
生物多样性 ›› 2025, Vol. 33 ›› Issue (9): 25221. DOI: 10.17520/biods.2025221 cstr: 32101.14.biods.2025221
收稿日期:2025-06-15
接受日期:2025-09-12
出版日期:2025-09-20
发布日期:2025-11-03
通讯作者:
*E-mail: tangju@ahnu.edu.cn
基金资助:
Xiangxiang Ge(
), Yujie Xu(
), Ju Tang*(
)(
)
Received:2025-06-15
Accepted:2025-09-12
Online:2025-09-20
Published:2025-11-03
Contact:
*E-mail: tangju@ahnu.edu.cn
Supported by:摘要: 植物的花朝向受生物和非生物因素影响, 反映了植物对环境的适应, 不同的花朝向可能影响植物花部性状及传粉者访花进而影响繁殖成功。然而, 木本植物个体内的花朝向变异对传粉者访花及传粉效率影响的研究尚少。朱砂梅(Prunus mume f. purpurea)是具重要观赏和经济价值的木本植物, 单株上存在3种朝向的花型(朝上型、水平型和朝下型), 是比较不同花朝向对传粉者访花行为和传粉效率影响的理想材料。本文调查了朱砂梅不同植株上花朝向的比例, 测定了花部性状、单花寿命、花粉活力和柱头可授性, 并研究了其传粉特性。结果表明: 朱砂梅植株中朝下型花的占比(53.2% ± 1.8%)极显著高于水平型花(29.7% ± 1.7%)和朝上型花(17.1% ± 1.3%) (P < 0.001)。不同朝向花的花部性状不同, 朝下型花的雄性资源投入(雄蕊长度、数量和花粉量)极显著高于水平型花和朝上型花(P < 0.001), 且单花期更长, 其柱头可授性和花粉活力更强。中华蜜蜂(Apis cerana)是朱砂梅的主要传粉者, 偏好访问朝下型花, 表现为朝下型花的访花频率更高、单花访问时间更长以及一次移出与落置的花粉量更多。综上, 朱砂梅不同朝向花的花部性状分化影响了传粉者访花, 朝下型花的高占比优势可能是朱砂梅提升繁殖成功率的一种适应性策略。
葛湘湘, 徐玉洁, 汤菊 (2025) 朱砂梅花朝向变异影响传粉者访花行为和传粉效率. 生物多样性, 33, 25221. DOI: 10.17520/biods.2025221.
Xiangxiang Ge, Yujie Xu, Ju Tang (2025) Effect of flower orientation variation on pollinator foraging behavior and pollination efficiency in Prunus mume f. purpurea. Biodiversity Science, 33, 25221. DOI: 10.17520/biods.2025221.
图1 朱砂梅花部形态、传粉者访花、性状测量方法及开花进程。(A)植株枝条上自然生长的3种朝向的花(白色箭头示); (B-D)中华蜜蜂访问朝上型(B)、水平型(C)及朝下型(D)花朵; (E)花部性状测量参数: a. 花萼长; b. 花萼宽; c. 花冠直径; d. 花瓣长; e. 花瓣宽; f. 雄蕊长; g. 花药长; h. 雌蕊长。(F)不同开花时期的花形态变化: I. 花苞期; II. 始花期; III. 盛花期; IV. 末花期; V. 枯萎期。
Fig. 1 Floral morphology, pollinator visitation, measurement methodology and flowering process in Prunus mume f. purpurea. (A) Naturally growing flowers with three orientations (indicated by white arrows) on a branch. (B-D) Apis cerana visit upward (B), horizontal (C), and downward (D) flowers. (E) Measurements of floral traits: a. Calyx length; b. Calyx width; c. Corolla diameter; d. Petal length; e. Petal width; f. Stamen length; g. Anther length; h. Pistil length. (F) The flower morphology changes at different flowering dynamic periods: I. Bud stage; II. Earlier flowering stage; III. Blooming stage; IV. Late flowering stage; V. Withering stage.
| 花部性状 Floral traits | 样本量 N | 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | Wald χ2 | df | P |
|---|---|---|---|---|---|---|---|
| 花萼长 Calyx length (mm) | 30 | 4.86 ± 0.09a | 4.49 ± 0.09b | 4.51 ± 0.09b | 10.069 | 2 | 0.007 |
| 花萼宽 Calyx width (mm) | 30 | 3.91 ± 0.07a | 3.52 ± 0.06b | 3.42 ± 0.07b | 31.355 | 2 | < 0.001 |
| 花冠直径 Corolla diameter (mm) | 30 | 24.81 ± 0.30a | 24.12 ± 0.28a | 24.89 ± 0.30a | 4.131 | 2 | 0.127 |
| 花瓣长 Petal length (mm) | 30 | 10.24 ± 0.09a | 9.91 ± 0.17ab | 9.64 ± 0.16b | 8.821 | 2 | 0.012 |
| 花瓣宽 Petal width (mm) | 30 | 10.20 ± 0.09a | 9.54 ± 0.15b | 9.30 ± 0.17b | 21.932 | 2 | < 0.001 |
| 雄蕊长 Stamen length (mm) | 30 | 8.81 ± 0.10b | 8.82 ± 0.20b | 9.51 ± 0.14a | 13.576 | 2 | 0.001 |
| 花药长 Anther length (mm) | 30 | 0.51 ± 0.10a | 0.50 ± 0.01a | 0.38 ± 0.03b | 36.420 | 2 | < 0.001 |
| 雄蕊数目 Number of stamens | 30 | 50.27 ± 0.44b | 47.47 ± 0.66c | 57.57 ± 0.57a | 166.383 | 2 | < 0.001 |
| 雌蕊长 Pistil length (mm) | 30 | 10.26 ± 0.19a | 9.79 ± 0.32a | 10.71 ± 0.21a | 5.745 | 2 | 0.057 |
| 花粉数 Number of pollen grains | 25 | 26,216.0 ± 921.3b | 29,944.0 ± 872.7a | 32,080.0 ± 903.3a | 21.524 | 2 | < 0.001 |
| 花粉体积 Pollen volume (μm3) | 40 | 12,930.03 ± 355.76a | 13,166.58 ± 476.43a | 13,819.83 ± 388.69a | 2.525 | 2 | 0.283 |
| 胚珠数 Number of ovules | 20 | 2.1 ± 0.1a | 2.0 ± 0.1a | 2.0 ± 0.1a | 1.307 | 2 | 0.520 |
| 单花寿命 Flower longevity (d) | 17 | 5.47 ± 0.40c | 6.76 ± 0.49b | 8.41 ± 0.48a | 20.689 | 2 | < 0.001 |
表1 朱砂梅朝上型、水平型和朝下型花的花部性状比较(平均值 ± 标准误)。加粗表示朝下型花的性状显著大于朝上型花。花部特征样本量记为N, 不同小写字母表明不同性状有显著差异(P < 0.05)。
Table 1 Comparisons of floral traits among upward, horizontal, and downward flowers of Prunus mume f. purpurea (mean ± SE). Floral traits of downward flowers significantly larger than those of upward flowers are in bold. The sample size of floral characters is N. Different lowercase letters indicate significant differences in flower traits (P < 0.05).
| 花部性状 Floral traits | 样本量 N | 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | Wald χ2 | df | P |
|---|---|---|---|---|---|---|---|
| 花萼长 Calyx length (mm) | 30 | 4.86 ± 0.09a | 4.49 ± 0.09b | 4.51 ± 0.09b | 10.069 | 2 | 0.007 |
| 花萼宽 Calyx width (mm) | 30 | 3.91 ± 0.07a | 3.52 ± 0.06b | 3.42 ± 0.07b | 31.355 | 2 | < 0.001 |
| 花冠直径 Corolla diameter (mm) | 30 | 24.81 ± 0.30a | 24.12 ± 0.28a | 24.89 ± 0.30a | 4.131 | 2 | 0.127 |
| 花瓣长 Petal length (mm) | 30 | 10.24 ± 0.09a | 9.91 ± 0.17ab | 9.64 ± 0.16b | 8.821 | 2 | 0.012 |
| 花瓣宽 Petal width (mm) | 30 | 10.20 ± 0.09a | 9.54 ± 0.15b | 9.30 ± 0.17b | 21.932 | 2 | < 0.001 |
| 雄蕊长 Stamen length (mm) | 30 | 8.81 ± 0.10b | 8.82 ± 0.20b | 9.51 ± 0.14a | 13.576 | 2 | 0.001 |
| 花药长 Anther length (mm) | 30 | 0.51 ± 0.10a | 0.50 ± 0.01a | 0.38 ± 0.03b | 36.420 | 2 | < 0.001 |
| 雄蕊数目 Number of stamens | 30 | 50.27 ± 0.44b | 47.47 ± 0.66c | 57.57 ± 0.57a | 166.383 | 2 | < 0.001 |
| 雌蕊长 Pistil length (mm) | 30 | 10.26 ± 0.19a | 9.79 ± 0.32a | 10.71 ± 0.21a | 5.745 | 2 | 0.057 |
| 花粉数 Number of pollen grains | 25 | 26,216.0 ± 921.3b | 29,944.0 ± 872.7a | 32,080.0 ± 903.3a | 21.524 | 2 | < 0.001 |
| 花粉体积 Pollen volume (μm3) | 40 | 12,930.03 ± 355.76a | 13,166.58 ± 476.43a | 13,819.83 ± 388.69a | 2.525 | 2 | 0.283 |
| 胚珠数 Number of ovules | 20 | 2.1 ± 0.1a | 2.0 ± 0.1a | 2.0 ± 0.1a | 1.307 | 2 | 0.520 |
| 单花寿命 Flower longevity (d) | 17 | 5.47 ± 0.40c | 6.76 ± 0.49b | 8.41 ± 0.48a | 20.689 | 2 | < 0.001 |
| 时期 Flowering stages | 花形态变化 Changes in flower morphology | 开花动态(开放的天数) (d) Flowering dynamics (number of days) (d) | ||
|---|---|---|---|---|
| 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | ||
| 花苞期 Bud stage (I) | 花被片紧包, 柱头伸出不明显, 花药呈黄色。 The perianth segments are tightly wrapped, the stigma does not protrude prominently, and the anthers are yellow. | 0 | 0 | 0 |
| 始花期 Earlier flowering stage (II) | 花被片包裹, 花冠口微微张开, 花柱逐渐伸长且已明显可见, 雄蕊开始平展。 The perianth segments are wrapped, the corolla is slightly open, the style gradually elongates so that it is clearly visible, and the stamens begin to stretch flat. | 2-3 | 2-3 | 2-4 |
| 盛花期 Blooming stage (III) | 花被片松动展开, 花柱伸长至最长, 柱头具有黏性; 雄蕊逐渐平展, 花药开裂并外张, 散粉后逐渐内收。 The perianth segments loosen and unfold, the style elongates to its maximum length, and the stigma becomes sticky. The stamens gradually stretch flat, the anthers crack open outward, and they gradually adduct after pollen dispersal. | 3-4 | 3-5 | 4-6 |
| 末花期 Late flowering stage (IV) | 花瓣部分掉落, 花色变浅, 雄蕊开裂散粉后卷曲并包围花柱, 柱头开始褐化。 Part of the petals fall off, and the flower color becomes lighter. Following cracking and pollen dispersal, the stamens curl up and surround the style, and the stigma begins to brown. | 4-5 | 5-6 | 7-8 |
| 枯萎期 Withering stage (V) | 花瓣呈褐色枯萎, 雌蕊直立外伸, 柱头褐变。 The petals turn brown and wither. The pistil remains erect and elongates, while the stigma undergoes browning. | 5-6 | 6-7 | 8-9 |
表2 朱砂梅朝上型、水平型和朝下型花的开花动态、形态变异及持续时间
Table 2 Morphological variation and timing of flowering dynamic stages in upward, horizontal, and downward flowers of Prunus mume f. purpurea
| 时期 Flowering stages | 花形态变化 Changes in flower morphology | 开花动态(开放的天数) (d) Flowering dynamics (number of days) (d) | ||
|---|---|---|---|---|
| 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | ||
| 花苞期 Bud stage (I) | 花被片紧包, 柱头伸出不明显, 花药呈黄色。 The perianth segments are tightly wrapped, the stigma does not protrude prominently, and the anthers are yellow. | 0 | 0 | 0 |
| 始花期 Earlier flowering stage (II) | 花被片包裹, 花冠口微微张开, 花柱逐渐伸长且已明显可见, 雄蕊开始平展。 The perianth segments are wrapped, the corolla is slightly open, the style gradually elongates so that it is clearly visible, and the stamens begin to stretch flat. | 2-3 | 2-3 | 2-4 |
| 盛花期 Blooming stage (III) | 花被片松动展开, 花柱伸长至最长, 柱头具有黏性; 雄蕊逐渐平展, 花药开裂并外张, 散粉后逐渐内收。 The perianth segments loosen and unfold, the style elongates to its maximum length, and the stigma becomes sticky. The stamens gradually stretch flat, the anthers crack open outward, and they gradually adduct after pollen dispersal. | 3-4 | 3-5 | 4-6 |
| 末花期 Late flowering stage (IV) | 花瓣部分掉落, 花色变浅, 雄蕊开裂散粉后卷曲并包围花柱, 柱头开始褐化。 Part of the petals fall off, and the flower color becomes lighter. Following cracking and pollen dispersal, the stamens curl up and surround the style, and the stigma begins to brown. | 4-5 | 5-6 | 7-8 |
| 枯萎期 Withering stage (V) | 花瓣呈褐色枯萎, 雌蕊直立外伸, 柱头褐变。 The petals turn brown and wither. The pistil remains erect and elongates, while the stigma undergoes browning. | 5-6 | 6-7 | 8-9 |
图2 中华蜜蜂访问朱砂梅3种朝向花的单花访问时间(A)和访花频率(B)比较(平均值 ± 标准误)。不同小写字母表示不同花朝向存在显著差异(P < 0.05)。
Fig. 2 Comparison of visit duration per flower (A) and visit frequency (B) of Apis cerana to three orientations of Prunus mume f. purpurea (mean ± SE). Different lowercase letters indicate significant differences among different flower orientations (P < 0.05).
图3 中华蜜蜂访问朱砂梅3种朝向花的一次移出花粉量(A)和一次落置花粉量(B)比较。所有箱线图均基于原始数据(实心点)绘制, 显示了均值(三角形)、中位数(中间横线)、四分位距(箱体上边缘), 1.5倍四分位距(须线)和异常值。不同小写字母表示不同花朝向存在显著差异(P < 0.05)。
Fig. 3 Comparison of pollen removal per visit (A) and pollen deposition on the stigmas per visit (B) by Apis cerana to three orientations of Prunus mume f. purpurea. All panels display box plots based on raw data (solid dots), indicating the mean (triangles), median (horizontal lines), interquartile range (the upper and lower edges of the box), 1.5 times the interquartile range (whiskers) and outliers. Different lowercase letters indicate significant differences among different flower orientations (P < 0.05).
| [1] |
Aguilar-García SA, Figueroa-Castro DM, Valverde PL, Vite F (2018) Effect of flower orientation on the male and female traits of Myrtillocactus geometrizans (Cactaceae). Plant Biology, 20, 531-536.
DOI PMID |
| [2] |
Armbruster WS, Muchhala N (2020) Floral reorientation: The restoration of pollination accuracy after accidents. New Phytologist, 227, 232-243.
DOI PMID |
| [3] |
Castro S, Silveira P, Navarro L (2008) Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048.
DOI URL |
| [4] | Charnov EL (1982) The Theory of Sex Allocation. Princeton University Press, Princeton. |
| [5] | Chen JY (1962) Studies on Chinese Mei flowers (Prunus mume). II. Classification of Mei cultivars. Acta Horticulturae Sinica, 1, 337-350. (in Chinese) |
| [陈俊愉 (1962) 中国梅花的研究. II. 中国梅花的品种分类. 园艺学报, 1, 337-350.] | |
| [6] |
Cnaani J, Thomson JD, Papaj DR (2006) Flower choice and learning in foraging bumblebees: Effects of variation in nectar volume and concentration. Ethology, 112, 278-285.
DOI URL |
| [7] |
Creux NM, Brown RI, Garner AG, Saeed S, Scher CL, Holalu SV, Yang D, Maloof JN, Blackman BK, Harmer SL (2021) Flower orientation influences floral temperature, pollinator visits and plant fitness. New Phytologist, 232, 868-879.
DOI URL |
| [8] |
Fenster CB, Armbruster WS, Dudash MR (2009) Specialization of flowers: Is floral orientation an overlooked first step? New Phytologist, 183, 502-506.
DOI PMID |
| [9] |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403.
DOI URL |
| [10] | Fulton M, Hodges SA (1999) Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proceedings of the Royal Society B: Biological Sciences, 266, 2247-2252. |
| [11] |
Gao F, Segbo S, Huang X, Zhou PY, Ma CD, Ma YF, Lin XM, Bai Y, Tan W, Coulibaly D, Ouma KO, Iqbal S, Ni ZJ, Shi T, Gao ZH (2025) PmRGL2/PmFRL3-PmSVP module regulates flowering time in Japanese apricot (Prunus mume Sieb. et Zucc.). Plant, Cell and Environment, 48, 3415-3430.
DOI URL |
| [12] | Gao ZH, Luo WJ (2019) Origin and evolution of Prunus mume. In: The Prunus mume Genome (ed. Gao ZH), pp. 5-7. Springer, Cham. |
| [13] | Harder LD, Johnson SD (2023) Beyond pollen : ovule ratios: Evolutionary consequences of pollinator dependence and pollination efficiency for pollen and ovule production in angiosperms. American Journal of Botany, 110, e16177. |
| [14] |
Herrera CM (1995) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology, 76, 218-228.
DOI URL |
| [15] |
Herrera CM (2017) The ecology of subindividual variability in plants: Patterns, processes, and prospects. Web Ecology, 17, 51-64.
DOI URL |
| [16] | Hodges SA, Whittall JB, Fulton M, Yang JY (2002) Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. The American Naturalist, 159, S51-S60. |
| [17] |
Huang SQ, Takahashi Y, Dafni A (2002) Why does the flower stalk of Pulsatilla cernua (Ranunculaceae) bend during anthesis? American Journal of Botany, 89, 1599-1603.
DOI URL |
| [18] | Jiang LB, Chen JY (2012) Distribution of wild Mei in southern Anhui Province and northern Jiangxi Province, eastern China. Journal of Beijing Forestry University, 34(S1), 56-60. (in Chinese with English abstract) |
| [姜良宝, 陈俊愉 (2012) 皖南、赣北地区梅野生资源调查. 北京林业大学学报, 34(S1), 56-60.] | |
| [19] |
Jirgal N, Ohashi K (2023) Effects of floral symmetry and orientation on the consistency of pollinator entry angle. The Science of Nature, 110, 19.
DOI |
| [20] |
Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL (2005) Pollen limitation of plant reproduction: Pattern and process. Annual Review of Ecology, Evolution, and Systematics, 36, 467-497.
DOI URL |
| [21] |
Li P, Zheng TC, Li LL, Liu WC, Qiu LK, Ahmad S, Wang J, Cheng TR, Zhang QX (2023) Integration of chromatin accessibility and gene expression reveals new regulators of cold hardening to enhance freezing tolerance in Prunus mume. Journal of Experimental Botany, 74, 2173-2187.
DOI URL |
| [22] |
Lin SY, Forrest JRK (2019) The function of floral orientation in bluebells: Interactions with pollinators and rain in two species of Mertensia (Boraginaceae). Journal of Plant Ecology, 12, 113-123.
DOI URL |
| [23] |
LoPresti EF, Goidell J, Mola JM, Page ML, Specht CD, Stuligross C, Weber MG, Williams NM, Karban R (2020) A lever action hypothesis for pendulous hummingbird flowers: Experimental evidence from a columbine. Annals of Botany, 125, 59-65.
DOI PMID |
| [24] |
Memmott J (1999) The structure of a plant-pollinator food web. Ecology Letters, 2, 276-280.
DOI PMID |
| [25] |
Nakata T, Rin I, Yaida YA, Ushimaru A (2022) Horizontal orientation facilitates pollen transfer and rain damage avoidance in actinomorphic flowers of Platycodon grandiflorus. Plant Biology, 24, 798-805.
DOI PMID |
| [26] |
Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework for comparing pollinator performance: Effectiveness and efficiency. Biological Reviews, 85, 435-451.
DOI URL |
| [27] |
Nepal S, Trunschke J, Ren ZX, Burgess KS, Wang H (2023) Community-wide patterns in pollen and ovule production, their ratio (P/O), and other floral traits along an elevation gradient in southwestern China. BMC Plant Biology, 23, 425.
DOI PMID |
| [28] |
Nevard L, Vallejo-Marín M (2022) Floral orientation affects outcross-pollen deposition in buzz-pollinated flowers with bilateral symmetry. American Journal of Botany, 109, 1568-1578.
DOI PMID |
| [29] | Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR (2020) The maleness of larger angiosperm flowers. Proceedings of the National Academy of Sciences, USA, 117, 10921-10926. |
| [30] | Prokop P, Ježová Z, Mešková M, Vanerková V, Zvaríková M, Fedor P (2023) Flower angle favors pollen export efficiency in the snowdrop Galanthus nivalis (Linnaeus, 1753) but not in the lesser celandine Ficaria verna (Huds, 1762). Plant Signaling and Behavior, 18, 2163065. |
| [31] |
Pyke GH (1984) Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15, 523-575.
DOI URL |
| [32] | Qin XT, Qin SH, Chen RD (2023) A new cultivar of Prunus mume ‘Zhizhang Guhong Chongcui’. Acta Horticulturae Sinica, 50(S1), 171-172. (in Chinese with English abstract) |
| [秦孝天, 秦少华, 陈瑞丹 (2023) 梅花新品种‘治章骨红重翠’. 园艺学报, 50(S1), 171-172.] | |
| [33] |
Sapir N, Dudley R (2013) Implications of floral orientation for flight kinematics and metabolic expenditure of hover- feeding hummingbirds. Functional Ecology, 27, 227-235.
DOI URL |
| [34] |
Shibata A, Yumoto G, Shimizu H, Honjo MN, Kudoh H (2025) Flower movement induced by weather-dependent tropism satisfies attraction and protection. Nature Communications, 16, 4132.
DOI |
| [35] |
Snow AA, Spira TP (1991) Pollen vigour and the potential for sexual selection in plants. Nature, 352, 796-797.
DOI |
| [36] | Sun K, Fan BQ, Hou QZ, Wang SY, Zhang SH (2018) The adaptive significances of downward orientation flowers in alpine species Clematis tangutica. Journal of Northwest Normal University (Natural Science), 54, 55-60, 76. (in Chinese with English abstract) |
| [孙坤, 范宝强, 侯勤正, 王思源, 张世虎 (2018) 高山植物甘青铁线莲花冠下垂现象适应性意义. 西北师范大学学报(自然科学版), 54, 55-60, 76.] | |
| [37] |
Tadey M, Aizen MA (2001) Why do flowers of a hummingbird-pollinated mistletoe face down? Functional Ecology, 15, 782-790.
DOI URL |
| [38] | Tong ZY, Wu LY, Feng HH, Zhang M, Armbruster WS, Renner SS, Huang SQ (2023) New calculations indicate that 90% of flowering plant species are animal-pollinated. National Science Review, 10, nwad219. |
| [39] |
Ushimaru A, Dohzono I, Takami Y, Hyodo F (2009) Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia, 160, 667-674.
DOI PMID |
| [40] | Ushimaru A, Hyodo F (2005) Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evolutionary Ecology Research, 7, 151-160. |
| [41] | Wang H, Tie S, Yu D, Guo YH, Yang CF (2014a) Change of floral orientation within an inflorescence affects pollinator behavior and pollination efficiency in a bee-pollinated plant, Corydalis sheareri. PLoS ONE, 9, e95381. |
| [42] |
Wang H, Xiao CL, Gituru RW, Xiong Z, Yu D, Guo YH, Yang CF (2014b) Change of floral orientation affects pollinator diversity and their relative importance in an alpine plant with generalized pollination system, Geranium refractum (Geraniaceae). Plant Ecology, 215, 1211-1219.
DOI URL |
| [43] |
Wang XY, Zhu XX, Yang J, Liu YJ, Tang XX (2019) Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume). Biodiversity Science, 27, 159-167. (in Chinese with English abstract)
DOI URL |
|
[王晓月, 朱鑫鑫, 杨娟, 刘云静, 汤晓辛 (2019) 梅花个体内花柱长度的变异及其对繁殖成功的影响. 生物多样性, 27, 159-167.]
DOI |
|
| [44] |
Wang Y, Meng LH, Yang YP, Duan YW (2010) Change in floral orientation in Anisodus luridus (Solanaceae) protects pollen grains and facilitates development of fertilized ovules. American Journal of Botany, 97, 1618-1624.
DOI PMID |
| [45] |
Xiang GJ, Guo YH, Yang CF (2021) Diversification of floral orientation in Lonicera is associated with pollinator shift and flowering phenology. Journal of Systematics and Evolution, 59, 557-566.
DOI URL |
| [46] |
Zhang QX, Zhang H, Sun LD, Fan GY, Ye MX, Jiang LB, Liu X, Ma KF, Shi CC, Bao F, Guan R, Han Y, Fu YY, Pan HT, Chen ZZ, Li LW, Wang J, Lv MQ, Zheng TC, Yuan CQ, Zhou YZ, Lee SM, Yan XL, Xu X, Wu RL, Chen WB, Cheng TR (2018) The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications, 9, 1702.
DOI |
| [47] | Zhao HB, Zhou LH, Hao RM (2009) Flower development and pistil receptivity in Sinocalycanthus chinensis and Calycanthus floridus var. oblongifolius. Journal of Zhejiang Forestry College, 26, 302-307. (in Chinese with English abstract) |
| [赵宏波, 周莉花, 郝日明 (2009) 夏蜡梅和光叶红蜡梅花发育特性和柱头可授性. 浙江林学院学报, 26, 302-307.] | |
| [48] |
Zheng TC, Li P, Zhuo XK, Liu WC, Qiu LK, Li LL, Yuan CQ, Sun LD, Zhang ZY, Wang J, Cheng TR, Zhang QX (2022) The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. New Phytologist, 235, 141-156.
DOI URL |
| [1] | 钱贞娜, 孟千万, 任明迅. 风筝果镜像花的雌雄异位变化及传粉生态型的形成[J]. 生物多样性, 2016, 24(12): 1364-1372. |
| [2] | 李海东, 任宗昕, 吴之坤, 许琨, 王红. 二型花柱植物海仙花报春花部性状随地理梯度的变异[J]. 生物多样性, 2015, 23(6): 747-758. |
| [3] | 张洪芳, 李利强, 刘仲健, 罗毅波. 菜粉蝶对两种迁地保护的兰科植物传粉和繁殖成功的作用[J]. 生物多样性, 2010, 18(1): 11-18. |
| [4] | 蒙艳华, 徐环李, 陈轩, 蔡青年. 塔落岩黄芪主要传粉蜂的传粉效率研究[J]. 生物多样性, 2007, 15(6): 633-638. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn