Biodiversity Science ›› 2010, Vol. 18 ›› Issue (1): 50-59.doi: 10.3724/SP.J.1003.2010.050

• Editorial • Previous Article     Next Article

Community structure and diversity of macrozoobenthos in Lake Taihu, a large shallow eutrophic lake in China

Yongjiu Cai1, 2, Zhijun Gong1, Boqiang Qin1   

  1. 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 2 Graduate University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2009-08-26 Online:2010-01-20
  • Zhijun Gong

To explore the status of macrozoobenthic communities and their response to ecological changes in Lake Taihu, we carried out a quarterly investigation on macrozoobenthos between February 2007 and November 2008. We recorded 40 species from 19 families, 7 classes and 3 phyla. Mean density and biomass varied largely among the 30 sampling sites. The highest mean density of macrozoobenthos occurred in Meiliang Bay, Zhushan Bay and river mouth, and communities were dominated by Tubificidae. Mean biomass was highest in Gonghu Bay, Western region, East Taihu and East Bays, these sites were dominated by Mollusca. Limnodrilus hoffmeisteri, Rhyacodrilus sinicus, Corbicula fluminea, Bellamya aeruginosa, Tanypus chinensis and Gammarus sp. were the dominant species in Lake Taihu. Cluster analysis and one-way analysis of similarity (ANOSIM) classified the 30 sites into three groups with different macrozoobenthic communities (P < 0.05). K-dominance curves, Shannon-Wiener and Pielou indices indicated that species richness and evenness were highest in East Taihu and East Bays, dominated by Gastropods. Communities in Meiliang Bay, Zhushan Bay and river mouth had low species diversity and were dominated by L. hoffmeisteri and R. sinicus. Gonghu Bay, Central region and Western region contained intermediately diverse communities dominated by C. fluminea. Our results suggest that trophic status, habitat types and macrophytes are impor-tant factors regulating macrozoobenthic communities in Lake Taihu.

Key words: biodiversity, soil biology, soil indicator, potential density, soil community

[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[12] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
[13] Dai Yunchuan,Xue Yadong,Zhang Yunyi,Li Diqiang. Summary comments on assessment methods of ecosystem integrity for national parks [J]. Biodiv Sci, 2019, 27(1): 104-113.
[14] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[15] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[2] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[3] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[4] Qiong Wu, Fang Liu, Shaohui Li, Guoli Song, Chunying Wang, Xiangdi Zhang, Yuhong Wang, David Stelly, and Kunbo Wang. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH[J]. J Integr Plant Biol, 2013, 55(7): 654 -662 .
[5] CHEN Shi-Ping, BAI Yong-Fei, HAN Xing-Guo, AN Ji-Lin, GUO Fu-Cun. VARIATIONS IN FOLIAR CARBON ISOTOPE COMPOSITION AND ADAPTIVE STRATEGIES OF CAREX KORSHINSKYI ALONG A SOIL MOISTURE GRADIENT[J]. Chin J Plan Ecolo, 2004, 28(4): 515 -522 .
[6] Jiaqiang SUN, Naoya HIROSE, Xingchun WANG, Pei WEN, Li XUE, Hitoshi SAKAKIBARA,Jianru ZUO. Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta[J]. J Integr Plant Biol, 2005, 47(5): 588 -603 .
[7] Shi-You LÜ, Yu-Xiang JING, Shi-Hua SHEN, Hua-Yan ZHAO, Lan-Qing MA, Xiang-Juan ZHOU, Qing REN,Yan-Fang LI. Antiporter Gene from Hordum brevisubulatum (Trin.) Link and Its Overexpression in Transgenic Tobaccos[J]. J Integr Plant Biol, 2005, 47(3): .
[8] Ying Li, Jing-Lei Shuang, Wei-Wei Yuan, Wu-Yang Huang and Ren-Xiang Tan. Verticase: a Fibrinolytic Enzyme Produced by Verticillium sp. Tj33, an Endophyte of Trachelospermum jasminoides[J]. J Integr Plant Biol, 2007, 49(11): 1548 -1554 .
[9] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[10] Juan Yan, Haijia Chu, Hengchang Wang, Jianqiang Li. Genetic structure and diversity of Medicago lupulina populations in northern and central China based on EST-SSRs markers[J]. Biodiv Sci, 2008, 16(3): 263 -270 .