Biodiversity Science ›› 2017, Vol. 25 ›› Issue (5): 540-548.doi: 10.17520/biods.2017012

• Original Papers: Animal Diversity • Previous Article     Next Article

Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region

Xiaoxu Jia, Xiujun Tang, Yanfeng Fan, Junxian Lu, Shenghai Huang, Qinglian Ge, Yushi Gao*(), Wei Han   

  1. Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125
  • Received:2017-01-08 Accepted:2017-04-10 Online:2017-06-06
  • Gao Yushi E-mail:gaoys100@sina.com

The objective of this study was to determine the origin and evolution of chickens in Eastern China by assessing the genetic diversities and structures of 11 local chicken breeds. The complete D-loop region of mitochondrial DNA (mtDNA) of 319 chickens from 11 local breeds were sequenced and analyzed together with published data for the red junglefowl. These sequences were then used in a neighbor-joining method to construct the phylogenetic tree of these breeds and the red junglefowl. The D-loop regions of the local breeds were characterized by 1,231 and 1,232 bp; the 1,231 bp haplotype had 196 sequences, while the 1,232 bp haplotype had 123 sequences, with a base C deficiency from the 859 bp site in the 1,231 bp haplotype. A total of 37 mutation sites were detected in the 319 individuals. The average haplotype diversity, nucleotide diversity, and nucleotide difference were 0.901 ± 0.009, 0.005 73 ± 0.000001 and 6.833, respectively. A total of 35 haplotypes were identified which belonged to four previously published clades, i.e. Clades A, B, C, and E, which contained 11, 10, 9, and 5 haplotypes, respectively. Median-joining network profiles of the haplotype indicated the 11 local breeds were divided into four maternal clades containing 100, 118, 47, and 54 sequences. The cluster of five subspecies of the red junglefowl and 11 local breeds were divided into four distinct groups. Gallus gallus jabouillei was grouped alone. Haplotype C and four subspecies of junglefowl were clustered in one group. Haplotype E and two subspecies of junglefowl were clustered in another group. Haplotypes A, B, and Gallus gallus spadiceus were clustered in another group. Chickens from eastern China revealed abundant genetic diversity in the mtDNA D-loop region, except for the Langshan and Silky breeds. No breed-specific matrilineal clade was observed. We conclude that chicken breeds from eastern China likely share four common maternal lineages, and that some chicken populations may have been mixed with exotic lineage chickens.

Key words: phylogeny, red junglefowl, D-loop region, local breed

Table 1

Sampling information about the 11 local chicken breeds. M, Meat; E, Egg; Med, Medical."

品种及代号
Breed and code
原产地
Origin
现有种群规模及采样
Population (sample size)
经济用途
Economic use
安义瓦灰 Anyi Gray (AY) 江西安义 Anyi, Jiangxi 600,000 (30) 肉蛋兼用 E & M
白耳黄 Baier Yellow (BE) 江西广丰 Guangfeng, Jiangxi 20,000,000 (30) 蛋用 E
崇仁麻 Chongren Partridge (CP) 江西崇仁 Chongren, Jiangxi 52,000,000 (30) 肉蛋兼用 E & M
东乡绿壳 Dongxiang Blue-eggshell (DX) 江西东乡 Dongxiang, Jiangxi 200,000 (30) 肉蛋兼用 E & M
丝羽乌骨 Silkies (SL) 江西泰和 Taihe, Jiangxi 16,500,000 (30) 肉药兼用 Med & M
金湖乌凤 Jinhu Black-bone (JH) 福建泰宁 Taining, Fujian 160,000 (29) 肉药兼用 Med & M
仙居 Xianju (XJ) 浙江仙居 Xianju, Zhejiang 1,484,000 (30) 蛋用 E
琅琊 Langya (LY) 山东日照 Rizhao, Shandong 110,000 (30) 肉蛋兼用 E & M
寿光 Shouguang (SG) 山东寿光 Shouguang, Shandong 201,000 (30) 肉蛋兼用 E & M
狼山 Langshan (LS) 江苏如东 Rudong, Jiangsu 10,000 (20) 肉蛋兼用 E & M
鹿苑 Luyuan (LU) 江苏张家港 Zhangjiagang, Jiangsu 20,000 (30) 肉蛋兼用 E & M

Table 2

Variable information and haplotype distribution of the 11 local chicken breeds. Dots (.) denote identity with the reference sequence (NC007235). Breed codes are the same as in Table 1."

单倍型
Haplotype
变异位点
Variable sites
单倍型在品种的分布(频率)
Breeds (frequency)
总计
Total
0000000000 0000000000 0000000000 0000111
1112222222 2222222222 3333333333 4677222
3690111122 3444445678 1134566679 4819112
3797027925 9012366101 0502813726 6612455
NC007235 TTTACATCAC ACAGTTTCTA CTCAAACTAT CGGGCAA
A1 .C...G...T .....C.... .C........ .....G. BE8, DX13, SL21, XJ8, LU17, LY2 69
A2 .C.G.G...T .....C.... .C........ .....G. SG8 8
A3 .C...G...T .....C.... .C...T.... .....G. LU6 6
A4 .C...G...T .....C...G .C.......C .....GG CP2 2
A5 .C...G...T .....C.... .C.......C .....G. SG5 5
A6 .C...G...T G....C.... .C........ .....G. JH1 1
A7 .CC..G...T .....C.... .C......G. .....G. LY1 1
A8 .C...G...T .....CC... .C........ .....G. SL2 2
A9 .C...G...T .....C.... .C........ .A...G. AY3 3
A10 .C..TG...T .....C.... .C........ .A...G. JH2 2
A11 .C.......T .....C.... .C........ .....G. LY1 1
B1 .......... .......... .......... ....... XJ1, AY7, CP10, DX4, LY2, SG9, LS20 53
B2 C......... .......... .......... ....... CP1 1
B3 .......... .......... ..T....... ....... SL7 7
B4 ....T..... .......... .......... ....... LY2 2
B5 .......T.. .......T.. .......... ....... LY1 1
B6 .......... .......... .......... ...A... XJ1, AY5, BE1, SG1, LY1 9
B7 .......... ......C... .......... ...A... BE4 4
B8 .......... .......... .......... .A.A... JH11, XJ2, BE1 14
B9 .......... G......... ....G..... .A.A... BE15 15
B10 .......... .......... T......... .A..... CP12 12
C1 .....G.... ...ACCC..G TC.G..TC.. .....G. XJ18, AY6, DX2, JH1, SG2 29
C2 .....G.... ...ACCCT.G TC.G..TC.. .....G. LY3 3
C3 .....G.... .T.ACCC..G TC.G..TC.. .....G. LY1 1
C4 .....G.... .T.ACC...G TC.G..TC.. ..A..G. LU1 1
C5 .....G.... ...ACCCT.G TC....TC.. .....G. AY2, LY1 3
C6 .....G.... ...ACCCTCG TC....TC.. .....G. CP1 1
C7 .....G.... ...ACCC... TC.G..TC.. .....G. BE1 1
C8 .........T ..GACCC..G TC....TC.. .....G. AY7 7
C9 .......... ...ACCC..G TC....TC.. .....G. LY1 1
E1 .....GC... ....CCCT.. TC........ T...TG. JH13, CP3, LY6, LU6 28
E2 .....GC.G. ....CCCT.. TCT....... T...TG. CP1 1
E3 .....GC... ....CCCT.. TC.G...... TA..TG. LY8 8
E4 ..C..GC... ....CC.T.. TC........ T...TG. DX11 11
E5 ..C..GC... ....CCCT.. TC........ T...TG. JH1, SG5 6

Table 3

Haplotype diversity (Hd), average number of differences (K) and nucleotide diversity (Pi) of the D-loop of mtDNA in 11 domestic chicken breeds. Breed codes are the same as in Table 1."

品种名
Breed
样本量
sample
size
单倍型数
No. of haplotypes
单倍型群(对应个体数)
Haplogroup (number
of individuals observed)
单倍型多样度
Haplotype
diversity (SD)
核苷酸多样度
Nucleotide
diversity (SD)
平均核苷酸差异
Average number of
nucleotide differences
安义瓦灰 AY 30 6(A = 1; B = 2; C = 3) A(3); B(12); C(15) 0.837(0.027) 0.00613(0.00140) 7.540
白耳黄 BE 30 6(A = 1; B = 4; C = 1) A(8); B(21); C(1) 0.680(0.066) 0.00424(0.00133) 5.218
崇仁麻 CP 30 7(A = 1; B = 3; C = 1; E = 2) A(2); B(23); C(1); E(4) 0.736(0.054) 0.00425(0.00178) 5.232
东乡绿壳 DX 30 4(A = 1; B = 1; C = 1; E = 1) A(13); B(4); C(2); E(11) 0.678(0.049) 0.00457(0.00138) 5.444
金湖乌凤 JH 29 6(A = 2; B = 1; C = 1; E = 2) A(3); B(11); C(1); E(14) 0.670(0.057) 0.00615(0.00174) 7.571
丝羽乌骨 SL 30 3(A = 2; B = 1) A(23); B(7) 0.467(0.087) 0.00221(0.00075) 2.720
仙居 XJ 30 5(A = 1; B = 3; C = 1) A(8); B(4); C(18) 0.582(0.079) 0.00492(0.00127) 6.053
琅琊 LY 30 13(A = 3; B = 4; C = 4; E = 2) A(4); B(6); C(6); E(14) 0.887(0.038) 0.00647(0.00184) 7.968
寿光 SG 30 6(A = 2; B = 2; C = 1; E = 1) A(13); B(10); C(2); E(5) 0.805(0.035) 0.00553(0.00165) 6.805
狼山 LS 20 1(B = 1) B(20) 0 0 0.000
鹿苑 LU 30 3(A = 2; E = 1) A(25); E(5) 0.549(0.081) 0.00237(0.00088) 2.917
总计 All 319 35(A = 11; B = 10; C = 9; E = 5) (A = 100; B = 118; C = 47;
E = 54)
0.901(0.009) 0.00573(0.000001) 6.833

Table 4

The interspecies and intraspecies mean genetic distance of the 11 chicken breeds calculated by Kimura-2-parameter model. Breed codes are the same as in Table 1."

品种名
Breed
品种内
Within breeds
安义瓦灰
AY
白耳黄
BE
崇仁麻
CP
东乡绿壳
DX
金湖乌凤
JH
丝羽乌骨
SL
仙居
XJ
琅琊
LY
寿光
SG
狼山
LS
鹿苑
LU
安义瓦灰 AY 0.0062
白耳黄 BE 0.0043 0.0073
崇仁麻 CP 0.0044 0.0066 0.0053
东乡绿壳 DX 0.0050 0.0073 0.0074 0.0066
金湖乌凤 JH 0.0062 0.0077 0.0072 0.0063 0.0064
丝羽乌骨 SL 0.0022 0.0063 0.0053 0.0055 0.0046 0.0066
仙居 XJ 0.0050 0.0060 0.0084 0.0077 0.0069 0.0079 0.0063
琅琊 LY 0.0065 0.0077 0.0088 0.0074 0.0065 0.0066 0.0072 0.0071
寿光 SG 0.0056 0.0069 0.0065 0.0060 0.0056 0.0068 0.0043 0.0070 0.0072
狼山 LS 0.0000 0.0056 0.0035 0.0028 0.0061 0.0060 0.0040 0.0073 0.0075 0.0046
鹿苑 LU 0.0032 0.0069 0.0068 0.0067 0.0046 0.0065 0.0031 0.0063 0.0066 0.0049 0.0061

Fig. 1

Neighbor-joining tree among 11 domestic chicken breeds based on the net distance calculated from mitochondrial complete D-loop sequence"

Fig. 2

Median network profile of the mtDNA D-loop haplotypes observed in the present study. The circle sizes are proportional of the haplotype frequencies. Different shades of the circles correspond to distinct populations. Breed codes are the same as in Table 1."

Fig. 3

Neighbor-joining tree based on mtDNA D-loop sequences. GGS, Gallus gallus spadiceus; GGJ, G. gallus jabouillei; GGG, G. gallus gallus; GGB, G. gallus bankiva; GGM, G. gallus murghi."

[1] Bao WB, Chen GH, Wu XS, Xu Q, Wu SL, Shu JT, Weigend S (2007) Genetic diversity of red junglefowl in China (Gallus gallus spadiceus) and red junglefowl (Gallus gallus gallus) in Thailand. Hereditas (Beijing) , 29, 587-592. (in Chinese with English abstract)
[包文斌, 陈国宏, 吴信生, 徐琪, 吴圣龙, 束婧婷, Steffen Weigend (2007) 中国红原鸡和泰国红原鸡遗传多样性分析. 遗传, 29, 587-592.]
[2] Bao WB, Shu JT, Wang CB, Zhang HX, Weigend S, Chen GH (2008) Investigation on genetic diversity and systematic evolution in Chinese domestic fowls and red jungle fowls by analyzing the mtDNA control region. Acta Veterinaria et Zootechnica Sinica, 39, 1449-1459. (in Chinese with English abstract)
[包文斌, 束婧婷, 王存波, 张红霞, Steffen Weigend, 陈国宏 (2008) 中国家鸡和红色原鸡mtDNA控制区遗传多态性及系统进化分析. 畜牧兽医学报, 39, 1449-1459.]
[3] Chang CS, Chen CF, Berthouly-Salazar C, Chazara O, Lee YP, Chang CM, Chang KH, Bed’Hom B, Tixier-Boichard M (2012) A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Animal Genetics, 43, 172-182.
[4] Chen KW, Li HF, Wang JY, Tang QP, Shen JC, Zhang SJ (2006) Study on genetic diversity of 27 indigenous chicken breeds or strains in East China. Acta Veterinaria et Zootechnica Sinica, 37, 7-11. (in Chinese with English abstract)
[陈宽维, 李慧芳, 王金玉, 汤青萍, 沈见成, 章双杰 (2006) 华东27个地方鸡品种(品系)的遗传变异. 畜牧兽医学报, 37, 7-11.]
[5] China National Commission of Animal Genetic Resources(2011) Animal Genetic Resources in China: Poultry. China Agriculture Press, Beijing. (in Chinese)
[国家畜禽遗传资源委员会(2011) 中国畜禽遗传资源志:家禽志. 中国农业出版社, 北京.]
[6] Fumihito A, Miyake T, Sumi S, Takada M, Ohno S, Kondo N (1994) One subspecies of the red junglefowl (Gallus gallus gallus) sufficies as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences, USA, 91, 12505-12509.
[7] Gao YS, Tang XJ, Tu YJ, Lu JX, Xue MY, Shi ZH, Zhang XY (2011) Studies on the DNA barcoding of fifteen chicken breeds by mtDNA COI gene. Scientia Agricultura Sinica, 44, 587-594. (in Chinese with English abstract)
[高玉时, 唐修君, 屠云洁, 陆俊贤, 薛茂云, 施祖灏, 张小燕 (2011) 基于线粒体COI基因15个鸡种的DNA编码研究. 中国农业科学, 44, 587-594.]
[8] Gao YS, Jia XX, Tang XJ, Tang MJ, Fan YF, Lu JX, Gu R, Ge QL, Su YJ (2015) The genetic diversity and origin analysis of Anyi Tile-like chickens (Gallus gallus domestiaus) based on mitochondrial DNA D-loop sequence. Journal of Agricultural Biotechnology, 23, 940-944. (in Chinese with English abstract)
[高玉时, 贾晓旭, 唐修君, 唐梦君, 樊艳凤, 陆俊贤, 顾荣, 葛庆联, 苏一军 (2015) 基于线粒体基因组D-loop区全序列分析安义瓦灰鸡遗传多样性及其起源进化关系. 农业生物技术学报, 23, 940-944.]
[9] Guan FR (2001) A review of Dongxiang blue egg chicken. Livestock and Poultry Industry, (7) , 22-23.
(in Chinese) [官发荣 (2001) 东乡黑羽绿壳蛋鸡综述. 畜禽业, (7) , 22-23.]
[10] Huang XH, Chen JB, He DL, Zhang XQ, Zhong FS (2016) DNA barcoding of indigenous chickens in China: a reevaluation. Scientia Agricultura Sinica, 49, 2622-2633. (in Chinese with English abstract)
[黄勋和, 陈洁波, 何丹林, 张细权, 钟福生 (2016) DNA条形码技术鉴定中国地方鸡品种的重新评估. 中国农业科学, 49, 2622-2633.]
[11] Jia XX, Tang XJ, Lu JX, Fan YF, Chen DW, Tang MJ, Gu R, Gao YS (2016) The investigation of genetic diversity and evolution of Daweishan Mini chicken based on the complete mitochondrial (mt)DNA D-loop region sequence. Mitochondrial DNA, 27, 3001-3004.
[12] Kanginakudru S, Metta M, Jakati RD, Nagaraju J (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evolutionary Biology, 8, 174.
[13] Liao Y, Mo G, Sun J, Wei F, Liao DJ (2016) Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region. Molecular Biology Reports, 43, 1-11.
[14] Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics & Evolution, 38, 12-19.
[15] Lu JX, Jia XX, Tang XJ, Fan YF, Tang MJ, Gao YS, Su YJ (2016) Genetic diversity of two local Yunnan chicken breeds and their relationships with red junglefowl. Journal of Zhejiang University (Agriculture and Life Sciences), 42, 385-390. (in Chinese with English abstract)
[陆俊贤, 贾晓旭, 唐修君, 樊艳凤, 唐梦君, 高玉时, 苏一军 (2016) 2个云南原始鸡种遗传多样性及其与红色原鸡的亲缘关系. 浙江大学学报(农业与生命科学版), 42, 385-390.]
[16] Miao YW, Peng MS, Wu GS, Ouyang YN, Yang ZY, Yu N, Liang JP, Piangchou G, Beja-Pereira A, Mitra B, Palanichamy MG, Baig M, Chaudhuri TK, Shen YY, Kong QP, Murphy RW, Yao YG, Zhang YP (2013) Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 110, 277-282.
[17] Mwacharo JM, Bjørnstad G, Mobegi V, Nomura K, Hanada H, Amano T (2011) Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics & Evolution, 58, 374-382.
[18] Osman SAM, Yonezawa T, Nishibori M (2016) Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poultry Science, 95, 1248-1256.
[19] Rozas J, Sanchezelbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496-2497.
[20] Shi NN, Fan L, Yao YG, Peng MS, Zhang YP (2014) Mitochondrial genomes of domestic animals need scrutiny. Molecular Ecology, 23, 5393-5397.
[21] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis, version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
[22] Thompsom JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal-X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.
[23] Xiang H, Gao JQ, Yu BQ, Zhou H, Cai DW, Zhang YW, Chen XY, Wang XI, Hofreiter M, Zhao XB (2014) Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences, USA, 111, 17564-17569.
[24] Yang N (2002) Poultry Production. China Agriculture Press, Beijing. (in Chinese)
[杨宁 (2002) 家禽生产学. 中国农业出版社, 北京.]
[25] Zhu WQ, Li HF, Wang JY, Shu JT, Zhu CH, Song WT, Song C, Ji GG, Liu HX (2014) Molecular genetic diversity and maternal origin of Chinese black-bone chicken breeds. Genetics & Molecular Research, 13, 3275-3282.
[26] Zhuang GY, Gong YB (2015) Investigation and utilization of Langya chicken. Poultry Science, (9), 45-50. (in Chinese)
[庄桂玉, 龚玉波 (2015) 琅琊鸡品种资源调查与保种利用. 家禽科学, (9), 45-50.]
[1] Gang Yao. (2020) Phylogenetic study of Amaranthaceae s.l. based on multiple plastid DNA fragments . Chin Bull Bot, 55(4): 0-0.
[2] Gu Yufeng,Jin Dongmei,Liu Baodong,Dai Xiling,Yan Yuehong. (2020) Morphology Characters and Evolution of Ferns Scale Ι: Pteridaceae . Chin Bull Bot, 55(2): 163-176.
[3] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Species distribution and community assembly rules of Juglans mandshurica in North China . Chin J Plant Ecol, 43(9): 753-761.
[4] Bin Cao, Guojie Li, Ruilin Zhao. (2019) Species diversity and geographic components of Russula from the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 854-866.
[5] Zhao Yuemei, Yang Zhenyan, Zhao Yongping, Li Xiaoling, Zhao Zhixin, Zhao Guifang. (2019) Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae . Chin Bull Bot, 54(4): 441-454.
[6] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. (2019) Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China . Biodiv Sci, 27(2): 149-158.
[7] Zhiyuan Chen,Jun Liu,Xingpeng Yang,Meng Liu,Ya Wang,Zhibin Zhang,Du Zhu. (2019) Community composition and diversity of cultivable endophytic bacteria isolated from Dongxiang wild rice . Biodiv Sci, 27(12): 1320-1329.
[8] Xuerui Dong, Hong Zhang, Minggang Zhang. (2019) Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau . Biodiv Sci, 27(12): 1269-1278.
[9] WANG Xue, CHEN Guang-Shui, YAN Xiao-Jun, CHEN Ting-Ting, JIANG Qi, CHEN Yu-Hui, FAN Ai-Lian, JIA Lin-Qiao, XIONG De-Cheng, HUANG Jin-Xue. (2019) Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest . Chin J Plant Ecol, 43(11): 969-978.
[10] Meiling Ge,Qinzeng Xu,Shiliang Fan,Zongxing Wang,Xuelei Zhang. (2018) Taxonomy at order and family levels of the benthic groups of Polychaeta in the coastal waters of China . Biodiv Sci, 26(9): 998-1003.
[11] Luo Junjie, Wang Ying, Shang Hui, Zhou Xile, Wei Hongjin, Huang Sunan, Gu Yufeng, Jin Dongmei, Dai Xiling, Yan Yuehong. (2018) Phylogeny and Systematics of the Genus Microlepia (Dennstaedtiaceae) based on Palynology and Molecular Evidence . Chin Bull Bot, 53(6): 782-792.
[12] Lingyun Wu,Shuangquan Huang. (2018) Insect-pollinated cereal buckwheats: Its biological characteristics and research progress . Biodiv Sci, 26(4): 396-405.
[13] Shaojun Ling, Qianwan Meng, Liang Tang, Mingxun Ren. (2017) Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships . Biodiv Sci, 25(8): 807-815.
[14] Wenying Li, Xia Li, Kaizhi Xie, Wangqiu Deng, Wenying Zhuang. (2017) Systematics and species diversity of botryosphaeriaceous fungi . Biodiv Sci, 25(8): 874-885.
[15] Xue Zhang, Yurui Wang, Yangbo Fan, Xiaotian Luo, Xiaozhong Hu, Feng Gao. (2017) Morphology, ontogeny and molecular phylogeny of Euplotes aediculatus Pierson, 1943 (Ciliophora, Euplotida) . Biodiv Sci, 25(5): 549-560.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed