生物多样性 ›› 2025, Vol. 33 ›› Issue (8): 25112.  DOI: 10.17520/biods.2025112

• • 上一篇    下一篇

协同演化研究: 协同系统发育分析方法与进展

王蔼英1*, 廖万金2   

  1. 1. 北京林业大学生态与自然保护学院, 北京 100083 

    2. 北京师范大学生命科学学院, 生物多样性与生态工程教育部重点实验室, 北京 100875

  • 收稿日期:2025-03-30 修回日期:2025-06-03 接受日期:2025-09-05 出版日期:2025-08-20
  • 通讯作者: 王蔼英
  • 基金资助:
    北京市自然科学基金资助项目(5244043); 国家自然科学基金(32401310)

Coevolutionary processes: Methods and advances in cophylogenetic analysis

Aiying Wang1*, Wanjin Liao2   

  1. 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China 

    2 MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China

  • Received:2025-03-30 Revised:2025-06-03 Accepted:2025-09-05 Online:2025-08-20
  • Contact: Aiying Wang
  • Supported by:
    Beijing Natural Science Foundation(5244043); National Natural Science Foundation of China(32401310)

摘要: 协同演化是推动和维持地球生物多样性的重要驱动力, 其产生的演化结果与关系模式对于揭示生物多样性的产生和维持机制十分关键。协同系统发育分析作为推断物种间相互作用或相互作用网络协同演化过程所产生结果模式的重要方法, 可以建立在两个或多个类群的系统发育树之间, 通过全局拟合或基于事件的分析方法, 推断类群间的系统发育一致性及协同宏演化事件。本文首先介绍了协同演化的基本概念。其次, 系统阐述了协同系统发育分析在两个类群和多个类群之间的常用分析方法, 并对全局拟合和基于事件分析的两大类方法进行了比较。随后, 综述了协同系统发育分析方法在物种间相互作用及群落构建的协同演化研究中的应用。最后, 本文综合该领域中现有的研究方法和进展, 探讨了当前方法的局限性, 并对协同系统发育分析方法在协同演化中的研究发展方向提出了展望。

关键词: 协同演化, 协同系统发育分析, 物种间相互作用, 全局拟合法, 事件分析法, 宏演化

Abstract

Background & Aims: Coevolution is widely recognized as a fundamental driver of Earth’s biodiversity. Understanding coevolutionary processes is crucial for deciphering the evolutionary dynamics of species interactions and community assembly. Cophylogenetic analysis is a key tool for inferring the outcomes of coevolutionary processes in interspecies interactions and interaction networks. This review aims to systematically summarize methods and recent advances in cophylogenetic analysis and to provide insights into their applications for studying coevolutionary processes. 

Progress: We first introduce the conceptual foundations of coevolution and its significance in biodiversity research. We then present a detailed overview of cophylogenetic analysis methods. For pairwise interactions, we describe and compare global-fit and event-based methods, highlighting their principles, strengths, limitations, and applications. For complex multi-species interactions, we discuss phylogenetic cascade approaches and network-based approaches. We then review key applications of cophylogenetic analysis in studying antagonistic, competitive, and mutualistic interactions. Finally, we outline how cophylogenetic analysis has been used to investigate community assembly processes. 

Perspectives: Advancing cophylogenetic methods is crucial for improving our understanding of coevolutionary patterns. Key challenges include the lack of direct links between phylogenetic congruence and true coevolutionary processes, as well as limitations in accuracy assessment. Recent frameworks, such as cophylospace, enhance explanatory power by incorporating interaction network structures. Simulation tools, combined with machine learning approaches, show promise for evaluating and improving accuracy assessments. Future research should integrate reticulate phylogenies, phylogenetic dating, and quantitative measures of interaction into cophylogenetic inference. Furthermore, a more universal and adaptable framework could be developed through integration with multidisciplinary technologies such as artificial intelligence. These advancements will deepen our understanding of coevolutionary processes across ecological scales and contexts.

Key words: coevolution, cophylogenetic analysis, interspecific interactions, global-fit methods, event-based methods, macroevolution