Biodiversity Science ›› 2014, Vol. 22 ›› Issue (1): 21-39.doi: 10.3724/SP.J.1003.2014.13189

Special Issue: From Genome to Diversity

• Orginal Article • Previous Article     Next Article

Advances and challenges in resolving the angiosperm phylogeny

Liping Zeng, Ning Zhang, Hong Ma*()   

  1. State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433
  • Received:2013-08-16 Accepted:2013-12-07 Online:2014-02-10
  • Ma Hong

Angiosperm phylogenetics investigates the evolutionary history and relationships of angiosperms based on the construction of phylogenetic trees. Since the 1990s, nucleotide or amino acid sequences have been widely used for this and angiosperm phylogenetic analysis has advanced from using single or a combination of a few organellar genes to whole plastid genome sequences, resulting in the widely accepted modern molecular systematics of angiosperms. The current framework of the angiosperm phylogeny includes highly supported basal angiosperm relationships, five major clades (eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales), orders grouped within these clades, and core groups in the monocots or eudicots. However, organellar genes have some limitations; these involve uniparental inheritance in most instances and a relatively low percentage of phylogenetic informative sites. Thus, they are unable to resolve some relationships even when whole plastid genome sequences are used. Therefore, the utility of biparentally inherited nuclear genes with more information about evolutionary history, has gradually received more attention. Nevertheless, there are still some plant groups that are difficult to place in the angiosperm phylogeny, such as those involving the relative positions of the five major groups as well as those of several orders of eudicots. In this review, we discuss the applications, advantages and disadvantages of marker genes, the deep relationships that have been resolved in angiosperm phylogeny, groups with uncertain positions, and the challenges that remain in resolving an accurate phylogeny for angiosperms.

Key words: evolutionary relationships, molecular phylogeny, organellar genes, nuclear genes, phylogenomics

Fig. 1

The relationships of major lineages of angiosperms. Except for three basal orders, all angiosperms formed a monophyletic group composed of five major lineages: Chloranthaceae, magnoliids, monocots, Ceratophyllaceae and eudicots. However, their relationships are not clear. Among monocots, Acorales is the basal order and commelinids (shown as triangle in this figure) with four orders are the core groups. The relationships among four magnoliid orders have been clarified. In eudicots, Ranunculales is sister to all other eudicots and Gunnerales is sister to all other core eudicots, which formed a monophyletic group known as Pentapetalae. Rosids and asterids are core groups of Pentapetalae, but there are many uncertain relationships in Pentapetalae. In rosids, it is still uncertain whether the sister group of the COM clade is the nitrogen-fixing clade or malvids."

Fig. 2

The relationships within rosids, asterids, monocots and magnoliids, respectively. (a) Rosids contain three clades: malvids, COM and the nitrogen-fixing clade, but whether the sister group of the COM clade is the nitrogen-fixing clade or malvids remains unclear. (b) Asterids are composed of euasterid I, euasterid II and two basal orders: Ericales and Cornales. The relationships among euasterids I are not clear. Garryales and Aquifoliales were respectively regarded as the basal group of euasterids I and II; however, new evidence based on nuclear genes suggested that these two together formed a sister group of other euasterids I. (c) Commelinids is the core group of monocots, and Acorales is the basal order. The relationships among commelinids are not clear. (d) In magnollids, Magnoliales and Laurales are sister groups, and Canellales and Piperales are sister groups."

[1] Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference.Molecular Phylogenetics and Evolution, 29, 417-434.
[2] Álvarez I, Cronn R, Wendel JF (2005) Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes.Plant Systematics and Evolution, 252, 199-214.
[3] Álvarez I, Costa A, Feliner GN (2008) Selecting single-copy nuclear genes for plant phylogenetics: a preliminary analysis for the Senecioneae (Asteraceae).Journal of Molecular Evolution, 66, 276-291.
[4] Anderberg AA, Baldwin BG, Bayer RG, Breitwieser J, Jeffrey C, Dillon MO, Eldenas P, Funk V, Garcia-Jacas N, Hind DJN (2007) Compositae. In: The Families and Genera of Vascular Plants (ed. Kubitzki K), pp. 61-588, Springer.
[5] Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M (2004) Phylogeny and divergence of basal angiosperms inferred from APETALA-3 and PISTILLATA-like MADS-box genes.Journal of Plant Research, 117, 229-244.
[6] APG (1998) An ordinal classification for the families of flowering plants.Annals of the Missouri Botanical Garden, 85, 531-553.
[7] APG (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II.Botanical Journal of the Linnean Society, 141, 399-436.
[8] Bailey CD, Doyle JJ (1999) Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae.Molecular Phylogenetics and Evolution, 13, 20-30.
[9] Bailey CD, Koch MA, Mayer M, Mummenhoff K, O'Kane SL, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae.Molecular Biology and Evolution, 23, 2142-2160.
[10] Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny.Annals of the Missouri Botanical Garden, 82, 247-277.
[11] Barkman TJ, Chenery G, McNeal JR, Lyons-Weiler J, Ellisens WJ, Moore G, Wolfe AD, dePamphilis CW (2000) Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proceedings of the National Academy of Sciences,USA, 97, 13166-13171.
[12] Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants.Nature, 424, 197-201.
[13] Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, vos Rutger A, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals.Nature, 446, 507-512.
[14] Bremer B, Bremer K, Chase M, Fay M, Reveal J, Soltis D, Soltis P, Stevens P (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Botanical Journal of the Linnean Society, 161, 105-121.
[15] Bremer K (2000) Early Cretaceous lineages of monocot flowering plants. Proceedings of the National Academy of Sciences,USA, 97, 4707-4711.
[16] Burleigh JG, Hilu KW, Soltis DE (2009) Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms.BMC Evolutionary Biology, 9, 61.
[17] Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, Soltis PS, Donoghue MJ (2007) Towards a phylogenetic nomenclature of Tracheophyta.Taxon, 56, 1E-44E.
[18] Carpenter KJ (2006) Specialized structures in the leaf epidermis of basal angiosperms: morphology, distribution, and homology.American Journal of Botany, 93, 665-681.
[19] Chapman MA, Chang JC, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae).Theoretical and Applied Genetics, 115, 747-755.
[20] Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL.Annals of the Missouri Botanical Garden, 80, 528-580.
[21] Choi HK, Luckow MA, Doyle J, Cook DR (2006) Development of nuclear gene-derived molecular markers linked to legume genetic maps.Molecular Genetics and Genomics, 276, 56-70.
[22] Collins TM, Fedrigo O, Naylor GJP (2005) Choosing the best genes for the job: the case for stationary genes in genome-scale phylogenetics.Systematic Biology, 54, 493-500.
[23] Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species.American Journal of Botany, 75, 1443-1458.
[24] Couvreur TL, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae).Molecular Biology and Evolution, 27, 55-71.
[25] Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity.Science, 246, 675-678.
[26] Crane PR, Herendeen P, Friis EM (2004) Fossils and plant phylogeny.American Journal of Botany, 91, 1683-1699.
[27] Crawley S, Hilu K (2012) Impact of missing data, gene choice, and taxon sampling on phylogenetic reconstruction: the Caryophyllales (angiosperms).Plant Systematics and Evolution, 298, 297-312.
[28] Cronquist A (1968) The Evolution and Classification of Flowering Plants. Houghton Mifflin, Boston.
[29] Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences.American Journal of Botany, 89, 132-144.
[30] Curto MA, Puppo P, Ferreira D, Nogueira M, Meimberg H (2012) Development of phylogenetic markers from single-copy nuclear genes for multi locus, species level analyses in the mint family (Lamiaceae).Molecular Phylogenetics and Evolution, 63, 758-767.
[31] Darwin F, Seward AC (1903) More Letters of Charles Darwin. Cambridge University Press, London, UK.
[32] Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin's abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences,USA, 101, 1904-1909.
[33] Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales.Science, 305, 676-678.
[34] Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, Freudenstein JV, Goldman DH, Hardy CR, Michelangeli FA, Simmons MP, Mark P, Specht CD, Vergara-Silva F, Gandolfo M (2004) A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values.Systematic Botany, 29, 467-510.
[35] Day A, Ellis T (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplasts.Cell, 39, 359-368.
[36] Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life.Nature Reviews Genetics, 6, 361-375.
[37] Denton AL, McConaughy BL, Hall BD (1998) Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny.Molecular Biology and Evolution, 15, 1082-1085.
[38] Dilcher DL (1989) The occurrence of fruits with affinities to Ceratophyllaceae in lower and mid-Cretaceous sediments.American Journal of Botany, 76, 162.
[39] Doyle JA, Hotton CL (1991) Diversification of early angiosperm pollen in a cladistic context. In: Pollen and Spores: Pattern of Diversification (eds Blackmore S, Barnes SH), pp. 169-195. Clarendon Press, Oxford , England.
[40] Drinnan AN, Crane PR, Friis EM, Pedersen KR (1991) Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid-Cretaceous) of eastern North America.American Journal of Botany, 78, 153-176.
[41] Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW (2010) Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.BMC Evolutionary Biology, 10, 61.
[42] Eaton DA, Ree RH (2013) Inferring phylogeny and introgression using RADseq Data: an example from flowering plants (Pedicularis: Orobanchaceae).Systematic Biology, 62, 689-706.
[43] Ebersberger I, Strauss S, von Haeseler A (2009) HaMStR: Profile hidden markov model based search for orthologs in ESTs.BMC Evolutionary Biology, 9, 157.
[44] Eklund H, Doyle JA, Herendeen PS (2004) Morphological phylogenetic analysis of living and fossil Chloranthaceae.International Journal of Plant Sciences, 165, 107-151.
[45] Emshwiller E, Doyle JJ (1999) Chloroplast-expressed glutamine synthetase (ncpGS): potential utility for phylogenetic studies with an example from Oxalis (Oxalidaceae).Molecular Phylogenetics and Evolution, 12, 310-319.
[46] Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations.American Journal of Botany, 96, 22-66.
[47] Evans RC, Alice LA, Campbell CS, Kellogg EA, Dickinson TA (2000) The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility.Molecular Phylogenetics and Evolution, 17, 388-400.
[48] Farrell BD (1998) “Inordinate fondness” explained: why are there so many beetles?Science, 281, 555-559.
[49] Fauré S, Noyer JL, Carreel F, Horry JP, Bakry F, Lanaud C (1994) Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata).Current Genetics, 25, 265-269.
[50] Finet C, Timme RE, Delwiche CF, Marlétaz F (2010) Multigene phylogeny of the green lineage reveals the origin and diversification of land plants.Current Biology, 20, 2217-2222.
[51] Fishbein M, Hibsch-Jetter C, Soltis DE, Hufford L (2001) Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation.Systematic Biology, 50, 817-847.
[52] Fortune P, Schierenbeck KA, Ainouche A, Jacquemin J, Wendel JF, Ainouche M (2007) Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae).Molecular Phylogenetics and Evolution, 43, 1040-1055.
[53] Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.The EMBO Journal, 18, 4679-4688.
[54] Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae.Trends in Plant Science, 16, 108-116.
[55] Friedman WE (2009) The meaning of Darwin’s “abominable mystery”.American Journal of Botany, 96, 5-21.
[56] Friis E, Crane P, Pedersen K (1986) Floral evidence for Cretaceous chloranthoid angiosperms.Nature, 320, 163-164.
[57] Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PC, Grimm GW, Stampanoni M (2007) Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales.Nature, 450, 549-552.
[58] Fulton TM, van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants.The Plant Cell, 14, 1457-1467.
[59] Funk VA, Randall BA, Sterling-Keeley ER, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Nuria GJ (2005) Everywhere but Antarcita: using a supertree to understand the diversity and distribution of the Compositae.Biologiske Skrifter, 55, 343-374.
[60] Galloway GL, Malmberg RL, Price RA (1998) Phylogenetic utility of the nuclear gene arginine decarboxylase: an example from Brassicaceae.Molecular Biology and Evolution, 15, 1312-1320.
[61] Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm.Molecular Biology and Evolution, 20, 1499-1505.
[62] Goremykin VV, Viola R, Hellwig FH (2009) Removal of noisy characters from chloroplast genome-scale data suggests revision of phylogenetic placements of Amborella and Ceratophyllum.Journal of Molecular Evolution, 68, 197-204.
[63] Goremykin VV, Nikiforova SV, Bininda-Emonds OR (2010) Automated removal of noisy data in phylogenomic analyses.Journal of Molecular Evolution, 71, 319-331.
[64] Goremykin VV, Nikiforova SV, Biggs PJ, Zhong B, Delange P, Martin W, Woetzel S, Atherton RA, Mclenachan PA, Lockhart PJ (2013) The evolutionary root of flowering plants.Systematic Biology, 62, 50-61.
[65] Gouy M, Li W (1989) Molecular phylogeny of the kingdoms Animalia, Plantae, and Fungi.Molecular Biology and Evolution, 6, 109-122.
[66] Graham SW, Zgurski JM, McPherson MA, Cherniawsky DM, Saarela JM, Horne EF, Smith SY, Wong WA, O’Brien HE, Biron VL (2006) Robust inference of monocot deep phylogeny using an expanded multigene plastid data set.Aliso, 22, 3-20.
[67] Graybeal A (1998) Is it better to add taxa or characters to a difficult phylogenetic problem?Systematic Biology, 47, 9-17.
[68] Gu X, Fu YX, Li WH (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites.Molecular Biology and Evolution, 12, 546-557.
[69] Hamby RK, Zimmer EA (1988) Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae).Plant Systematics and Evolution, 160, 29-37
[70] Herendeen PS, Magallon-Puebla S, Lupia R, Crane PR, Kobylinska J (1999) A preliminary conspectus of the Allon flora from the late Cretaceous (late Santonian) of central Georgia, USA.Annals of the Missouri Botanical Garden, 86, 407-471.
[71] Hillis DM, Pollock DD, McGuire JA, Zwickl DJ (2003) Is sparse taxon sampling a problem for phylogenetic inference? Systematic Biology, 52, 124.
[72] Hilu KW, Liang HP (1997) The matK gene: sequence variation and application in plant systematics.American Journal of Botany, 84, 830-830.
[73] Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R (2003) Angiosperm phylogeny based on matK sequence information.American Journal of Botany, 90, 1758-1776.
[74] Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses.Plant Molecular Biology, 48, 805-820.
[75] Jansen RK, Cai ZQ, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences,USA, 104, 19369-19374.
[76] Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus.Molecular Biology and Evolution, 28, 835-847.
[77] Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence?Trends in Genetics, 22, 225-231.
[78] Jian SG, Soltis PS, Gitzendanner MA, Moore MJ, Li RQ, Hendry TA, Qiu YL, Dhingra A, Bell CD, Soltis DE (2008) Resolving an ancient, rapid radiation in Saxifragales.Systematic Biology, 57, 38-57.
[79] Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang HY, Soltis PS (2011) Ancestral polyploidy in seed plants and angiosperms.Nature, 473, 97-100.
[80] Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS (2013) Phylogenomics resolves evolutionary relationships among ants, bees, and wasps.Current Biology, 23, 2058-2062.
[81] Judd WS, Olmstead RG (2004) A survey of tricolpate (eudicot) phylogenetic relationships.American Journal of Botany, 91, 1627-1644.
[82] Kim K, Jansen RK (1995)ndhF sequence evolution and the major clades in the sunflower family. Proceedings of the National Academy of Sciences,USA, 92, 10379-10383.
[83] Kim ST, Sultan SE, Donoghue MJ (2008) Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proceedings of the National Academy of Sciences,USA, 105, 12370-12375.
[84] Kingman JF (1982) On the genealogy of large populations.Journal of Applied Probability, 19, 27-43.
[85] Kingman JF (2000) Origins of the coalescent: 1974-1982.Genetics, 156, 1461-1463.
[86] Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships.Nature, 477, 452-456.
[87] Kong HZ (2001) Comparative morphology of leaf epidermis in the Chloranthaceae.Botanical Journal of the Linnean Society, 136, 279-294.
[88] Krak K, Álvarez I, Caklová P, Costa A, Chrtek J, Fehrer J (2012) Development of novel low-copy nuclear markers for Hieraciinae (Asteraceae) and their perspective for other tribes.American Journal of Botany, 99, e74-e77.
[89] Kubatko LS, Carstens BC, Knowles LL (2009) STEM: species tree estimation using maximum likelihood for gene trees under coalescence.Bioinformatics, 25, 971-973.
[90] Lee EK, Cibrian-Jaramillo A, Kolokotronis SO, Katari MS, Stamatakis A, Ott M, Chiu JC, Little DP, Stevenson DW, McCombie WR (2011) A functional phylogenomic view of the seed plants.PLoS Genetics, 7, e1002411.
[91] Li DZ, Gao LM, Li H, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences,USA, 108, 19641-19646.
[92] Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes.Genome Research, 13, 2178-2189.
[93] Lin ZG, Kong HZ, Nei M, Ma H (2006) Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proceedings of the National Academy of Sciences,USA, 103, 10328-10333.
[94] Liu L (2008) BEST: Bayesian estimation of species trees under the coalescent model.Bioinformatics, 24, 2542-2543.
[95] Liu L, Yu LL, Pearl DK, Edwards SV (2009) Estimating species phylogenies using coalescence times among sequences.Systematic Biology, 58, 468-477.
[96] Liu L, Yu LL, Pearl DK (2010) Maximum tree: a consistent estimator of the species tree.Journal of Mathematical Biology, 60, 95-106.
[97] Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.Molecular Biology and Evolution, 22, 317-332.
[98] Lonsdale D, Brears T, Hodge T, Melville SE, Rottmann W (1988) The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity.Philosophical Transactions of the Royal Society of London B: Biological Sciences, 319, 149-163.
[99] Lopez P, Casane D, Philippe H (2002) Heterotachy, an important process of protein evolution.Molecular Biology and Evolution, 19, 1-7.
[100] Magallón S, Castillo A (2009) Angiosperm diversification through time.American Journal of Botany, 96, 349-365.
[101] Magallón S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots.Annals of the Missouri Botanical Garden, 96, 297-372.
[102] Ma H, Yanofsky MF, Meyerowitz EM (1990) Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proceedings of the National Academy of Sciences,USA, 87, 3821-3825.
[103] Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility.Molecular Biology and Evolution, 15, 1658-1673.
[104] Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes.Science, 286, 947-950.
[105] Meng SW, Chen ZD, Li DZ, Liang HX (2002) Phylogeny of Saururaceae based on mitochondrial matR gene sequence data.Journal of Plant Research, 115, 0071-0076.
[106] Mitsui Y, Chen ST, Zhou ZK, Peng CI, Deng YF, Setoguchi H (2008) Phylogeny and biogeography of the genus Ainsliaea (Asteraceae) in the Sino-Japanese region based on nuclear rDNA and plastid DNA sequence data.Annals of Botany, 101, 111-124.
[107] Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms.Proceedings of the National Academy of Sciences, USA, 104, 19363-19368.
[108] Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots.Proceedings of the National Academy of Sciences, USA, 107, 4623-4628.
[109] Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M, Vandeventer A, Horn JW, Dhingra A, Brockington SF, Latvis M (2011) Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region.International Journal of Plant Sciences, 172, 541-558.
[110] Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms.Science, 312, 101-104.
[111] Mort ME, Crawford DJ (2004) The continuing search: low-copy nuclear sequences for lower-level plant molecular phylogenetic studies.Taxon, 53, 257-261.
[112] Ness RW, Graham SW, Barrett SC (2011) Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.Molecular Biology and Evolution, 28, 3009-3018.
[113] Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family.Nature Reviews Genetics, 2, 186-195.
[114] Nomura N, Takaso T, Peng CI, Kono Y, Oginuma K, Mitsui Y, Setoguchi H (2010) Molecular phylogeny and habitat diversification of the genus Farfugium (Asteraceae) based on nuclear rDNA and plastid DNA.Annals of Botany, 106, 467-482.
[115] O'Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs.Nucleic Acids Research, 33, D476-D480.
[116] Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis.American Journal of Botany, 81, 1205-1224.
[117] Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence.Journal of Molecular Evolution, 28, 87-97.
[118] Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant.Nature, 348, 337-339.
[119] Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed.Molecular Phylogenetics and Evolution, 47, 757-782.
[120] Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough.PLoS Biology, 9, e1000602.
[121] Phillips MJ, Delsuc F, Penny D (2004) Genome-scale phylogeny and the detection of systematic biases.Molecular Biology and Evolution, 21, 1455-1458.
[122] Piep MB, Gunn BF, Roberts C (2007) Flora of North America. Oxford University Press, New York.
[123] Qiu YL, Lee JH, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen ZD, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes.Nature, 402, 404-407.
[124] Qiu YL, Dombrovska O, Lee JH, Li LB, Whitlock BA, Bernasconi-Quadroni F, Rest JS, Davis CC, Borsch T, Hilu KW (2005) Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes.International Journal of Plant Sciences, 166, 815-842.
[125] Qiu YL, Li L, Wang B, Xue JY, Hendry TA, Li RQ, Brown JW, Liu Y, Hudson GT, Chen ZD (2010) Angiosperm phylogeny inferred from sequences of four mitochondrial genes.Journal of Systematics and Evolution, 48, 391-425.
[126] Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju S, Guillaume K, Moriau L, Bossuyt F (2007) Global patterns of diversification in the history of modern amphibians.Proceedings of the National Academy of Sciences, USA, 104, 887-892.
[127] Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies.Nature, 425, 798-804.
[128] Rokas A, Carroll SB (2006) Bushes in the tree of life.PLoS Biology, 4, e352.
[129] Salichos L, Rokas A (2013) Inferring ancient divergences requires genes with strong phylogenetic signals.Nature, 497, 327-331.
[130] Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics.Critical Reviews in Biochemistry and Molecular Biology, 37, 121-147.
[131] Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, De Bruijn AY, Sullivan S, Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences.Systematic Biology, 49, 306-362.
[132] Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms.Nature, 428, 553-557.
[133] Shaw, Ruan TZ, Glenn T, Liu L (2013) STRAW: Species TRee Analysis Web server.Nucleic Acids Research, 41, 238-241.
[134] Small RL, Wendel JF (2000) Phylogeny, duplication, and intraspecific variation of Adh sequences in new world diploid cottons (Gossypium L., Malvaceae).Molecular Phylogenetics and Evolution, 16, 73-84.
[135] Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants.Proceedings of the National Academy of Sciences, USA, 107, 5897-5902.
[136] Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ (2011) Understanding angiosperm diversification using small and large phylogenetic trees.American Journal of Botany, 98, 404-414.
[137] Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SC, Rouse GW, Giribet G, Dunn CW (2012) Corrigendum: resolving the evolutionary relationships of molluscs with phylogenomic tools.Nature, 493, 708-708.
[138] Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, Chase MW, Farris JS, Stefanović S, Rice DW, Palmer JD (2004) Genome-scale data, angiosperm relationships, and ‘ending incongruence’: a cautionary tale in phylogenetics.Trends in Plant Science, 9, 477-483.
[139] Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification.American Journal of Botany, 96, 336-348.
[140] Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa.American Journal of Botany, 98, 704-730.
[141] Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sunderland, Massachusetts.
[142] Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences.Botanical Journal of the Linnean Society, 133, 381-461.
[143] Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW (1997) Angiosperm phylogeny inferred from 18S ribosomal DNA sequences.Annals of the Missouri Botanical Garden, 84, 1-49.
[144] Soltis DE, Soltis PS, Zanis MJ (2002) Phylogeny of seed plants based on evidence from eight genes.American Journal of Botany, 89, 1670-1681.
[145] Soltis DE, Soltis PS (2004) Amborella not a “basal angiosperm”? Not so fast.American Journal of Botany, 91, 997-1001.
[146] Soltis PS, Soltis DE (2013) Angiosperm phylogeny: a framework for studies of genome evolution.Plant Genome Diversity, 2, 1-11.
[147] Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology.Nature, 402, 402-404.
[148] Steele PR, Guisinger-Bellian M, Linder CR, Jansen RK (2008) Phylogenetic utility of 141 low-copy nuclear regions in taxa at different taxonomic levels in two distantly related families of rosids.Molecular Phylogenetics and Evolution, 48, 1013-1026.
[149] Stefanović S, Rice DW, Palmer JD (2004) Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?BMC Evolutionary Biology, 4, 35.
[150] Stevens P (2001) Angiosperm phylogeny website..
[151] Strand A, Leebens-Mack J, Milligan B (1997) Nuclear DNA-based markers for plant evolutionary biology.Molecular Ecology, 6, 113-118.
[152] Sun G, Ji Q, Dilcher DL, Zheng SL, Nixon KC, Wang XF (2002) Archaefructaceae, a new basal angiosperm family.Science, 296, 899-904.
[153] Sun G, Dilcher DL, Wang HS, Chen ZD (2011) A eudicot from the Early Cretaceous of China.Nature, 471, 625-628.
[154] Sun YX, Moore MJ, Meng AP, Soltis PS, Soltis DE, Li JQ, Wang HC (2013) Complete plastid genome sequencing of trochodendraceae reveals a significant expansion of the inverted repeat and suggests a paleogene divergence between the two extant species.PLoS ONE, 8, e60429.
[155] Swamy B (1953) The morphology and relationships of the Chloranthaceae.Journal of the Arnold Arboretum, 34, 375-408.
[156] Tang L, Zou XH, Achoundong G, Potgieter C, Second G, Zhang DY, Ge S (2010) Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments.Molecular Phylogenetics and Evolution, 54, 266-277.
[157] Tank DC, Sang T (2001) Phylogenetic utility of the Glycerol-3-Phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae).Molecular Phylogenetics and Evolution, 19, 421-429.
[158] Thorne RF (1992) Classification and geography of the flowering plants.The Botanical Review, 58, 225-327.
[159] Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices.Nature, 418, 671-677.
[160] Townsend JP, Su Z, Tekle YI (2012) Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny.Systematic Biology, 61, 835-849.
[161] Wang HX, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests.Proceedings of the National Academy of Sciences, USA, 106, 3853-3858.
[162] Wang X, Zhao L, Eaton D, Li D, Guo Z (2013) Identification of SNP markers for inferring phylogeny in temperate bamboos (Poaceae: Bambusoideae) using RAD sequencing.Molecular Ecology Resources, 13, 938-945.
[163] Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H (1994) Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1).Proceedings of the National Academy of Sciences, USA, 91, 9554-9558.
[164] Wen J, Nie ZL, Soejima A, Meng Y (2007) Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences.Canadian Journal of Botany, 85, 731-745.
[165] Wen J, Xiong Z, Nie ZL, Mao L, Zhu Y, Kan XZ, Ickert-Bond SM, Gerrath J, Zimmer EA, Fang XD (2013) Transcriptome sequences resolve deep relationships of the grape family.PLoS ONE, 8, e74394.
[166] Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants.Trends in Plant Science, 15, 227-235.
[167] Weng ML, Ruhlman TA, Gibby M, Jansen RK (2012) Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).Molecular Phylogenetics and Evolution, 64, 654-670.
[168] Wilf P, Labandeira CC, Kress WJ, Staines CL, Windsor DM, Allen AL, Johnson KR (2000) Timing the radiations of leaf beetles: Hispines on gingers from latest Cretaceous to recent.Science, 289, 291-294.
[169] Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum.Proceedings of the National Academy of Sciences, USA, 100, 10824-10829.
[170] Worberg A, Quandt D, Barniske AM, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA.Organisms Diversity and Evolution, 7, 55-77.
[171] Wortley AH, Rudall PJ, Harris DJ, Scotland RW (2005) How much data are needed to resolve a difficult phylogeny? Case study in Lamiales.Systematic Biology, 54, 697-709.
[172] Wu FN, Mueller LA, Crouzillat D, Pétiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade.Genetics, 174, 1407-1420.
[173] Wu ZQ, Ge S (2012) The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts.Molecular Phylogenetics and Evolution, 62, 573-578.
[174] Xi ZX, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S (2012) Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales.Proceedings of the National Academy of Sciences, USA, 109, 17519-17524.
[175] Xu GX, Ma H, Nei M, Kong HZ (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification.Proceedings of the National Academy of Sciences, USA, 106, 835-840.
[176] Yang ZH (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods.Journal of Molecular Evolution, 39, 306-314.
[177] Yuan YW, Liu C, Marx HE, Olmstead RG (2009) The pentatricopeptide repeat (PPR) gene family, a tremendous resource for plant phylogenetic studies.New Phytologist, 182, 272-283.
[178] Yuan YW, Liu C, Marx HE, Olmstead RG (2010) An empirical demonstration of using pentatricopeptide repeat (PPR) genes as plant phylogenetic tools: phylogeny of Verbenaceae and the Verbena complex.Molecular Phylogenetics and Evolution, 54, 23-35.
[179] Zanis MJ, Soltis DE, Soltis PS, Mathews S, Donoghue MJ (2002) The root of the angiosperms revisited.Proceedings of the National Academy of Sciences, USA, 99, 6848-6853.
[180] Zhang N, Zeng LP, Shan HY, Ma H (2012) Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms.New Phytologist, 195, 923-937.
[181] Zhang YJ, Ma PF, Li DZ (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae).PLoS ONE, 6, e20596.
[182] Zhu X, Chase MW, Qiu YL, Kong HZ, Dilcher DL, Li JH, Chen ZD (2007) Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids.BMC Evolutionary Biology, 7, 217.
[183] Zimmer EA, Wen J (2013) Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects.Molecular Phylogenetics and Evolution, 66, 539-550.
[1] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. (2019) Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China . Biodiv Sci, 27(2): 149-158.
[2] Xinyu Du, Jinmei Lu, Dezhu Li. (2019) Advances in the evolution of plastid genome structure in lycophytes and ferns . Biodiv Sci, 27(11): 1172-1183.
[3] Jiping Yang, Ce Li, Weitao Chen, Yuefei Li, Xinhui Li. (2018) Genetic diversity and population demographic history of Ochetobius elongatus in the middle and lower reaches of the Xijiang River . Biodiv Sci, 26(12): 1289-1295.
[4] Shaojun Ling, Qianwan Meng, Liang Tang, Mingxun Ren. (2017) Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships . Biodiv Sci, 25(8): 807-815.
[5] Qiujie Zhou, Yacheng Cai, Wei Lun Ng, Wei Wu, Seping Dai, Feng Wang, Renchao Zhou. (2017) Molecular evidence for natural hybridization between two Melastoma species endemic to Hainan and their widespread congeners . Biodiv Sci, 25(6): 638-646.
[6] Jiangping Shu, Li Liu, Hui Shen, Xiling Dai, Quanxi Wang, Yuehong Yan. (2017) The complex reticulate evolutionary relationships of early terrestrial plants as revealed by phylogenomics analysis . Biodiv Sci, 25(6): 675-682.
[7] Mingli Zhang. (2017) A review on the floristic phytogeography in arid northwestern China and Central Asia . Biodiv Sci, 25(2): 147-155.
[8] Mian Liu, Caifei Zhang, Chien-Hsun Huang, Hong Ma. (2015) Phylogenetic Reconstruction of Tribal Relationships in Asteroi- deae (Asteraceae) with Low-copy Nuclear Genes . Chin Bull Bot, 50(5): 549-564.
[9] WANG Lu, LEI Yun, and ZHANG Ming-Li. (2013) A preliminary study of molecular phylogeny and biogeography distribution pattern of Zelkova inferred from trnL-trnF and nrITS sequences . Chin J Plan Ecolo, 37(5): 407-414.
[10] Jihong Huang,Jinlong Zhang,Yong Yang,Keping Ma. (2013) Advances in methods for measuring patterns of endemic plant diversity . Biodiv Sci, 21(1): 99-110.
[11] Shujing Li, Yu Jia, Qinghua Wang. (2012) Molecular Phylogenetic Relationships Among Basal Mosses . Chin Bull Bot, 47(4): 379-394.
[12] Hongxia Wang, Douding Lu, Haiyan Huang, Xinfeng Dai, Ping Xia. (2011) Morphological and Phylogenetic Analysis of Karlodinium veneficum Isolated from the East China Sea in China . Chin Bull Bot, 46(2): 179-188.
[13] Hongmei Liu;Xianchun Zhang;Hui Zeng;*. (2009) Application of DNA Sequences in Pteridophyte Phylogenetic Study . Chin Bull Bot, 44(02): 143-158.
[14] Lei Xu, Darong Yang. (2008) A brief review of phylogenetic reconstruction and co-evolution of fig–wasp mutualism . Biodiv Sci, 16(5): 446-453.
[15] Wenqiao Tang, Xuelian Hu, Jinquan Yang. (2007) Species validities of Coilia brachygnathus and C. nasus taihuensis based on sequence variations of complete mtDNA control region . Biodiv Sci, 15(3): 224-231.
Full text