering, 49(11), 105-114. (in Chinese with English abstract) |
[岳春宇, 郑永超, 邢艳秋, 庞勇, 李世明, 蔡龙涛, 何红艳 (2020) 星载激光遥感林业应用发展研究. 红外与激光工程, 49(11), 105-114.] | |
[56] | Zeng Y, Hao D, Park T, Zhu P, Huete A, Myneni R, Knyazikhin Y, Qi J, Nemani RR, Li F, Huang J, Gao Y, Li B, Ji F, Köhler P, Frankenberg C, Berry JA, Chen M (2023) Structural complexity biases vegetation greenness measures. Nature Ecology and Evolution, 7, 1790-1798. |
[57] | Zhang B (2017) Current status and future prospects of remote sensing. Bulletin of Chinese Academy of Sciences, 32, 774-784. (in Chinese with English abstract) |
[张兵 (2017) 当代遥感科技发展的现状与未来展望. 中国科学院院刊, 32, 774-784.] | |
[58] | Zhang B, Xu G, Jiao L, Liu J, Dong T, Li Z, Liu X, Liu Y (2019) The scale effects of the spatial autocorrelation measurement: Aggregation level and spatial resolution. International Journal of Geographical Information Science, 33, 945-966. |
[59] | Zhang Q, Zhang TJ, Chow WS, Xie X, Chen YJ, Peng CL (2015) Photosynthetic characteristics and light energy conversions under different light environments in five tree species occupying dominant status at different stages of subtropical forest succession. Functional Plant Biology, 42, 609-619. |
[1] | Xiao-Qing Wu Meihui Zhang Suting Ge Manshu Li Kun Song Guochun Shen Jian Zhang. Spatiotemporal Dynamics of Woody Plant Species Diversity and Aboveground Biomass during Near-Natural Forest Reconstruction in Shanghai: A Case Study from the Eco-Island in Minhang District [J]. Biodiv Sci, 2025, 33(5): 24444-. |
[2] | Jingyi Yuan, Xu Zhang, Zhenpeng Tian, Zizhe Wang, Yongping Gao, Dizhao Yao, Hongcan Guan, Wenkai Li, Jing Liu, Hong Zhang, Qin Ma. A comparison of methods for extracting tree species composition and quantitative characteristics in urban plant communities using UAV high-resolution RGB imagery and LiDAR point cloud [J]. Biodiv Sci, 2025, 33(4): 24237-. |
[3] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[4] | Kailun Xu, Xiaorong Chen, Minhua Zhang, Wanwan Yu, Sumei Wu, Zhicheng Zhu, Dingyun Chen, Rongguang Lan, Shu Dong, Yu Liu. Succession and topography jointly influence the diversity of plant sexual systems in the Baishanzu forest community [J]. Biodiv Sci, 2024, 32(12): 24338-. |
[5] | Jiayi Feng, Juyu Lian, Yujun Feng, Dongxu Zhang, Honglin Cao, Wanhui Ye. Effects of vertical stratification on community structure and functions in a subtropical, evergreen broad-leaved forest in the Dinghushan National Nature Reserve [J]. Biodiv Sci, 2024, 32(12): 24306-. |
[6] | Xing Chen, Shuwen Tu, Zun Dai, Shuang Gao, Youfang Wang, Shichen Xing, Bojia Wei, Luyan Tang, Ruiping Shi, Xiaorui Wang, Yongying Liu, Dongping Zhao, Xia Tang, Xue Yao, Mingshui Zhao, Hanxing Wu, Xiangbin Qi, Jian Zhang, Min Li, Jian Wang. Bryophytes diversity of Tianmushan National Nature Reserve, Zhejiang Province [J]. Biodiv Sci, 2023, 31(4): 22649-. |
[7] | Yujie Xue, Anpeng Cheng, Shan Li, Xiaojuan Liu, Jingwen Li. The effects of environment and species diversity on shrub survival in subtropical forests [J]. Biodiv Sci, 2023, 31(3): 22443-. |
[8] | Xin Yang, Zhiliang Yao, Bin Wang, Handong Wen, Yun Deng, Min Cao, Zhiming Zhang, Zhenghong Tan, Luxiang Lin. Driving effects of forest stand structure of a subtropical evergreen broad-leaved forest on species composition variation: From local to regional scales [J]. Biodiv Sci, 2023, 31(2): 22139-. |
[9] | Xiaofan Shang, Jian Zhang, Haojie Gao, Weipeng Ku, Yuke Bi, Xiupeng Li, Enrong Yan. Island area and climate jointly impact seed plant richness patterns across the Zhoushan Archipelago [J]. Biodiv Sci, 2023, 31(12): 23392-. |
[10] | Jiesheng Rao, Tao Yang, Xi Tian, Wencong Liu, Xiaofeng Wang, Hengjun Qian, Zehao Shen. Vertical structural characteristics of a semi-humid evergreen broad-leaved forest and common tree species based on a portable backpack LiDAR [J]. Biodiv Sci, 2023, 31(11): 23216-. |
[11] | Yuanfang Hu, Binqiang Li, Dan Liang, Xingquan Li, Lanxiang Liu, Jiawei Yang, Xu Luo. Effect of anthropogenic disturbance on Lady Amherst’s pheasant (Chrysolophus amherstiae) activity [J]. Biodiv Sci, 2022, 30(8): 21484-. |
[12] | Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu. Dynamics of soil nematode community during the succession of forests in southern subtropical China [J]. Biodiv Sci, 2022, 30(12): 22205-. |
[13] | Bochi Wang, Wen Pei, Jucai Yang, Yongjun Se, Xuezhu Li, Hairong Yang. Nesting habitat preference of the black-necked crane and influence of anthropogenic disturbance in Yanchiwan, Gansu [J]. Biodiv Sci, 2022, 30(1): 21241-. |
[14] | Jiayun He, Dong Zhang, Ling Chu, Yunzhi Yan. Anthropogenic disturbances affect the functional diversity of stream fishes and its longitudinal patterns in China [J]. Biodiv Sci, 2021, 29(7): 927-937. |
[15] | Zhenghua Xie, Youqiong Wang, Jun Cao, Jianmin Wang, Jiandong An. Ecological resilience of pollination in the face of pollinator decline: Content, mechanism and perspective [J]. Biodiv Sci, 2021, 29(7): 980-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn