Biodiversity Science ›› 2010, Vol. 18 ›› Issue (6): 533-546.doi: 10.3724/SP.J.2010.533

Special Issue: Biological Invasions: Mechanisms Impacts and Management;

• Special Issue • Previous Article     Next Article

Genomics: an important tool for understanding plant invasiveness

Lei Shang1, Yangjin Zhuoga2, Ji Yang1 , Bo Li1*   

  1. 1Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433

    2Tibet Plateau Institute of Biology, Lhasa 850001
  • Received:2010-07-05 Online:2011-01-31
  • Bo Li

Invasive alien species threaten both native ecosystems and local economies and thus, considerable efforts have been expended to understand why certain alien species invade their non-native ecosystems so successfully and what consequences their successful invasions have for the invaded ecosystems. However, the mechanisms underlying the successful invasions by alien plants remain highly controversial as little is known about the determinants of plant invasiveness; this information is critical in understanding the mechanisms of successful invasions. With the development of new techniques, a new area, ‘invasive plant genomics’, emerged recently, in which genomic approaches are used for understanding plant invasiveness, and hence plant invasions at the genetic level. Here we review three genomic approaches that could be used in plant invasion biology, and discuss the selection of model invasive species and future research directions in invasive plant genomics. First, comparative genomics offers a way to analyze genome constitution and structure based on genome mapping and full sequencing. Second, functional genomics allows us to identify candidate genes that contribute to the invasive characteristics through natural selection experiments, and determine their functions using “forward ecology” methods. Third, epigenetic genomics complements to the above two approaches, and provides information on gene expression patterns, thereby helping us to understand interactions between genes and the environment. With these genomic approaches, it is possible to dissect the invasiveness-related genes and their expression and regulation patterns, identify invasive genotypes and hence understand plant invasiveness. With this information it is theoretically possible to disassemble plant invasion mechanisms and define the evolutionary patterns during plant invasions. Through use of genomic tools, much progress has already been made in two aspects of plant invasions, namely the molecular basis of weed herbicide-resistance and rhizome development in invasive plants. However, invasive plant genomics is still at an early stage. We urgently need to identify ideal model invasive plants or model systems for use in invasive plant genomics. Other important issues that need to be addressed in future research include genomic information accumulation, molecular responses to varying environmental conditions and systems biology of invasive plants.

No related articles found!
Full text



[1] Jie Liu, Mengjie Li, Qi Zhang, Xin Wei and Xuehui Huang. Exploring the molecular basis of heterosis for plant breeding[J]. J Integr Plant Biol, 0, (): 0 .
[2] Xiaohong He, Xiuli Han, Weijun Guan, Kechuan Tian, Wenbin Zhang, Yuehui Ma. Genetic variability and relationship of 10 Bactrian camel populations revealed by microsatellite markers[J]. Biodiv Sci, 2012, 20(2): 199 -206 .
[3] Liu Yang, Xiaoying Mu, Chao Liu, Jinghui Cai, Ke Shi, Wenjiao Zhu, and Qing Yang. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection[J]. J Integr Plant Biol, 2015, 57(12): 1078 -1088 .
[4] Hu Chi-Ming, Yang Yung-Chang. A Revision of the Genus Androsace L. in China (Cont.)[J]. J Syst Evol, 1986, 24(3): 215 -232 .
[5] . [J]. Chin J Plan Ecolo, 1963, (2): 142 .
[6] Dongdong Niu, Jing Xia, Chunhao Jiang, Beibei Qi, Xiaoyu Ling, Siyuan Lin, Weixiong Zhang, Jianhua Guo, Hailing Jin, and Hongwei Zhao. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense related genes in Arabidopsis[J]. J Integr Plant Biol, 2016, 58(4): 426 -439 .
[7] Dhia Bouktila, Maha Mezghani, Mohamed Marrakchi and Hanem Makni. Characterization of Wheat Random Amplified Polymorphic DNA Markers Associated with the H11 Hessian Fly Resistance Gene[J]. J Integr Plant Biol, 2006, 48(8): .
[8] QIU Jun, GU Jia-Cun, JIANG Hong-Ying, WANG Zheng-Quan. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica[J]. Chin J Plan Ecolo, 2010, 34(9): 1066 -1074 .
[9] Shufa Xu, Jie Chen, Lixing Liu, Xiaofei Wang, Xiuli Huang and Yuhong Zhai. Proteomics Associated with Virulence Differentiation of Curvularia lunata in Maize in China[J]. J Integr Plant Biol, 2007, 49(4): .
[10] CHEN Xiao-Yong, LU Hui-Ping, SHEN Lang, LI Yuan-Yuan. Identifying populations for priority conservation of important species[J]. Biodiv Sci, 2002, 10(3): 332 -338 .