生物多样性 ›› 2013, Vol. 21 ›› Issue (3): 334-342. DOI: 10.3724/SP.J.1003.2013.09030
所属专题: 土壤生物与土壤健康
刘雨迪1, 陈小云1, 刘满强1,*(), 秦江涛2, 李辉信1, 胡锋1
收稿日期:
2013-01-30
接受日期:
2013-03-28
出版日期:
2013-05-20
发布日期:
2013-06-05
通讯作者:
刘满强
基金资助:
Yudi Liu1, Xiaoyun Chen1, Manqiang Liu1,*(), Jiangtao Qin2, Huixin Li1, Feng Hu1
Received:
2013-01-30
Accepted:
2013-03-28
Online:
2013-05-20
Published:
2013-06-05
Contact:
Liu Manqiang
摘要:
红壤地区旱地改水田后随稻作年限的增加土壤性质会发生改变, 但缺乏对百年尺度内土壤动物群落特征变化的了解。本研究选取了旱改水后1 yr、10 yr、20 yr、50 yr和100 yr五个时序的田块, 研究了稻作土壤微生物学性质及线虫群落特征的变化。结果表明, 随着稻作年限的延长, 土壤微生物生物量碳氮、基础呼吸、矿质氮、速效磷、线虫数量及线虫属数均随稻作时间增长而逐渐上升, 在50 yr均达到显著水平(P<0.05), 在50-100 yr变化渐缓或有所下降。线虫群落中植食者的比例显著上升(P<0.05), 捕食/杂食者的比例有所下降但差异不显著。线虫通道指数也随稻作年限的增加而逐渐增长(P<0.05), 表明土壤食物网结构趋向于细菌通道。稻作年限对线虫群落成熟度指数和结构指数的影响并不一致。总之, 土壤微生物学性质和线虫群落在旱改水50 yr时土壤各项性质均达到较高水平, 随稻作年限的继续延长呈现稳定趋势。
刘雨迪, 陈小云, 刘满强, 秦江涛, 李辉信, 胡锋 (2013) 不同稻作年限下土壤微生物学性质和线虫群落特征的变化. 生物多样性, 21, 334-342. DOI: 10.3724/SP.J.1003.2013.09030.
Yudi Liu,Xiaoyun Chen,Manqiang Liu,Jiangtao Qin,Huixin Li,Feng Hu (2013) Changes in soil microbial properties and nematode assemblage over time during rice cultivation. Biodiversity Science, 21, 334-342. DOI: 10.3724/SP.J.1003.2013.09030.
图1 不同稻作年限对土壤微生物生物量碳(A), 微生物生物量氮(B), 微生物生物量磷(C), 基础呼吸(D), 微生物代谢熵(E), 矿质氮(F), 速效磷(G)和线虫数量(H)的影响(不同小写字母表示差异达到显著水平, P<0.05)
Fig. 1 Effect of different rice cultivation duration on soil microbial biomass C (A), microbial biomass N (B), microbial biomass P (C), basal respiration (D), microbial metabolic quotient (E), mineral N (F), available P (G) and nematode abundance (H) (Different small letters at each duration indicated significant differences, P<0.05)
食性 Feeding habit | 属名 Genera | 缩写 Abbr. | c-p值 c-p value | 耕作年限 Cultivation duration | ||||
---|---|---|---|---|---|---|---|---|
1 yr | 10 yr | 20 yr | 50 yr | 100 yr | ||||
植食者 | 短体属 Pratylenchus | Prat. | 3 | 4.3 ± 0.6 | 0.0 | 0.0 | 1.8 ± 0.7 | 0.5 ± 0.5 |
Herbivor | 矮化属 Tylenchorhynchus | Tyl. | 3 | 0.0 | 0.0 | 0.0 | 2.6 ± 1.1 | 0.0 |
螺旋属 Helicotylenchus | Heli. | 3 | 4.8 ± 0.6 | 0.0 | 1.5 ± 1.0 | 1.0 ± 0.6 | 0.0 | |
潜根属 Hirschmanniella | Hirs. | 3 | 12.7 ± 1.7 | 25.9 ± 3.0 | 32.2 ± 0.9 | 28.1 ± 6.3 | 34.3 ± 4.6 | |
盘旋属 Rotylenchus | Roty. | 3 | 0.0 | 0.0 | 0.0 | 3.2 ± 1.5 | 0.0 | |
丝尾属 Oxydirus | Oxyd. | 5 | 1.9 ± 0.6 | 0.0 | 0.5 ± 0.3 | 2.2 ± 1.1 | 3.7 ± 1.3 | |
食细菌者 | 小杆属 Rhabditis | Rhab. | 1 | 0.0 | 1.3 ± 0.6 | 0.0 | 1.3 ± 0.8 | 0.3 ± 0.3 |
Bacterivor | 中杆属 Mesorhabditis | Mesr. | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 ± 0.8 |
原杆属 Protorhaditis | Prot. | 1 | 0.0 | 0.0 | 0.0 | 0.2 ± 0.2 | 0.3 ± 0.3 | |
头叶属 Cephalobus | Ceph. | 2 | 13.2 ± 1.1 | 22.1 ± 1.4 | 20.2 ± 0.9 | 25.0 ± 3.1 | 15.5 ± 2.2 | |
鹿角唇属 Cervidellus | Cerv. | 2 | 0.0 | 0.0 | 0.0 | 0.3 ± 0.3 | 0.0 | |
真头叶属 Eucephalobus | Euce. | 2 | 3.2 ± 0.9 | 1.3 ± 0.8 | 0.0 | 0.3 ± 0.3 | 0.0 | |
绕线属 Plectus | Ple. | 2 | 2.4 ± 0.6 | 1.6 ± 1.0 | 2.6 ± 0.3 | 2.4 ± 0.7 | 12.4 ± 4.4 | |
连胃属 Chronogaster | Chr. | 2 | 2.0 ± 0.8 | 3.2 ± 0.4 | 3.9 ± 0.4 | 2.3 ± 0.7 | 0.5 ± 0.5 | |
棱咽属 Prismatolaimus | Pris. | 2 | 0.0 | 0.0 | 0.5 ± 0.3 | 1.8 ± 0.6 | 0.0 | |
单宫属 Monhystera | Monh. | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 ± 0.3 | |
无咽属 Alaimus | Alai. | 4 | 2.0 ± 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | |
食真菌者 | 滑刃属 Aphelenchoides | Aphe. | 2 | 2.9 ± 0.6 | 10.2 ± 1.2 | 6.8 ± 1.3 | 0.3 ± 0.3 | 2.0 ± 0.3 |
Fungivor | 真滑刃属 Aphelenchus | Aph. | 2 | 0.0 | 1.8 ± 1.1 | 0.0 | 0.3 ± 0.3 | 0.5 ± 0.3 |
丝尾垫刃属 Filenchus | Fil. | 2 | 7.6 ± 1.0 | 9.6 ± 1.5 | 18.9 ± 0.4 | 8.5 ± 3.0 | 3.9 ± 1.0 | |
茎属 Ditylenchus | Dity. | 2 | 3.1 ± 0.6 | 3.5 ± 0.9 | 0.0 | 4.4 ± 0.8 | 1.1 ± 1.0 | |
捕食/杂食者 | 三孔属 Tripyla | Trip. | 3 | 0.8 ± 0.8 | 1.6 ± 1.0 | 2.6 ± 0.3 | 2.7 ± 0.6 | 2.2 ± 0.7 |
Omnivores/predator | 托布利属 Tobrilus | Tobr. | 3 | 0.0 | 2.7 ± 0.3 | 2.6 ± 0.3 | 1.3 ± 0.8 | 6.9 ± 3.5 |
真矛线属 Eudorylaimus | Eudo. | 4 | 2.3 ± 1.5 | 0.0 | 0.0 | 0.5 ± 0.3 | 0.0 | |
中矛线属 Mesodorylaimus | Meso. | 4 | 24.1 ± 2.8 | 4.3 ± 0.5 | 3.4 ± 0.5 | 2.8 ± 1.3 | 10.1 ± 4.3 | |
矛线属 Dorylaimus | Dor. | 4 | 12.1 ± 1.1 | 2.7 ± 0.3 | 1.3 ± 0.8 | 4.2 ± 1.1 | 0.3 ± 0.3 | |
拱唇属 Labronema | Labr. | 4 | 0.0 | 0.0 | 0.8 ± 0.5 | 0.0 | 0.0 | |
基齿属 Iotonchus | Ioto. | 4 | 0.0 | 1.4 ± 0.3 | 0.0 | 0.0 | 0.0 | |
拟桑尼属 Thorneella | Tho. | 4 | 0.0 | 2.4 ± 0.3 | 1.0 ± 0.7 | 0.5 ± 0.5 | 0.0 | |
拟矛线属 Dorylaimoides | Dory. | 4 | 0.0 | 0.0 | 1.0 ± 0.4 | 0.0 | 0.0 | |
孔咽属 Aporcelaimus | Apor. | 5 | 0.0 | 2.4 ± 0.7 | 0.0 | 0.0 | 2.3 ± 0.8 | |
前矛线属 Prodorylaimus | Prod. | 5 | 0.5 ± 0.5 | 1.9 ± 1.1 | 0.0 | 2.1 ± 0.5 | 2.1 ± 1.2 | |
线虫属数 Total nematode taxa | 17 | 19 | 16 | 25 | 20 |
表1 不同稻作年限对土壤各类群线虫比例的影响(平均值±标准误,百分比)
Table 1 Effects of different rice cultivation durations on the proportion of soil individual nematode taxa (Mean±SE, percentage)
食性 Feeding habit | 属名 Genera | 缩写 Abbr. | c-p值 c-p value | 耕作年限 Cultivation duration | ||||
---|---|---|---|---|---|---|---|---|
1 yr | 10 yr | 20 yr | 50 yr | 100 yr | ||||
植食者 | 短体属 Pratylenchus | Prat. | 3 | 4.3 ± 0.6 | 0.0 | 0.0 | 1.8 ± 0.7 | 0.5 ± 0.5 |
Herbivor | 矮化属 Tylenchorhynchus | Tyl. | 3 | 0.0 | 0.0 | 0.0 | 2.6 ± 1.1 | 0.0 |
螺旋属 Helicotylenchus | Heli. | 3 | 4.8 ± 0.6 | 0.0 | 1.5 ± 1.0 | 1.0 ± 0.6 | 0.0 | |
潜根属 Hirschmanniella | Hirs. | 3 | 12.7 ± 1.7 | 25.9 ± 3.0 | 32.2 ± 0.9 | 28.1 ± 6.3 | 34.3 ± 4.6 | |
盘旋属 Rotylenchus | Roty. | 3 | 0.0 | 0.0 | 0.0 | 3.2 ± 1.5 | 0.0 | |
丝尾属 Oxydirus | Oxyd. | 5 | 1.9 ± 0.6 | 0.0 | 0.5 ± 0.3 | 2.2 ± 1.1 | 3.7 ± 1.3 | |
食细菌者 | 小杆属 Rhabditis | Rhab. | 1 | 0.0 | 1.3 ± 0.6 | 0.0 | 1.3 ± 0.8 | 0.3 ± 0.3 |
Bacterivor | 中杆属 Mesorhabditis | Mesr. | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 ± 0.8 |
原杆属 Protorhaditis | Prot. | 1 | 0.0 | 0.0 | 0.0 | 0.2 ± 0.2 | 0.3 ± 0.3 | |
头叶属 Cephalobus | Ceph. | 2 | 13.2 ± 1.1 | 22.1 ± 1.4 | 20.2 ± 0.9 | 25.0 ± 3.1 | 15.5 ± 2.2 | |
鹿角唇属 Cervidellus | Cerv. | 2 | 0.0 | 0.0 | 0.0 | 0.3 ± 0.3 | 0.0 | |
真头叶属 Eucephalobus | Euce. | 2 | 3.2 ± 0.9 | 1.3 ± 0.8 | 0.0 | 0.3 ± 0.3 | 0.0 | |
绕线属 Plectus | Ple. | 2 | 2.4 ± 0.6 | 1.6 ± 1.0 | 2.6 ± 0.3 | 2.4 ± 0.7 | 12.4 ± 4.4 | |
连胃属 Chronogaster | Chr. | 2 | 2.0 ± 0.8 | 3.2 ± 0.4 | 3.9 ± 0.4 | 2.3 ± 0.7 | 0.5 ± 0.5 | |
棱咽属 Prismatolaimus | Pris. | 2 | 0.0 | 0.0 | 0.5 ± 0.3 | 1.8 ± 0.6 | 0.0 | |
单宫属 Monhystera | Monh. | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 ± 0.3 | |
无咽属 Alaimus | Alai. | 4 | 2.0 ± 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | |
食真菌者 | 滑刃属 Aphelenchoides | Aphe. | 2 | 2.9 ± 0.6 | 10.2 ± 1.2 | 6.8 ± 1.3 | 0.3 ± 0.3 | 2.0 ± 0.3 |
Fungivor | 真滑刃属 Aphelenchus | Aph. | 2 | 0.0 | 1.8 ± 1.1 | 0.0 | 0.3 ± 0.3 | 0.5 ± 0.3 |
丝尾垫刃属 Filenchus | Fil. | 2 | 7.6 ± 1.0 | 9.6 ± 1.5 | 18.9 ± 0.4 | 8.5 ± 3.0 | 3.9 ± 1.0 | |
茎属 Ditylenchus | Dity. | 2 | 3.1 ± 0.6 | 3.5 ± 0.9 | 0.0 | 4.4 ± 0.8 | 1.1 ± 1.0 | |
捕食/杂食者 | 三孔属 Tripyla | Trip. | 3 | 0.8 ± 0.8 | 1.6 ± 1.0 | 2.6 ± 0.3 | 2.7 ± 0.6 | 2.2 ± 0.7 |
Omnivores/predator | 托布利属 Tobrilus | Tobr. | 3 | 0.0 | 2.7 ± 0.3 | 2.6 ± 0.3 | 1.3 ± 0.8 | 6.9 ± 3.5 |
真矛线属 Eudorylaimus | Eudo. | 4 | 2.3 ± 1.5 | 0.0 | 0.0 | 0.5 ± 0.3 | 0.0 | |
中矛线属 Mesodorylaimus | Meso. | 4 | 24.1 ± 2.8 | 4.3 ± 0.5 | 3.4 ± 0.5 | 2.8 ± 1.3 | 10.1 ± 4.3 | |
矛线属 Dorylaimus | Dor. | 4 | 12.1 ± 1.1 | 2.7 ± 0.3 | 1.3 ± 0.8 | 4.2 ± 1.1 | 0.3 ± 0.3 | |
拱唇属 Labronema | Labr. | 4 | 0.0 | 0.0 | 0.8 ± 0.5 | 0.0 | 0.0 | |
基齿属 Iotonchus | Ioto. | 4 | 0.0 | 1.4 ± 0.3 | 0.0 | 0.0 | 0.0 | |
拟桑尼属 Thorneella | Tho. | 4 | 0.0 | 2.4 ± 0.3 | 1.0 ± 0.7 | 0.5 ± 0.5 | 0.0 | |
拟矛线属 Dorylaimoides | Dory. | 4 | 0.0 | 0.0 | 1.0 ± 0.4 | 0.0 | 0.0 | |
孔咽属 Aporcelaimus | Apor. | 5 | 0.0 | 2.4 ± 0.7 | 0.0 | 0.0 | 2.3 ± 0.8 | |
前矛线属 Prodorylaimus | Prod. | 5 | 0.5 ± 0.5 | 1.9 ± 1.1 | 0.0 | 2.1 ± 0.5 | 2.1 ± 1.2 | |
线虫属数 Total nematode taxa | 17 | 19 | 16 | 25 | 20 |
耕作年限 Cultivation duration | 各营养类群占总体的百分比% | 成熟度指数 | 结构指数 | 通道指数 | |||
---|---|---|---|---|---|---|---|
植食者 PP | 食细菌者 BF | 食真菌者 FF | 捕食/杂食者 OP | Maturity index | Structure index | Nematode channel ratio | |
1 yr | 23.8 ± 1.5c | 22.8 ± 1.4b | 13.6 ± 2.2b | 39.8 ± 2.4a | 2.2 ± 0.1a | 85.5 ± 1.1a | 0.6 ± 0.1bc |
10 yr | 25.9 ± 3.0bc | 29.6 ± 2.9ab | 25.2 ± 3.7a | 19.4 ± 2.9bc | 1.6 ± 0.1b | 63.2 ± 4.3bc | 0.5 ± 0.1c |
20 yr | 34.3 ± 1.6ab | 27.2 ± 0.7ab | 25.7 ± 1.5a | 12.8 ± 0.8c | 1.1 ± 0.0d | 55.2 ± 1.1c | 0.5 ± 0.0c |
50 yr | 38.9 ± 4.1a | 33.6 ± 3.4a | 13.4 ± 3.2b | 14.2 ± 1.5bc | 1.3 ± 0.1cd | 59.4 ± 0.6bc | 0.7 ± 0.1ab |
100 yr | 38.6 ± 3.8a | 30.1 ± 4.0ab | 7.5 ± 1.3b | 23.8 ± 5.6b | 1.6 ± 0.2bc | 69.9 ± 7.8b | 0.8 ± 0.0a |
表2 不同稻作年限对土壤线虫群落营养类群组成和生态指数的影响(平均值±标准误, 不同小写字母表示差异达到显著水平, P<0.05)
Table 2 Effects of different rice cultivation durations on trophic groups and ecological indices of soil nematode assemblage (Mean ± SE, different small letters at each duration indicated significant differences, P<0.05)
耕作年限 Cultivation duration | 各营养类群占总体的百分比% | 成熟度指数 | 结构指数 | 通道指数 | |||
---|---|---|---|---|---|---|---|
植食者 PP | 食细菌者 BF | 食真菌者 FF | 捕食/杂食者 OP | Maturity index | Structure index | Nematode channel ratio | |
1 yr | 23.8 ± 1.5c | 22.8 ± 1.4b | 13.6 ± 2.2b | 39.8 ± 2.4a | 2.2 ± 0.1a | 85.5 ± 1.1a | 0.6 ± 0.1bc |
10 yr | 25.9 ± 3.0bc | 29.6 ± 2.9ab | 25.2 ± 3.7a | 19.4 ± 2.9bc | 1.6 ± 0.1b | 63.2 ± 4.3bc | 0.5 ± 0.1c |
20 yr | 34.3 ± 1.6ab | 27.2 ± 0.7ab | 25.7 ± 1.5a | 12.8 ± 0.8c | 1.1 ± 0.0d | 55.2 ± 1.1c | 0.5 ± 0.0c |
50 yr | 38.9 ± 4.1a | 33.6 ± 3.4a | 13.4 ± 3.2b | 14.2 ± 1.5bc | 1.3 ± 0.1cd | 59.4 ± 0.6bc | 0.7 ± 0.1ab |
100 yr | 38.6 ± 3.8a | 30.1 ± 4.0ab | 7.5 ± 1.3b | 23.8 ± 5.6b | 1.6 ± 0.2bc | 69.9 ± 7.8b | 0.8 ± 0.0a |
图2 土壤线虫群落组成与土壤因子之间相关性的冗余分析(RDA)排序图。▲ 稻作年限; → 环境因子; …→ 线虫属名; AP: 速效磷; BR: 基础呼吸; MBC: 微生物生物量碳; MBN: 微生物生物量氮; MBP: 微生物生物量磷; MN: 矿质氮; qCO2: 微生物代谢熵; 线虫属名见表1。
Fig. 2 Redundancy analysis (RDA) diagram of the relation between soil nematode community composition and environmental factors. ▲ Rice cultivation duration; → Environmental factors; ---→ Nematode genus; AP, Available P; BR, Basal respiration; MBC, Microbial biomass C; MBN, Microbial biomass N; MBP, Microbial biomass P; MN, Mineral N; qCO2, Microbial metabolic quotient; The full name of nematode genus can be seen in Table 1.
1 | Bakonyi G, Nagy P, Kovács-Láng E, Kovács E, Barabás S, Répási V (2007) Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 37, 31-40. |
2 | Bannert A, Kleineidam K, Wissing L, Mueller-Niggemann C, Vogelsang V, Welzl G, Cao ZH, Schloter M (2011) Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods. Applied and Environmental Microbiology, 77, 6109-6116. |
3 | Beare MH (1997) Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralization in arable soil. In: Soil Ecology in Sustainable Agricultural Systems (eds Brussaard L, Ferrera-Cerrato R), pp. 37-70. FL: Lewis, Boca Raton. |
4 | Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19. |
5 | Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution, 14, 224-228. |
6 | Chen LM, Zhang GL, Effland WR (2011) Soil characteristic response times and pedogenic thresholds during the 1000-year evolution of a paddy soil chronosequence. Soil Science Society of America Journal, 75, 1807-1820. |
7 | Chen XY (陈小云), Liu MQ (刘满强), Hu F (胡锋), Mao XF (毛小芳), Li HX (李辉信) (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecologica Sinica(生态学报), 27, 3132-3143. (in Chinese with English abstract) |
8 | Cheng YQ, Yang LZ, Cao ZH, Ci E, Yin SX (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma, 151, 31-41. |
9 | Ci E (慈恩), Yang LZ (杨林章), Cheng YQ (程月琴), Ma L (马力) (2009) Volume fractal property of soil particle size distribution of paddy soils cultivated for different years. Soils(土壤), 41, 396-401. (in Chinese with English abstract) |
10 | Cui J, Meng H, Nie M, Chen XP, Li ZL, Bu NS, Li B, Chen JK, Quan ZX, Fang CM (2012) Bacterial succession during 500 years of soil development under agricultural use. Ecological Research, 27, 793-807. |
11 | Darby BJ, Neher DA, Belnap J (2007) Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Applied Soil Ecology, 35, 203-212. |
12 | Doblas-Miranda E, Wardle DA, Peltzer DA, Yeates GW (2008) Changes in the community structure and diversity of soil invertebrates across the Franz Josef Glacier chronosequence. Soil Biology and Biochemistry, 40, 1069-1081. |
13 | Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29. |
14 | Freckman DW, Ettema CH (1993) Assessing nematode communities in agroecosystems of varying human intervention. Agriculture, Ecosystems and Environment, 45, 239-261. |
15 | Háněl L (2010) An outline of soil nematode succession on abandoned fields in South Bohemia. Applied Soil Ecology, 46, 355-371. |
16 | Holtkamp R, van der Wal A, Kardol P, van der Putten WH, de Ruiter PC, Dekker SC (2011) Modelling C and N miner- alisation in soil food webs during secondary succession on ex-arable land. Soil Biology and Biochemistry, 43, 251-260. |
17 | Hu JL (胡君利), Lin XG (林先贵), Yin R (尹睿), Chu HY (褚海燕), Zhang HY (张华勇), Wang JH (王俊华), Cao ZH (曹志洪) (2008) Comparison of microbial processes in paddy soils of different ages in Cixi, Zhejiang. Acta Scientiae Circumstantiae(环境科学学报), 28, 174-179. (in Chinese with English abstract) |
18 | Jiang DM, Li Q, Liu FM, Jiang Y, Liang WJ (2007) Vertical distribution of soil nematodes in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, Northeast China. Ecological Research, 22, 49-56. |
19 | Kardol P, Newton JS, Bezemer TM, Maraun M, van der Putten WH (2009) Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecologica, 35, 603-609. |
20 | Li HX (李辉信), Liu MQ (刘满强), Hu F (胡锋), Chen XY (陈小云), He YQ (何园球) (2002) Nematode abundance under different vegetations restored on degraded red soil. Acta Ecologica Sinica(生态学报), 22, 1883-1889. (in Chinese with English abstract) |
21 | Li Q (李琪), Liang WJ (梁文举), Jiang Y (姜勇) (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science(生物多样性), 15, 134-141. (in Chinese with English abstract) |
22 | Li YJ (李玉娟), Wu JH (吴纪华), Chen HL (陈慧丽), Chen JK (陈家宽) (2005) Nematodes as bioindicator of soil health: methods and applications. Chinese Journal of Applied Ecology(应用生态学报), 16, 1541-1546. (in Chinese with English abstract) |
23 | Li ZP (李忠佩), Yang DY (杨德涌) (2009) Distribution of organic carbon and nutrient contents in particle-size fractions of a cultivation chronosequence of paddy soils in subtropical China. Acta Pedologica Sinica(土壤学报), 46, 70-77. (in Chinese with English abstract) |
24 | Li ZP, Liu M, Wu XC, Han FX, Zhang TL (2010) Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil and Tillage Research, 106, 268-274. |
25 | Li ZP, Zhang TL, Li DC, Velde B, Han FX (2005a) Changes in soil properties of paddy fields across a cultivation chronosequence in subtropical China. Pedosphere, 15, 110-119. |
26 | Li ZP, Zhang TL, Han FX, Felix-Henningsen P (2005b) Changes in soil C and N contents and mineralization across a cultivation chronosequence of paddy fields in subtropical China. Pedosphere, 15, 554-562. |
27 | Liu M, Chen X, Qin J, Wang D, Griffiths B, Hu F (2008) A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology, 40, 250-259. |
28 | Liu MQ (刘满强), Hu F (胡锋), He YQ (何园球), Li HX (李辉信) (2003) Seasonal dynamics of soil microbial biomass and its significance to indicate soil quality under different vegetation restored on degraded red soils. Acta Pedologica Sinica(土壤学报), 40, 937-944. (in Chinese with English abstract) |
29 | Liu XL (刘晓利), He YQ (何园球) (2009) Water-stable aggregates and nutrients in red soil under different reclamation years. Soils(土壤), 41, 84-89. (in Chinese with English abstract) |
30 | Moebius-Clune BN, van Es HM, Idowu OJ, Schindelbeck RR, Kimetu JM, Ngoze S, Lehmann J, Kinyangi JM (2011) Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agriculture, Ecosystems and Environment, 141, 86-99. |
31 | Neher DA, Wu J, Barbercheck ME, Anas O (2005) Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30, 47-64. |
32 | Okada H, Harada H (2007) Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology, 35, 582-598. |
33 | Okada H, Niwa S, Takemoto S, Komatsuzaki M, Hiroki M (2011) How different or similar are nematode communities between a paddy and an upland rice fields across a flooding-drainage cycle? Soil Biology and Biochemistry, 43, 2142-2151. |
34 | Pan GX, Li LQ, Wu LS, Zhang XH (2003) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology, 10, 79-92. |
35 | Shao YH (邵元虎), Fu SL (傅声雷) (2007) The diversity and functions of soil nematodes. Biodiversity Science(生物多样性), 15, 116-123. (in Chinese with English abstract) |
36 | Sohlenius B (2002) Influence of clear-cutting and forest age on the nematode fauna in a Swedish pine forest soil. Applied Soil Ecology, 19, 261-277. |
37 | Tong C, Xiao H, Tang G, Wang H, Huang T, Xia H, Keith SJ, Li Y, Liu S, Wu J (2009) Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil and Tillage Research, 106, 8-14. |
38 | Wang SJ (王邵军), Cai QJ (蔡秋锦), Ruan HH (阮宏华) (2007) Soil nematode community response to vegetation restoration in northern Fujian. Biodiversity Science(生物多样性), 15, 356-364. (in Chinese with English abstract) |
39 | Wardle DA(2002) The soil food web: biotic interactions and regulators. In: Communities and Ecosystems: Linking the Aboveground and Belowground Components (ed. Wardle DA), pp. 7-55. Princeton University Press, Princeton. |
40 | Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO<sub>2</sub>) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27, 1601-1610. |
41 | Williamson WM, Wardle DA, Yeates GW (2005) Changes in soil microbial and nematode communities during ecosystem decline across a long-term chronosequence. Soil Biology and Biochemistry, 37, 1289-1301. |
42 | Wissing L, Kolbl A, Vogelsang V, Fu JR, Cao ZH, Kogel-Knabner I (2011) Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Catena, 87, 376-385. |
43 | Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU (2000) A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and Fertility of Soils, 30, 510-519. |
44 | Wu DH (吴东辉), Zhang B (张柏), Chen P (陈鹏) (2006) Structural characteristics of soil nematodes community under different land uses in Changchun City. Chinese Journal of Applied Ecology(应用生态学报), 17, 450-456. (in Chinese with English abstract) |
45 | Zhao QG (赵其国), Wu ZD (吴志东), Zhang TL (张桃林) (1998) Sustainable development of agriculture and ecological environment construction in red soil hilly area southeast China. II. Countermeasures and suggestions. Soils(土壤), 30, 169-177. (in Chinese) |
46 | Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 36, 84-91. |
47 | Zou P, Fu JR, Cao ZH (2011) Chronosequence of paddy soils and phosphorus sorption-desorption properties. Journal of Soils and Sediments, 11, 249-259. |
[1] | 刘满强, 黄菁华, 陈小云, 王峰, 葛成, 苏昱, 邵波, 汤英, 李辉信, 胡锋. 地上部植食者褐飞虱对不同水稻品种土壤线虫群落的影响[J]. 生物多样性, 2009, 17(5): 431-439. |
[2] | 张建萍, 董乃源, 余浩滨, 周勇军, 陆永良, 耿锐梅, 余柳青. 应用16S rDNA-RFLP方法分析宁夏地区稻田土壤细菌的多样性[J]. 生物多样性, 2008, 16(6): 586-592. |
[3] | 左然玲, 强胜. 稻田水面漂浮的杂草种子种类及动态[J]. 生物多样性, 2008, 16(1): 8-14. |
[4] | 徐敦明, 李志胜, 刘雨芳, 尤民生. 稻田及其毗邻杂草地寄生蜂群落结构与特征[J]. 生物多样性, 2004, 12(3): 312-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn