Biodiv Sci ›› 2023, Vol. 31 ›› Issue (9): 23131. DOI: 10.17520/biods.2023131
• Original Papers: Microbial Diversity • Previous Articles Next Articles
Xiaomin Duan1,3, Jiajia Li1, Jingyu Li1,2,3,*(), Yannan Li1, Cunxia Yuan1, Yingna Wang1, Jianli Liu1,2,3
Received:
2023-04-26
Accepted:
2023-08-08
Online:
2023-09-20
Published:
2023-08-29
Contact:
*E-mail: lijingyu1986@126.com
Xiaomin Duan, Jiajia Li, Jingyu Li, Yannan Li, Cunxia Yuan, Yingna Wang, Jianli Liu. Microbial community diversity among different soil particle sizes of mossy biocrusts-soil continuum in the southeastern Tengger Desert[J]. Biodiv Sci, 2023, 31(9): 23131.
Fig. 1 Schematic diagram of soil treatment with different particle sizes of mossy biocrusts and biocrust sublayer. BS0.5, The soil of mossy crust sublayer with particle size greater than 0.5 mm and less than 1 mm; BS0.2, The soil of mossy crust sublayer with particle size greater than 0.2 mm and less than 0.5 mm; BS, The soil of mossy biocrust sublayer with particle size less than 0.2 mm; BSS0.2, The sifting soil of mossy biocrust layer with particle size greater than 0.2 mm and less than 1 mm; BSS, The sifting soil of mossy biocrust layer with particle size less than 0.2 mm; BAS, The adhesion soil of mossy biocrust layer with particle size less than 0.3 mm.
样品 Sample | 硝态氮 Nitrate nitrogen (mg/kg) | 铵态氮 Ammonium nitrogen (mg/kg) | 全氮 Total nitrogen (g/kg) | 有机碳 Organic carbon (g/kg) | 全磷 Total phosphorus (g/kg) |
---|---|---|---|---|---|
藓结皮下层土 Mossy biocrust sublayer soil (BS) | 2.462 ± 2.569b | 0.762 ± 0.016b | 0.076 ± 0.000c | 2.066 ± 0.231c | 0.140 ± 0.000b |
藓结皮抖落土 Mossy biocrust sifting soil (BSS) | 2.756 ± 3.001b | 0.732 ± 0.007b | 0.158 ± 0.000b | 3.834 ± 0.116b | 0.178 ± 0.000a |
藓结皮附着土 Mossy biocrust adhesion soil (BAS) | 4.981 ± 0.929a | 1.162 ± 0.038a | 0.240 ± 0.000a | 7.398 ± 0.196a | 0.190 ± 0.000a |
Table 1 Physicochemical properties of soil in this study
样品 Sample | 硝态氮 Nitrate nitrogen (mg/kg) | 铵态氮 Ammonium nitrogen (mg/kg) | 全氮 Total nitrogen (g/kg) | 有机碳 Organic carbon (g/kg) | 全磷 Total phosphorus (g/kg) |
---|---|---|---|---|---|
藓结皮下层土 Mossy biocrust sublayer soil (BS) | 2.462 ± 2.569b | 0.762 ± 0.016b | 0.076 ± 0.000c | 2.066 ± 0.231c | 0.140 ± 0.000b |
藓结皮抖落土 Mossy biocrust sifting soil (BSS) | 2.756 ± 3.001b | 0.732 ± 0.007b | 0.158 ± 0.000b | 3.834 ± 0.116b | 0.178 ± 0.000a |
藓结皮附着土 Mossy biocrust adhesion soil (BAS) | 4.981 ± 0.929a | 1.162 ± 0.038a | 0.240 ± 0.000a | 7.398 ± 0.196a | 0.190 ± 0.000a |
Fig. 2 α diversity of soil microbial communities on different particle sizes of mossy biocrusts. α diversity of bacterial communities: (a) Sobs index; (b) Chao 1 index; (c) Shannon index; (d) Simpson index. α diversity of fungal communities: (e) Sobs index; (f) Chao 1 index; (g) Shannon index; (h) Simpson index. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1. Different lowercase letters indicate significant differences (P < 0.05) in soil microbial diversity across soil particle sizes of mossy biocrusts.
Fig. 3 The community structure of soil bacteria and fungi on different particle sizes of mossy biocrusts. (a) The community structure of bacterial phyla; (b) The community structure of fungal phyla; (c) The community structure of bacterial genera; (d) The community structure of fungal genera. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1.
Fig. 4 Venn diagram and principal coordinate analysis (PCoA) of soil bacterial and fungal communities in mossy biocrusts with different particle sizes. (a) Bacterial Venn diagram; (b) Fungal Venn diagram; (c) Bacterial PCoA analysis; (d) Fungal PCoA analysis. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1.
Fig. 5 Differences in the relative abundance of important soil bacteria and fungi based on genus level in mossy biocrusts with different particle sizes. (a) Bacteria; (b) Fungi. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1. P < 0.01 indicates significant difference.
Fig. 6 Relative abundance differences between mossy biocrusts and biocrust sublayer’s microbial communities based on genus level. (a) Bacteria; (b) Fungi. B, Biocrust layer (BSS0.2, BSS and BAS); BS, Biocrust sublayer (BS0.5, BS0.2 and BS); P < 0.01 indicates significant difference.
属性 Property | BS0.5 | BS0.2 | BS | BSS0.2 | BSS | BAS | |
---|---|---|---|---|---|---|---|
细菌 Bacteria | 边 Edge | 1,511 | 787 | 915 | 816 | 1,104 | 1,564 |
节点 Note | 194 | 162 | 170 | 158 | 182 | 196 | |
平均聚类数 Average clustering coefficient | 0.609 | 0.546 | 0.538 | 0.576 | 0.551 | 0.547 | |
密度 Density | 0.081 | 0.06 | 0.064 | 0.066 | 0.067 | 0.082 | |
平均路径长度 Average path length | 3.681 | 3.936 | 3.765 | 3.833 | 3.657 | 3.574 | |
平均度 Average degree | 15.77 | 9.716 | 10.765 | 10.329 | 12.132 | 15.959 | |
真菌 Fungi | 边 Edge | 64 | 46 | 72 | 110 | 249 | 397 |
节点 Note | 38 | 37 | 46 | 64 | 90 | 94 | |
平均聚类数 Average clustering coefficient | 0.721 | 0.548 | 0.608 | 0.561 | 0.522 | 0.565 | |
密度 Density | 0.091 | 0.069 | 0.608 | 0.055 | 0.062 | 0.091 | |
平均路径长度 Average path length | 2.217 | 4.133 | 3.826 | 5.430 | 4.448 | 3.970 | |
平均度 Average degree | 3.368 | 2.486 | 3.13 | 3.438 | 5.533 | 8.447 |
Table 2 Parameters of soil microbial network for different particle sizes of mossy biocrusts
属性 Property | BS0.5 | BS0.2 | BS | BSS0.2 | BSS | BAS | |
---|---|---|---|---|---|---|---|
细菌 Bacteria | 边 Edge | 1,511 | 787 | 915 | 816 | 1,104 | 1,564 |
节点 Note | 194 | 162 | 170 | 158 | 182 | 196 | |
平均聚类数 Average clustering coefficient | 0.609 | 0.546 | 0.538 | 0.576 | 0.551 | 0.547 | |
密度 Density | 0.081 | 0.06 | 0.064 | 0.066 | 0.067 | 0.082 | |
平均路径长度 Average path length | 3.681 | 3.936 | 3.765 | 3.833 | 3.657 | 3.574 | |
平均度 Average degree | 15.77 | 9.716 | 10.765 | 10.329 | 12.132 | 15.959 | |
真菌 Fungi | 边 Edge | 64 | 46 | 72 | 110 | 249 | 397 |
节点 Note | 38 | 37 | 46 | 64 | 90 | 94 | |
平均聚类数 Average clustering coefficient | 0.721 | 0.548 | 0.608 | 0.561 | 0.522 | 0.565 | |
密度 Density | 0.091 | 0.069 | 0.608 | 0.055 | 0.062 | 0.091 | |
平均路径长度 Average path length | 2.217 | 4.133 | 3.826 | 5.430 | 4.448 | 3.970 | |
平均度 Average degree | 3.368 | 2.486 | 3.13 | 3.438 | 5.533 | 8.447 |
Fig. 7 Soil microbial co-occurrence network with different particle sizes in mossy biocrusts. The red edges represent positive correlation, the green edges represent negative correlation; The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1.
[1] |
Bello A, Han Y, Zhu HF, Deng LT, Yang W, Meng QX, Sun Y, Egbeagu UU, Sheng SY, Wu XT, Jiang X, Xu XH (2020) Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. Science of the Total Environment, 721, 137759.
DOI URL |
[2] |
Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biology and Biochemistry, 42, 405-417.
DOI URL |
[3] |
Cheng C, Li YJ, Long MZ, Gao M, Zhang YD, Lin JY, Li XN (2020) Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness. Plant and Soil, 475, 153-168.
DOI |
[4] |
Dun YQ, Qu JJ, Kang WY, Wang T (2021) Progress and prospect of research on the protective system of Shapotou section of the Baotou-Lanzhou Railway. Journal of Desert Research, 41, 66-74. (in Chinese with English abstract)
DOI |
[顿耀权, 屈建军, 康文岩, 王涛 (2021) 包兰铁路沙坡头段防护体系研究综述. 中国沙漠, 41, 66-74.]
DOI |
|
[5] | Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, USA, 112, 911-920. |
[6] |
Ehrlich R, Schulz S, Schloter M, Steinberger Y (2015) Effect of slope orientation on microbial community composition in different particle size fractions from soils obtained from desert ecosystems. Biology and Fertility of Soils, 51, 507-510.
DOI URL |
[7] |
Fan KK, Cardona C, Li YT, Shi Y, Xiang XJ, Shen CC, Wang HF, Gilbert JA, Chu HY (2017) Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology and Biochemistry, 113, 275-284.
DOI URL |
[8] |
Finzi AC, Austin AT, Cleland EE, Frey SD, Houlton BZ, Wallenstein MD (2011) Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Frontiers in Ecology and the Environment, 9, 61-67.
DOI URL |
[9] | Gao GL, Ding GD, Zhao YY, Feng W, Bao YF, Liu ZW (2014) Effect of biological soil crusts on soil particle size characteristics in Mu Us sand land. Transactions of the Chinese Society of Agricultural Machinery, 45, 115-120. (in Chinese with English abstract) |
[高广磊, 丁国栋, 赵媛媛, 冯薇, 包岩峰, 刘紫葳 (2014) 生物结皮发育对毛乌素沙地土壤粒度特征的影响. 农业机械学报, 45, 115-120.] | |
[10] |
Han S, Delgado-Baquerizo M, Luo XS, Liu YR, Van Nostrand JD, Chen WL, Zhou JZ, Huang QY (2021) Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biology and Biochemistry, 154, 108143.
DOI URL |
[11] |
Hemkemeyer M, Christensen BT, Martens R, Tebbe CC (2015) Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biology and Biochemistry, 90, 255-265.
DOI URL |
[12] | Jiao S, Peng ZH, Qi JJ, Gao JM, Wei GH (2021) Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. mSystems, 6, e01052-20. |
[13] |
Jin XY, Zhang XC, Jin D, Chen Y, Li JY (2020) Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger Desert. Biodiversity Science, 28, 718-726. (in Chinese with English abstract)
DOI |
[靳新影, 张肖冲, 金多, 陈韵, 李靖宇 (2020) 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征. 生物多样性, 28, 718-726.]
DOI |
|
[14] |
Lan SB, Wu L, Zhang DL, Hu CX (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environmental Earth Sciences, 65, 77-88.
DOI URL |
[15] | Li JY, Zhang X (2017) Microbial diversity analysis of different biological soil in Tengger Desert. Ecological Science, 36, 36-42. (in Chinese with English abstract) |
[李靖宇, 张琇 (2017) 腾格里沙漠不同生物土壤结皮微生物多样性分析. 生态科学, 36, 36-42.] | |
[16] |
Li XR, Jia RL, Zhang ZS, Zhang P, Hui R (2018) Hydrological response of biological soil crusts to global warming: A ten-year simulative study. Global Change Biology, 24, 4960-4971.
DOI URL |
[17] | Li XR, Zhang YM, Zhao YG (2009) A study of biological soil crusts: Recent development, trend and prospect. Advances in Earth Science, 24, 11-24. (in Chinese with English abstract) |
[李新荣, 张元明, 赵允格 (2009) 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.]
DOI |
|
[18] |
Ling N, Wang TT, Kuzyakov Y (2022) Rhizosphere bacteriome structure and functions. Nature Communications, 13, 836.
DOI PMID |
[19] |
Liu Z, Ye XW, Wang JP, Cheng YT, Qian L, Xiao JS, Wu L (2022) Seasonal dynamics of the physicochemical properties of biological crusts exopolysaccharides and the microbial community structure. Chinese Journal of Applied Ecology, 33, 1801-1809. (in Chinese with English abstract)
DOI |
[刘哲, 叶兴旺, 王吉平, 程永韬, 钱隆, 肖敬尚, 吴丽 (2022) 生物结皮胞外多糖理化特性及菌群结构的季节动态. 应用生态学报, 33, 1801-1809.]
DOI |
|
[20] |
Luan HA, Zhang XM, Liu YR, Huang SH, Chen J, Guo TF, Liu Y, Guo SP, Qi GH (2022) The microbial-driven C dynamics within soil aggregates in walnut orchards of different ages based on microbial biomarkers analysis. Catena, 211, 105999.
DOI URL |
[21] | Pang JW, Bu CF, Guo Q, Ju MC, Jiang M, Mo QX, Wang HM (2022) Spatial distribution and the influencing factor of organic carbon of biological crusts on regional scale in Mu Us sandy land. Chinese Journal of Applied Ecology, 33, 1755-1763. (in Chinese with English abstract) |
[庞景文, 卜崇峰, 郭琦, 鞠孟辰, 江熳, 莫秋霞, 王鹤鸣 (2022) 毛乌素沙地区域尺度生物结皮有机碳空间分布特征及其影响因素. 应用生态学报, 33, 1755-1763.]
DOI |
|
[22] |
Rabbi SMF, Wilson BR, Lockwood PV, Daniel H, Young IM (2015) Aggregate hierarchy and carbon mineralization in two oxisols of New South Wales, Australia. Soil and Tillage Research, 146, 193-203.
DOI URL |
[23] |
Ren C, Liu KS, Dou PP, Li JH, Wang K (2022) The changes in soil microorganisms and soil chemical properties affect the heterogeneity and stability of soil aggregates before and after grassland conversion. Agriculture, 12, 307.
DOI URL |
[24] |
Seaton FM, George PBL, Lebron I, Jones DL, Creer S, Robinson DA (2020) Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, 107766.
DOI URL |
[25] |
She WW, Chen N, Zhang YQ, Qin SG, Bai YX, Feng W, Lai ZR, Qiao YG, Liu L, Zhang WJ, Miao C (2022) Precipitation and nitrogen deposition alter biocrust-vascular plant coexistence in a desert ecosystem: Threshold and mechanisms. Journal of Ecology, 110, 772-783.
DOI URL |
[26] | Shen XL, Wang LL, Zhao JN, Li G, Xiu WM, Yang QC, Zhang GL (2021) Effects of tillage managements on soil microbial community structure in soil aggregates of fluvo-aquic soil. Chinese Journal of Applied Ecology, 32, 2713-2721. (in Chinese with English abstract) |
[沈晓琳, 王丽丽, 赵建宁, 李刚, 修伟明, 杨其琛, 张贵龙 (2021) 耕作方式对潮土土壤团聚体微生物群落结构的影响. 应用生态学报, 32, 2713-2721.]
DOI |
|
[27] |
Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7-31.
DOI URL |
[28] |
Srivastava P, Singh R, Bhadouria R, Tripathi S, Raghubanshi AS (2020) Temporal change in soil physicochemical, microbial, aggregate and available C characteristic in dry tropical ecosystem. Catena, 190, 104553.
DOI URL |
[29] | Tang K, Gao XD, Jia LJ, Xu HX, Li H, Meng JY, Tao Y, Feng FY (2018) Community structure and diversity of diazotrophs in biological soil crusts and soil underneath crust of Hunshandake deserts. Microbiology China, 45, 293-301. (in Chinese with English abstract) |
[唐凯, 高晓丹, 贾丽娟, 徐慧欣, 李蘅, 孟建宇, 陶羽, 冯福应 (2018) 浑善达克沙地生物土壤结皮及其下层土壤中固氮细菌群落结构和多样性. 微生物学通报, 45, 293-301.] | |
[30] |
Wu LK, Lin XM, Lin WX (2014) Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310. (in Chinese with English abstract)
DOI |
[吴林坤, 林向民, 林文雄 (2014) 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[31] | Wu N, Zhang YM, Pan HX, Qiu D (2014) Characterization of the diversity of culturable bacteria in moss crusts of the Gurbantunggut Desert. Arid Land Geography, 37, 250-258. (in Chinese with English abstract) |
[吴楠, 张元明, 潘惠霞, 邱东 (2014) 古尔班通古特沙漠苔藓结皮中可培养细菌多样性特征. 干旱区地理, 37, 250-258.] | |
[32] | Xie T, Li YF, Li XJ (2021) Organic carbon mineralization of biological soil crusts and subsoils in the revegetated areas of the southeast fringe of the Tengger Desert. Acta Ecologica Sinica, 41, 2339-2348. (in Chinese with English abstract) |
[谢婷, 李云飞, 李小军 (2021) 腾格里沙漠东南缘固沙植被区生物土壤结皮及下层土壤有机碳矿化特征. 生态学报, 41, 2339-2348.] | |
[33] |
Xie ZM, Liu YD, Hu CX, Chen LZ, Li DH (2007) Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biology and Biochemistry, 39, 567-572.
DOI URL |
[34] | Yan DR, Zhang SN, Wu ZT (2019) Characteristics of humus composition in crusts of bryophytes. Arid Land Geography, 42, 1354-1358. (in Chinese with English abstract) |
[闫德仁, 张胜男, 吴振廷 (2019) 苔藓生物结皮层腐殖质组成变化特征研究. 干旱区地理, 42, 1354-1358.] | |
[35] |
Ye F, Wang XX, Wang Y, Wu SJ, Wu JP, Hong YG (2021) Different pioneer plant species have similar rhizosphere microbial communities. Plant and Soil, 464, 165-181.
DOI |
[36] |
Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.
DOI |
[37] | Zhang JH, Wang JY, Meng ZX, He J, Dong ZH, Liu KQ, Chen WQ (2022) Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow. Acta Ecologica Sinica, 42, 2542-2558. (in Chinese with English abstract) |
[张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青 (2022) 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性. 生态学报, 42, 2542-2558.] | |
[38] |
Zhang KP, Adams JM, Shi Y, Yang T, Sun RB, He D, Ni YY, Chu HY (2017) Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environmental Microbiology, 19, 3649-3659.
DOI PMID |
[39] | Zhang YM, Cao T, Pan BR (2002) A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 22, 1129-1134. (in Chinese with English abstract) |
[张元明, 曹同, 潘伯荣 (2002) 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 22, 1129-1134.] | |
[40] | Zhao YL, Zhang XJ, Jin YD, Feng FY (2011) Characterization of fungi community structure in biological crusts from Mu Us Desert. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 32, 170-174. (in Chinese with English abstract) |
[赵宇龙, 张晓军, 金一荻, 冯福应 (2011) 毛乌素沙漠生物土壤结皮真菌群落多样性分析. 内蒙古农业大学学报(自然科学版), 32, 170-174.] | |
[41] |
Zheng JL, Li SS, Peng CR, Li DH (2017) The influence of desiccation on the recovery process of nitrogenase activity in restored biological soil crusts. Science China: Life Sciences, 60, 1283-1285.
DOI URL |
[42] | Zhou H, Liu YX (2022) Effects of crusts on physicochemical properties of shallow soil in alpine sandy area. Journal of Arid Land Resources and Environment, 36, 154-160. (in Chinese with English abstract) |
[周虹, 刘雲祥 (2022) 高寒沙区土壤结皮对浅层土壤理化性质的影响. 干旱区资源与环境, 36, 154-160.] |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn