生物多样性 ›› 2024, Vol. 32 ›› Issue (7): 23498. DOI: 10.17520/biods.2023498 cstr: 32101.14.biods.2023498
崔玉进(), 李婉莹, 周青青, 赵恒, 吴芳*()(), 员瑗*()()
收稿日期:
2023-12-28
接受日期:
2024-05-06
出版日期:
2024-07-20
发布日期:
2024-06-12
通讯作者:
*E-mail: fangwubjfu2014@bjfu.edu.cn; yuanyuan1018@bjfu.edu.cn
基金资助:
Yujin Cui(), Wanying Li, Qingqing Zhou, Heng Zhao, Fang Wu*()(), Yuan Yuan*()()
Received:
2023-12-28
Accepted:
2024-05-06
Online:
2024-07-20
Published:
2024-06-12
Contact:
*E-mail: fangwubjfu2014@bjfu.edu.cn; yuanyuan1018@bjfu.edu.cn
Supported by:
摘要:
叶际真菌在影响植物健康和促进生物地球化学循环等方面发挥着重要作用。然而, 目前还缺乏北京城市绿化树木叶际表生真菌多样性与群落组成的研究。本研究以北京常见的绿化树木油松(Pinus tabuliformis)与大叶黄杨(Euonymus japonicus)为研究对象, 对市中心向北的4个采样点(安定门地区、和平街地区、亚运村地区和北七家地区), 及4个月份(一月、四月、七月和十一月)的树木叶际表生真菌通过高通量测序技术进行多样性及群落组成研究。结果表明, 油松与大叶黄杨分别得到2,051和1,970个扩增子变异特征序列(ASVs), 其中座囊菌纲、锤舌菌纲和银耳纲是优势菌纲。不同地点间, 叶际表生真菌的α多样性指数由市中心向北呈现先降低后升高的变化趋势; 4个月份间, 油松的α多样性指数存在差异, 大叶黄杨则均为十一月最高。NMDS分析表明两种常绿树木间叶际表生真菌群落组成存在显著差异(ANOSIM, P = 0.001)。线性判别分析表明, 油松的差异指示属为短柄霉属(Aureobasidium)、拟盾壳霉属(Paraconiothyrium)、圆盘菌属(Orbilia)等7属, 大叶黄杨为白粉菌属(Erysiphe)、链格孢属(Alternaria)、黑孢霉属(Nigrospora)等7属。回归分析表明, 平均降水与油松叶际表生真菌丰富度呈显著正相关关系, 与大叶黄杨叶际表生真菌丰富度呈显著负相关。通过网络分析将油松中的空泡茎点霉属(Vacuiphoma)和大叶黄杨中的空泡茎点霉属(Vacuiphoma)、木拉克属(Mrakia)、弯孢属(Curvularia)、白粉菌属(Erysiphe)确定为核心节点菌属。真菌群落功能预测得出腐生功能类群和病理功能类群分别是油松和大叶黄杨叶际表生真菌的主要类群。深入研究绿化树木的叶际表生真菌多样性及其作用有助于在未来城市绿化管理中更科学地发挥叶际表生真菌的生态功能。
崔玉进, 李婉莹, 周青青, 赵恒, 吴芳, 员瑗 (2024) 北京地区油松与大叶黄杨叶际表生真菌多样性及群落组成. 生物多样性, 32, 23498. DOI: 10.17520/biods.2023498.
Yujin Cui, Wanying Li, Qingqing Zhou, Heng Zhao, Fang Wu, Yuan Yuan (2024) Diversity and community composition of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus in Beijing, northern China. Biodiversity Science, 32, 23498. DOI: 10.17520/biods.2023498.
图1 油松与大叶黄杨样品的样点布局示意图
Fig. 1 The sampling sites of Pinus tabuliformis and Euonymus japonicus samples. ADM, Andingmen; HPJ, Hepingjie; YYC, Yayuncun; BQJ, Beiqijia.
图2 不同分组真菌的ASVs分布Venn图。A: 油松的不同采样地点之间; B: 油松的不同季节之间; C: 黄杨的不同采样地点之间; D: 黄杨的不同季节之间; E: 两种树木之间。
Fig. 2 Venn diagram of distribution of ASVs for different groups of fungi. A, Pinus tabuliformis in different sampling plots; B, P. tabuliformis in different seasons; C, Euonymus japonicus in different sampling plots; D, E. japonicus in different seasons; E, Between the two trees species.
树种 Tree species | 样点 Sample plot | Shannon 多样性指数 Shannon diversity index | Chao1丰富度 指数 Chao1 richness index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|
油松 Pinus tabuliformis | 安定门 ADM | 3.92 ± 0.64a | 193.63 ± 83.48a | 0.53 ± 0.06a |
和平街 HPJ | 3.57 ± 1.06a | 161.04 ± 74.94a | 0.50 ± 0.13a | |
亚运村 YYC | 3.87 ± 0.43a | 171.96 ± 60.35a | 0.52 ± 0.05a | |
北七家 BQJ | 4.03 ± 0.42a | 174.95 ± 56.75a | 0.55 ± 0.07a | |
大叶黄杨Euonymus japonicus | 安定门 ADM | 3.47 ± 0.62a | 190.72 ± 58.41a | 0.46 ± 0.07a |
和平街 HPJ | 2.69 ± 0.37b | 129.80 ± 39.43b | 0.39 ± 0.046b | |
亚运村 YYC | 2.77 ± 0.98b | 143.34 ± 68.27b | 0.40 ± 0.13b | |
北七家 BQJ | 3.06 ± 0.66ab | 192.09 ± 77.21a | 0.41 ± 0.06b |
表1 油松与大叶黄杨不同样点间的叶际表生真菌α多样性
Table 1 The alpha diversity index of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus among different sampling plots
树种 Tree species | 样点 Sample plot | Shannon 多样性指数 Shannon diversity index | Chao1丰富度 指数 Chao1 richness index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|
油松 Pinus tabuliformis | 安定门 ADM | 3.92 ± 0.64a | 193.63 ± 83.48a | 0.53 ± 0.06a |
和平街 HPJ | 3.57 ± 1.06a | 161.04 ± 74.94a | 0.50 ± 0.13a | |
亚运村 YYC | 3.87 ± 0.43a | 171.96 ± 60.35a | 0.52 ± 0.05a | |
北七家 BQJ | 4.03 ± 0.42a | 174.95 ± 56.75a | 0.55 ± 0.07a | |
大叶黄杨Euonymus japonicus | 安定门 ADM | 3.47 ± 0.62a | 190.72 ± 58.41a | 0.46 ± 0.07a |
和平街 HPJ | 2.69 ± 0.37b | 129.80 ± 39.43b | 0.39 ± 0.046b | |
亚运村 YYC | 2.77 ± 0.98b | 143.34 ± 68.27b | 0.40 ± 0.13b | |
北七家 BQJ | 3.06 ± 0.66ab | 192.09 ± 77.21a | 0.41 ± 0.06b |
图3 油松与大叶黄杨的叶际表生真菌在不同样点间的多样性与纲水平群落组成。A: 油松的α多样性指数; B: 大叶黄杨的α多样性指数; C: 油松的NMDS分析; D: 大叶黄杨的NMDS分析; E: 油松的群落结构; F: 大叶黄杨的群落结构。箱线图中的不同小写字母表示组间差异显著(Kruskal-Wallis, P < 0.05)。r表示样点间的相似程度。r数值越大, 差异越大。样点缩写全称见图1。
Fig. 3 The diversity and class level community structure of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus among different sampling plots. A, The alpha diversity index of P. tabuliformis; B, The alpha diversity index of E. japonicus; C, Non-metric multidimensional scaling analysis of P. tabuliformis; D, Non-metric multidimensional scaling analysis of E. japonicus; E, The community structure of P. tabuliformis; F, The community structure of E. japonicus. Different letters in the box plot indicates that there was significant difference between groups (Kruskal-Wallis, P < 0.05). r denotes the degree of similarity between sample points. The larger the value of, the greater the difference. Full names of sample plot abbreviations see Fig. 1.
树种 Tree species | 样点间对比 Comparison between sample plots | r | P |
---|---|---|---|
油松 Pinus tabuliformis | 安定门/和平街 ADM/HPJ | 0.4016 | 0.001 |
安定门/亚运村 ADM/YYC | 0.2931 | 0.001 | |
安定门/北七家 ADM/BQJ | 0.4734 | 0.001 | |
和平街/亚运村 HPJ/YYC | 0.0273 | 0.133 | |
和平街/北七家 HPJ/BQJ | 0.2422 | 0.001 | |
亚运村/北七家 YYC/BQJ | 0.2056 | 0.001 | |
大叶黄杨Euonymus japonicus | 亚运村/北七家 YYC/BQJ | 0.1251 | 0.006 |
亚运村/安定门 YYC/ADM | 0.2292 | 0.001 | |
亚运村/和平街 YYC/HPJ | 0.0683 | 0.044 | |
北七家/安定门 BQJ/ADM | 0.2782 | 0.001 | |
北七家/和平街 BQJ/HPJ | 0.1253 | 0.006 | |
安定门/和平街 ADM/HPJ | 0.3554 | 0.001 |
表2 油松与大叶黄杨不同样点间的叶际表生真菌相似性分析(ANOSIM)结果
Table 2 The analysis of similarities of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus among different sampling plots
树种 Tree species | 样点间对比 Comparison between sample plots | r | P |
---|---|---|---|
油松 Pinus tabuliformis | 安定门/和平街 ADM/HPJ | 0.4016 | 0.001 |
安定门/亚运村 ADM/YYC | 0.2931 | 0.001 | |
安定门/北七家 ADM/BQJ | 0.4734 | 0.001 | |
和平街/亚运村 HPJ/YYC | 0.0273 | 0.133 | |
和平街/北七家 HPJ/BQJ | 0.2422 | 0.001 | |
亚运村/北七家 YYC/BQJ | 0.2056 | 0.001 | |
大叶黄杨Euonymus japonicus | 亚运村/北七家 YYC/BQJ | 0.1251 | 0.006 |
亚运村/安定门 YYC/ADM | 0.2292 | 0.001 | |
亚运村/和平街 YYC/HPJ | 0.0683 | 0.044 | |
北七家/安定门 BQJ/ADM | 0.2782 | 0.001 | |
北七家/和平街 BQJ/HPJ | 0.1253 | 0.006 | |
安定门/和平街 ADM/HPJ | 0.3554 | 0.001 |
树种 Tree Species | 季节 Seasons | Shannon多样性指数Shannon diversity index | Chao1丰富度 指数 Chao1 richness index | Pielou均匀度指数Pielou evenness index |
---|---|---|---|---|
油松 Pinus tabuliformis | 七月 July | 3.96 ± 0.34a | 206.10 ± 31.82a | 0.52 ± 0.037a |
十一月 Nov. | 3.70 ± 1.13a | 149.69 ± 102.57c | 0.53 ± 0.14a | |
一月 Jan. | 3.93 ± 0.63a | 174.34 ± 73.91abc | 0.54 ± 0.06a | |
四月 Apr. | 3.79 ± 0.35a | 171.99 ± 33.95b | 0.51 ± 0.04a | |
大叶黄杨Euonymus japonicus | 七月 July | 2.78 ± 0.26bc | 118.78 ± 34.40b | 0.41 ± 0.04b |
十一月 Nov. | 3.47 ± 0.60a | 185.69 ± 76.38a | 0.47 ± 0.06a | |
一月 Jan. | 2.74 ± 0.58c | 179.19 ± 71.27a | 0.37 ± 0.05c | |
四月 Apr. | 3.00 ± 1.11ab | 174.52 ± 61.58a | 0.40 ± 0.14ab |
表3 油松与大叶黄杨不同季节间的叶际表生真菌α多样性
Table 3 The alpha diversity index of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus among different seasons
树种 Tree Species | 季节 Seasons | Shannon多样性指数Shannon diversity index | Chao1丰富度 指数 Chao1 richness index | Pielou均匀度指数Pielou evenness index |
---|---|---|---|---|
油松 Pinus tabuliformis | 七月 July | 3.96 ± 0.34a | 206.10 ± 31.82a | 0.52 ± 0.037a |
十一月 Nov. | 3.70 ± 1.13a | 149.69 ± 102.57c | 0.53 ± 0.14a | |
一月 Jan. | 3.93 ± 0.63a | 174.34 ± 73.91abc | 0.54 ± 0.06a | |
四月 Apr. | 3.79 ± 0.35a | 171.99 ± 33.95b | 0.51 ± 0.04a | |
大叶黄杨Euonymus japonicus | 七月 July | 2.78 ± 0.26bc | 118.78 ± 34.40b | 0.41 ± 0.04b |
十一月 Nov. | 3.47 ± 0.60a | 185.69 ± 76.38a | 0.47 ± 0.06a | |
一月 Jan. | 2.74 ± 0.58c | 179.19 ± 71.27a | 0.37 ± 0.05c | |
四月 Apr. | 3.00 ± 1.11ab | 174.52 ± 61.58a | 0.40 ± 0.14ab |
图4 油松与大叶黄杨的叶际表生真菌在不同季节间的α多样性与纲水平群落组成。A: 油松的α多样性指数; B: 大叶黄杨的α多样性指数; C: 油松的NMDS分析; D: 大叶黄杨的NMDS分析; E: 油松的群落结构; F: 大叶黄杨的群落结构。箱线图中的不同小写字母表示组间差异显著(Kruskal-Wallis, P < 0.05)。r表示样点间的相似程度。r数值越大, 差异越大。
Fig. 4 The diversity and class level community structure of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus across different seasons. A, The alpha diversity index of P. tabuliformis; B, The alpha diversity index of E. japonicus; C, Non-metric multidimensional scaling analysis of P. tabuliformis; D, Non-metric multidimensional scaling analysis of E. japonicus; E, The community structure of P. tabuliformis; F, The community structure of E. japonicus. Different letters in the box plot indicates that there was significant difference between groups (Kruskal-Wallis, P < 0.05). The larger the value of, the greater the difference.
季节间对比 Comparison between seasons | r | P | |
---|---|---|---|
油松 Pinus tabuliformis | 七月/十一月 July/Nov. | 0.1533 | 0.001 |
七月/一月 July/Jan. | 0.1938 | 0.001 | |
七月/四月 July/Apr. | 0.2540 | 0.001 | |
十一月/一月 Nov./Jan. | 0.0235 | 0.185 | |
十一月/四月 Nov./Apr. | 0.1882 | 0.002 | |
一月/四月 Jan./Apr. | 0.2520 | 0.001 | |
大叶黄杨 Euonymus japonicus | 十一月/七月 Nov./July | 0.1918 | 0.001 |
十一月/一月 Nov./Jan. | 0.2062 | 0.002 | |
十一月/四月 Nov./Apr. | 0.8448 | 0.001 | |
七月/一月 July/Jan. | 0.1439 | 0.009 | |
七月/四月 July/Apr. | 0.8940 | 0.001 | |
一月/四月 Jan./Apr. | 0.9305 | 0.001 |
表4 油松与大叶黄杨不同季节间的叶际表生真菌ANOSIM的分析结果
Table 4 The alpha diversity index of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus among different seasons
季节间对比 Comparison between seasons | r | P | |
---|---|---|---|
油松 Pinus tabuliformis | 七月/十一月 July/Nov. | 0.1533 | 0.001 |
七月/一月 July/Jan. | 0.1938 | 0.001 | |
七月/四月 July/Apr. | 0.2540 | 0.001 | |
十一月/一月 Nov./Jan. | 0.0235 | 0.185 | |
十一月/四月 Nov./Apr. | 0.1882 | 0.002 | |
一月/四月 Jan./Apr. | 0.2520 | 0.001 | |
大叶黄杨 Euonymus japonicus | 十一月/七月 Nov./July | 0.1918 | 0.001 |
十一月/一月 Nov./Jan. | 0.2062 | 0.002 | |
十一月/四月 Nov./Apr. | 0.8448 | 0.001 | |
七月/一月 July/Jan. | 0.1439 | 0.009 | |
七月/四月 July/Apr. | 0.8940 | 0.001 | |
一月/四月 Jan./Apr. | 0.9305 | 0.001 |
图5 油松与大叶黄杨的叶际表生真菌的多样性与群落组成。A: 油松与大叶黄杨相对丰度前30的属间热图(数据经过lg处理); B: 油松与大叶黄杨的群落组成桑基图; C: 油松与大叶黄杨的NMDS分析图; D: 油松与大叶黄杨的线性判别分析; E: 油松与大叶黄杨的α多样性箱线图。热图中的“*”与箱线图中的不同小写字母表示组间差异显著(Kruskal-Wallis, P < 0.05)。
Fig. 5 The diversity and community structure of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus at different seasons; A, Heat map of top 30 genera in relative abundance ranking of fungi (data processed by log10); B, Sankey diagram of two trees; C, Non-metric multidimensional scaling analysis of two trees; D, Linear discriminant analysis effect size (LEfSe) of two trees; E, The alpha diversity index of two trees. YS, P. tabuliformis, HY, E. japonicus. The “*” in heat map and different letters in the box plot indicates that there was significant difference between groups (Kruskal-Wallis, P < 0.05).
图6 大叶黄杨(A)和油松(B)的群落组成与温度、PM2.5和降水的方差分解分析(VPA)。值小于0的未予展示。
Fig. 6 Variance partitioning analysis of community composition and temperature, PM2.5, and precipitation of Euonymus japonicas (A) and Pinus tabuliformis (B). Values < 0 was not shown.
图7 油松(A)和大叶黄杨(B)叶际表生真菌Chao1丰富度指数与温度、PM2.5、降水的线性回归分析
Fig. 7 Linear regression analysis of Chao1 richness index of epiphytic fungi in the phyllosphere with temperature, PM2.5 and precipitation in Pinus tabuliformis (A) and Euonymus japonicus (B)
图8 油松(A)与大叶黄杨(B)叶际表生真菌相对丰富度前40位的属间网络关系。线的粗细代表相关性关系的强弱, 圆的大小代表度的大小。
Fig. 8 Network of the top 40 epiphytic fungal genera in relative abundance in the phyllosphere of Pinus tabuliformis (A) and Euonymus japonicus (B). The thickness of the line represents the strength of the correlation relationship and the size of the circle represents the size of the degree.
营养类型 Trophic mode | 功能群 Guild | 油松功能群比例 Proportion of guild in Pinus tabuliformis (%) | 营养类型占比 Proportion of trophic mode (%) | 大叶黄杨功能群比例 Proportion of guild in Euonymus japonicus (%) | 营养类型占比Proportion of trophic mode (%) |
---|---|---|---|---|---|
腐生营养型 Saprotroph | 未定义腐生真菌 Undefined saprotroph fungi | 46.824 | 63.619 | 21.269 | 22.215 |
粪腐生真菌 Dung saprotroph fungi | 0.106 | 0.061 | |||
木腐生真菌 Wood saprotroph fungi | 16.668 | 0.630 | |||
土壤腐生真菌 Soil saprotroph fungi | 0.018 | 0.240 | |||
叶片腐生真菌 Leaf saprotroph fungi | 0.001 | 0.015 | |||
凋落物腐生真菌 Litter saprotroph fungi | 0.003 | 0.001 | |||
共生营养型 Symbiotroph | 内生真菌 Endophyte fungi | 0.595 | 0.651 | 0.266 | 0.315 |
外生菌根真菌 Ectomycorrhizal fungi | 0.005 | 0 | |||
杜鹃类菌根真菌 Ericoid mycorrhizal fungi | 0.002 | 0.001 | |||
植物附生真菌 Epiphyte fungi | 0.049 | 0.048 | |||
病理营养型 Pathotroph | 植物病原真菌 Plant pathogen fungi | 9.171 | 9.246 | 70.806 | 70.906 |
动物病原真菌 Animal pathogen fungi | 0.023 | 0.025 | |||
真菌寄生真菌 Fungal parasite fungi | 0.037 | 0.070 | |||
苔藓植物寄生真菌 Bryophyte parasite fungi | 0.002 | 0.001 | |||
地衣寄生菌 Lichen parasite fungi | 0.013 | 0.004 | |||
其他 Other | 26.484 | 6.564 |
表5 油松与大叶黄杨的叶际表生真菌功能分类
Table 5 Functional classification of epiphytic fungi in phyllosphere of Pinus tabuliformis and Euonymus japonicus
营养类型 Trophic mode | 功能群 Guild | 油松功能群比例 Proportion of guild in Pinus tabuliformis (%) | 营养类型占比 Proportion of trophic mode (%) | 大叶黄杨功能群比例 Proportion of guild in Euonymus japonicus (%) | 营养类型占比Proportion of trophic mode (%) |
---|---|---|---|---|---|
腐生营养型 Saprotroph | 未定义腐生真菌 Undefined saprotroph fungi | 46.824 | 63.619 | 21.269 | 22.215 |
粪腐生真菌 Dung saprotroph fungi | 0.106 | 0.061 | |||
木腐生真菌 Wood saprotroph fungi | 16.668 | 0.630 | |||
土壤腐生真菌 Soil saprotroph fungi | 0.018 | 0.240 | |||
叶片腐生真菌 Leaf saprotroph fungi | 0.001 | 0.015 | |||
凋落物腐生真菌 Litter saprotroph fungi | 0.003 | 0.001 | |||
共生营养型 Symbiotroph | 内生真菌 Endophyte fungi | 0.595 | 0.651 | 0.266 | 0.315 |
外生菌根真菌 Ectomycorrhizal fungi | 0.005 | 0 | |||
杜鹃类菌根真菌 Ericoid mycorrhizal fungi | 0.002 | 0.001 | |||
植物附生真菌 Epiphyte fungi | 0.049 | 0.048 | |||
病理营养型 Pathotroph | 植物病原真菌 Plant pathogen fungi | 9.171 | 9.246 | 70.806 | 70.906 |
动物病原真菌 Animal pathogen fungi | 0.023 | 0.025 | |||
真菌寄生真菌 Fungal parasite fungi | 0.037 | 0.070 | |||
苔藓植物寄生真菌 Bryophyte parasite fungi | 0.002 | 0.001 | |||
地衣寄生菌 Lichen parasite fungi | 0.013 | 0.004 | |||
其他 Other | 26.484 | 6.564 |
图9 油松与大叶黄杨叶际表生真菌营养类型的相对丰度。A: 油松的不同采样地点之间; B: 油松的不同采样季节之间; C: 大叶黄杨的不同采样地点之间; D: 大叶黄杨的不同采样季节之间。样点缩写全称见图1。
Fig. 9 Trophic mode of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus. A, P. tabuliformis in different sampling plots; B, P. tabuliformis in different seasons; C, E. japonicus in different sampling plots; D, E. japonicus in different seasons. Full names of sample plot abbreviations see Fig. 1.
[1] | Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14, e1002352. |
[2] | Bai NE, Liu LL, Deng W, Jiang L, Yang XY (2022) Analysis on phyllosphere bacterial community structure and diversity of three garden plants in niche area. Guangdong Agricultural Sciences, 49(6), 43-50. (in Chinese with English abstract) |
[白农恩, 刘李蕾, 邓巍, 姜林, 杨晓燕 (2022) 小生境范围内3种园林植物叶际细菌群落结构及多样性分析. 广东农业科学, 49(6), 43-50.] | |
[3] |
Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annual Review of Phytopathology, 49, 533-555.
DOI PMID |
[4] | Blakeman JP (1981) Microbial ecology of the phylloplane. Microbial Ecology of the Phylloplane, 49, 281-427. |
[5] |
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo JR, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang LJ, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan YH, Wang MX, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang YL, Zhu QY, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852-857.
DOI PMID |
[6] |
Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Applied and Environmental Microbiology, 55, 1340-1345.
DOI PMID |
[7] | Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA (2019) Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nature Ecology & Evolution, 3, 1445-1454. |
[8] | Chen T, Nomura K, Wang XL, Sohrabi R, Xu J, Yao LY, Paasch BC, Ma L, Kremer J, Cheng YT, Zhang L, Wang N, Wang ET, Xin XF, He SY (2020) A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 580, 653-657. |
[9] | Cui YJ, Wu F (2024) Diversity and community structure of epiphytic fungi in the phyllosphere of Rosa chinensis in Beijing, Northern China. Mycosystema, 43, 4-21. (in Chinese with English abstract) |
[崔玉进, 吴芳 (2024) 北京月季叶际表生真菌多样性及群落结构. 菌物学报, 43, 4-21.] | |
[10] |
Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie XF, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science, 333, 762-765.
DOI PMID |
[11] |
Gao C, Guo LD (2013) Distribution pattern and maintenance of ectomycorrhizal fungus diversity. Biodiversity Science, 21, 488-498. (in Chinese with English abstract)
DOI |
[高程, 郭良栋 (2013) 外生菌根真菌多样性的分布格局与维持机制研究进展. 生物多样性, 21, 488-498.]
DOI |
|
[12] |
Gao C, Guo LD (2022) Progress on microbial species diversity, community assembly and functional traits. Biodiversity Science, 30, 22429. (in Chinese with English abstract)
DOI |
[高程, 郭良栋 (2022) 微生物物种多样性、群落构建与功能性状研究进展. 生物多样性, 30, 22429.]
DOI |
|
[13] |
Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Singan V, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2020) Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communications, 11, 34.
DOI PMID |
[14] |
Gong TY, Xin XF (2021) Phyllosphere microbiota: Community dynamics and its interaction with plant hosts. Journal of Integrative Plant Biology, 63, 297-304.
DOI |
[15] |
Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A (2019) Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature Communications, 10, 4135.
DOI PMID |
[16] | Guo GX, Liu JR, Xu L, Xin BD (2011) Change characteristics of precipitation in Beijing Region from 1724 to 2009. Journal of Water Resources and Water Engineering, 22(1), 90-93. (in Chinese with English abstract) |
[郭高轩, 刘久荣, 许亮, 辛宝东 (2011) 近300年来北京地区降水的变化特征. 水资源与水工程学报, 22(1), 90-93.] | |
[17] | Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences, USA, 109, 8334-8339. |
[18] |
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293-320.
DOI PMID |
[19] | He SY, Xing QH, Yin ZT, Jiang XF (1984) Flora of Beijing. Beijing Publishing House, Beijing. (in Chinese) |
[贺士元, 邢其华, 尹祖棠, 江先甫 (1984) 北京植物志. 北京出版社, 北京.] | |
[20] | Huang Y, Wang HC, Chen QL, Xiang LG, Guo ZN, Li Z, Xie HL, Han J (2020) Community structure and diversity of fungi in leaves of tobacco plant infected with powdery mildew. Guizhou Agricultural Sciences, 48(5), 54-58, 2. (in Chinese with English abstract) |
[黄宇, 汪汉成, 陈乾丽, 向立刚, 郭珍妮, 李忠, 谢红炼, 韩洁 (2020) 感染白粉病烟株叶片真菌的群落结构与多样性. 贵州农业科学, 48(5), 54-58, 2.] | |
[21] | Humphrey PT, Whiteman NK (2020) Insect herbivory reshapes a native leaf microbiome. Nature Ecology & Evolution, 4, 221-229. |
[22] | Izuno A, Kanzaki M, Artchawakom T, Wachrinrat C, Isagi Y (2016) Vertical structure of phyllosphere fungal communities in a tropical forest in Thailand uncovered by high-throughput sequencing. PLoS ONE, 11, e0166669. |
[23] | Jia T, Yao YS, Guo TY, Wang RH, Chai BF (2020) Effects of plant and soil characteristics on phyllosphere and rhizosphere fungal communities during plant development in a copper tailings dam. Frontiers in Microbiology, 11, 556002. |
[24] |
Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P (2017) Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology, 26, 3424-3436.
DOI PMID |
[25] | Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany, 92, 303-311. |
[26] | Last FT (1955) Seasonal incidence of Sporobolomyces on cereal leaves. Transactions of the British Mycological Society, 38, 221-239. |
[27] | Li C, Pei SX, Zhang LJ, Guo J, Xin XB (2019) Applicability evaluation of competition indexes for Pinus tabuliformis plantations in Beijing. Journal of Zhejiang A&F University, 36, 1115-1124. (in Chinese with English abstract) |
[李超, 裴顺祥, 张连金, 郭嘉, 辛学兵 (2019) 北京油松人工林竞争指数的适用性评价. 浙江农林大学学报, 36, 1115-1124.] | |
[28] | Li HJ, Xu AL, Qiao FL, Jiang M, Song Q (2021) Micro- morphological characteristics of particles on holly and Ligustrum leaf surfaces and seasonal changes in bacterial communities. Environmental Science, 42, 3063-3073. (in Chinese with English abstract) |
[李慧娟, 徐爱玲, 乔凤禄, 蒋敏, 宋琪 (2021) 冬青和女贞叶表面颗粒物微形态及叶际细菌群落结构. 环境科学, 42, 3063-3073.] | |
[29] | Liang JN, Liu Y, Jiang BX (2020) Biomass dynamic changes of Pinus tabulaeformis plantation in Xishan Mountains of Beijing based on forest resource survey. Forestry Science & Technology, 45(1), 38-41. (in Chinese with English abstract) |
[梁佳宁, 刘洋, 姜博鑫 (2020) 基于森林资源调查的北京西山油松人工林生物量动态变化研究. 林业科技, 45(1), 38-41.] | |
[30] | Linaldeddu BT, Sirca C, Spano D, Franceschini A (2011) Variation of endophytic cork oak-associated fungal communities in relation to plant health and water stress. Forest Pathology, 41, 193-201. |
[31] |
Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69, 1875-1883.
DOI PMID |
[32] | Liu LL, Li HL, Meng ZS, Peng JY, Li XD, Peng C, Lu L, Xu X (2020) Differences in phyllosphere microbial communities between female and male Populus cathayana. Acta Microbiologica Sinica, 60, 556-569. (in Chinese with English abstract) |
[刘利玲, 李会琳, 蒙振思, 彭进友, 李晓东, 彭超, 路璐, 胥晓 (2020) 青杨雌雄株叶际微生物群落多样性和结构的差异. 微生物学报, 60, 556-569.] | |
[33] | Liu TB, Teng K, Zhou XP, Cai HL, Xiao ZP, Xiao YS, Yang HW, Yin HQ, Zhou ZC, Yi TY (2021) Effects of antagonistic bacteria on tobacco wild fire and responses of phyllosphere microbiota. Microbiology China, 48, 2643-2652. (in Chinese with English abstract) |
[刘天波, 滕凯, 周向平, 蔡海林, 肖志鹏, 肖艳松, 杨红武, 尹华群, 周志成, 易图永 (2021) 拮抗菌群对烟草野火病的防治效果及叶际微生物群落多样性的影响. 微生物学通报, 48, 2643-2652.] | |
[34] | Liu XD, Zhu HZ, Jiang MZ, Wu XJ, Jiang CY, Liu SJ (2021) Characteristics of the rhizosphere and phyllosphere microbial community of three submerged plants in the dragon-shaped water system of Beijing. Chinese Journal of Biotechnology, 37, 3663-3674. (in Chinese with English abstract) |
[柳晓东, 朱海珍, 姜民志, 武学军, 姜成英, 刘双江 (2021) 北京龙形水系三种沉水植物根际及叶际微生物群落特征. 生物工程学报, 37, 3663-3674.] | |
[35] | Lyu FY, Han FR, Ge CL, Mao WK, Chen L, Hu HP, Chen GG, Lang QL, Fang C (2023) OmicStudio: A composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. iMeta, 2, e85. |
[36] | Meyer KM, Porch R, Muscettola IE, Vasconcelos ALS, Sherman JK, Lindow SE, Koskella B (2022) Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. The ISME Journal, 16, 1376-1387. |
[37] | Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248. |
[38] | Nowak DJ (2000) Impact of urban forest management on air pollution and greenhouse gases. Proceedings of the Society of American Foresters National Convention, 2, 52-55 |
[39] | Nowak DJ, Dwyer JF (2007) Understanding the benefits and costs of urban forest ecosystems. In: Urban and Community Forestry in the Northeast (ed. Kuser JE), pp. 11-25. Springer, Dordrecht. |
[40] |
Paungfoo LC, Yeoh YK, Kasinadhuni NRP, Lonhienne TGA, Robinson N, Hugenholtz P, Ragan MA, Schmidt S (2015) Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 5, 8678.
DOI PMID |
[41] | Prajapati SK, Tripathi BD (2008) Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environment Quality, 37, 865-870. |
[42] | Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Diversity, 47, 1-7. |
[43] | Qi JY, Deng JF, Yin DC, Cai LX, Liu DP, Zhang LL, Lin M (2019) Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings. Acta Ecologica Sinica, 39, 2826-2832. (in Chinese with English abstract) |
[祁金玉, 邓继峰, 尹大川, 蔡立新, 刘冬萍, 张丽丽, 林梅 (2019) 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响. 生态学报, 39, 2826-2832.] | |
[44] | Qian X, Duan TT, Sun X, Zheng Y, Wang YL, Hu ML, Yao H, Ji NN, Lv PP, Chen L, Shi MM, Guo LD, Zhang DX (2018) Host genotype strongly influences phyllosphere fungal communities associated with Mussaenda pubescens var. alba (Rubiaceae). Fungal Ecology, 36, 141-151. |
[45] | Rahman Z (2020) An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. Journal of Hazardous Materials, 396, 122682. |
[46] |
Rosier CL, Polson SW, D’Amico V III, Kan JJ, Trammell TLE (2021) Urbanization pressures alter tree rhizosphere microbiomes. Scientific Reports, 11, 9447.
DOI PMID |
[47] |
Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, Karvonen AM, Hyvärinen A, Tillmann V, Niemelä O, Knip M, Haahtela T, Pekkanen J, Hanski I (2015) Green areas around homes reduce atopic sensitization in children. Allergy, 70, 195-202.
DOI PMID |
[48] | Sadaka N, Ponge JF (2003) Soil animal communities in holm oak forests: Influence of horizon, altitude and year. European Journal of Soil Biology, 39, 197-207. |
[49] | Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity, 47, 85-95. |
[50] | Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7, 477-486. |
[51] | Wan J, Xu CY, Zhou RZ, Duan YH (2008) Accumulation of heavy metal elements in urban roadside shrubs in Beijing. Journal of Northeast Forestry University, 36(3), 22-23, 30. (in Chinese with English abstract) |
[万坚, 徐程扬, 周睿智, 段永宏 (2008) 北京市主要路旁绿化灌木中重金属元素分布特征. 东北林业大学学报, 36(3), 22-23, 30.] | |
[52] |
Wang X, Yang T, Mao ZK, Lin F, Ye J, Fang S, Dai GH, Hu JR, Hao ZQ, Wang XG, Yuan ZQ (2022) Community structure of phyllosphere fungi associated with dominant tree species in a broad-leaved Korean pine forest of Changbai Mountain, Northeast China. Chinese Journal of Applied Ecology, 33, 2405-2412. (in Chinese with English abstract)
DOI |
[王星, 杨腾, 毛子昆, 蔺菲, 叶吉, 房帅, 戴冠华, 胡家瑞, 郝占庆, 王绪高, 原作强 (2022) 长白山阔叶红松林优势树种叶际真菌群落结构. 应用生态学报, 33, 2405-2412.]
DOI |
|
[53] | Wang YR, Wu YD, Vlasák J, Yuan Y, Dai YC (2021) Phylogenetic analysis demonstrating four new species in Megasporoporia sensu lato (Polyporales, Basidiomycota). Mycosphere, 12, 1012-1037. |
[54] | Wei J, Zhang PP, Ji ZK (2008) “Beijing-1” Micro-satellite data application in analyzing forest ecosystem resources change in Beijing. Acta Ecologica Sinica, 28, 3464-3469. (in Chinese with English abstract) |
[魏军, 张萍萍, 纪中奎 (2008) “北京一号” 小卫星数据在北京森林生态系统资源动态分析中的应用. 生态学报, 28, 3464-3469.] | |
[55] |
Wei YQ, Lan GY, Wu ZX, Chen BQ, Quan F, Li MM, Sun SQ, Du HN (2022) Phyllosphere fungal communities of rubber trees exhibited biogeographical patterns, but not bacteria. Environmental Microbiology, 24, 3777-3790.
DOI PMID |
[56] |
Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105, 1744-1755.
DOI PMID |
[57] | White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: PCR Protocols, pp. 315-322. Elsevier, Amsterdam. |
[58] | Woodward FI, Lomas MR (2004) Vegetation dynamics- simulating responses to climatic change. Biological Reviews of the Cambridge Philosophical Society, 79, 643-670. |
[59] | Wujisiguleng, Pan YQ, Hu JP, Zhang YQ, Li B, Liu JL, Kang P (2023) Response of phyllosphere bacteria and fungi of Reaumuria trigyna to seasonal change. Microbiology China, 50, 48-63. (in Chinese with English abstract) |
[乌吉斯古冷, 潘雅清, 胡金鹏, 张亚琪, 李斌, 刘建利, 康鹏 (2023) 长叶红砂叶际细菌和真菌群落对季节变化的响应特征. 微生物学通报, 50, 48-63.] | |
[60] | Wu XJ, Wang HC, Lin MS, Peng LJ, Cai LT, Chen XJ, Lin L, Guo T (2023) Effect of difenoconazole on the diversity of phyllosphere microbial communities of leaf infected with tobacco target spot. Plant Health and Medicine, 2(6), 1-12. (in Chinese with English abstract) |
[吴小军, 汪汉成, 林木森, 彭丽娟, 蔡刘体, 陈兴江, 林丽, 郭涛 (2023) 苯醚甲环唑对感靶斑病烟叶叶际微生物群落多样性的影响. 植物医学, 2(6), 1-12.] | |
[61] |
Wu YD, Mao WL, Yuan Y (2021) Comparison of polypore florae and diversity from temperate to subtropical forest zones in China. Biodiversity Science, 29, 1369-1376. (in Chinese with English abstract)
DOI |
[武英达, 茆卫琳, 员瑗 (2021) 我国寒温带至亚热带森林多孔菌区系和多样性比较. 生物多样性, 29, 1369-1376.]
DOI |
|
[62] | Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ (2021) Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 229, 1091-1104. |
[63] | Xu AL, Jiang M, Bai PP, Song Q, Li HJ, Song ZW (2023) Characteristics of particles on leaf surface and phyllosphere bacterial community of three plant species in urban parks of Qingdao. Journal of Earth Environment, 14, 458-471. (in Chinese with English abstract) |
[徐爱玲, 蒋敏, 白萍萍, 宋琪, 李慧娟, 宋志文 (2023) 青岛城市公园3种植物叶表面颗粒物形态特征及叶际细菌群落结构. 地球环境学报, 14, 458-471.] | |
[64] |
Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microbial Ecology, 50, 185-196.
PMID |
[65] | Yang T, Sun HB, Shen CC, Chu HY (2016) Fungal assemblages in different habitats in an Erman’s birch forest. Frontiers in Microbiology, 7, 1368. |
[66] | Yang T, Tedersoo L, Soltis PS, Soltis DE, Sun M, Ma YY, Ni YY, Liu X, Fu X, Shi Y, Lin HY, Zhao YP, Fu CX, Dai CC, Gilbert JA, Chu HY (2023) Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of Eastern China. Science China: Life Sciences, 66, 1134-1150. |
[67] |
Yao H, Sun X, He C, Maitra P, Li XC, Guo LD (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome, 7, 57.
DOI PMID |
[68] | Yuan CL, Zhang CZ, Deng W, Jiang L, She R, Yang XY (2023) Phyllosphere fungal diversity and community structure of three garden plants based on high-throughput sequencing. Journal of Sichuan Forestry Science and Technology, 44(1), 24-31. (in Chinese with English abstract) |
[袁彩莲, 张朝志, 邓巍, 姜林, 佘容, 杨晓燕 (2023) 基于高通量测序的三种园林植物叶际真菌多样性及群落结构解析. 四川林业科技, 44(1), 24-31.] | |
[69] | Zhang CM, Man XW, Wu F, Yuan Y, Bian LS (2023) A comparison of soil-plant continuum microbial communities in plantations of Pinus tabuliformis and P. sylvestris var. mongolica in West Mountain of Beijing. Mycosystema, 42, 2041-2062. (in Chinese with English abstract) |
[张从明, 满孝武, 吴芳, 员瑗, 边禄森 (2023) 北京西山油松Pinus tabuliformis和樟子松P. sylvestris var. mongolica人工林土壤-林木连续体微生物群落比较. 菌物学报, 42, 2041-2062.]
DOI |
|
[70] | Zhang PQ, Zhu MH, Liu YJ, Yang Z (2017) Leaf surface micro-morphological features and its retention ability of particulate matters for 9 plant species at the roadside of Beijing. Ecology and Environmental Sciences, 26, 2126-2133. (in Chinese with English abstract) |
[张鹏骞, 朱明淏, 刘艳菊, 杨峥 (2017) 北京路边9种植物叶片表面微结构及其滞尘潜力研究. 生态环境学报, 26, 2126-2133.]
DOI |
|
[71] | Zhang WK, Wang B, Niu X (2015) Study on the adsorption capacities for airborne particulates of landscape plants in different polluted regions in Beijing (China). International Journal of Environmental Research and Public Health, 12, 9623-9638. |
[72] | Zhang WK, Wang B, Niu X (2017) Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests, 8, 92. |
[73] | Zhang X, Xu Y, Yang YC, Zhao YL, Men ZH, Wang YL (2024) The diversity and assembly mechanism of phyllosphere fungal communities in the relict plant Helianthemum songaricum. Biodiversity Science, 32, 23384. (in Chinese with English abstract) |
[张旋, 徐颖, 杨颜慈, 赵艳玲, 门中华, 王永龙 (2024) 孑遗植物半日花叶际真菌群落的多样性与构建机制研究. 生物多样性, 32, 23384.]
DOI |
|
[74] | Zhang Y, Ji GD, Wu T, Qiu JX (2020) Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale. Environmental Pollution, 258, 113708. |
[75] | Zhou ZD, Xu JH (2021) Comparison of phyllospheric microbial community structure and heavy metal pollution of different plants along highway. Jiangsu Agricultural Sciences, 49(18), 215-221. (in Chinese) |
[周之栋, 徐建华 (2021) 公路沿线不同植物叶际微生物群落结构及重金属污染比较. 江苏农业科学, 49(18), 215-221.] | |
[76] | Zhou HM, Chen J, Liu HG, Zhou M (2023) Composition of shiroes soil microbial community of Albatrellopsis flettioides in Yunnan Province, southwest China. Mycosystema, 42, 2063-2075. (in Chinese with English abstract) |
[周洪敏, 陈建, 刘鸿高, 周萌 (2023) 云南亚福莱特拟地花菌菌塘土壤微生物群落组成. 菌物学报, 42, 2063-2075.]
DOI |
|
[77] | Zhu KY, Zhu WX, Zhang WX, Liu JY, Ding CJ (2023) Characteristics of phyllosphere microbial communities associated with three different plants in the semi-arid areas of northwest Liaoning. Journal of Soil Science and Plant Nutrition, 23, 2066-2079. |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 曹云, 沈文静, 陈炼, 胡飞龙, 周蕾, 徐海根. Metabarcoding技术在真菌多样性研究中的应用[J]. 生物多样性, 2016, 24(8): 932-939. |
[3] | 方强, 黄双全. 传粉网络的研究进展: 网络的结构和动态[J]. 生物多样性, 2012, 20(3): 300-307. |
[4] | 郑钰, 高博, 孙立夫, 邴艳红, 裴克全. 银叶杜鹃和繁花杜鹃根部真菌的多样性[J]. 生物多样性, 2010, 18(1): 76-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn