Biodiversity Science ›› 2018, Vol. 26 ›› Issue (9): 951-961.doi: 10.17520/biods.2018012

• Original Papers • Previous Article     Next Article

Distribution and habitat suitability assessment of the gaur Bos gaurus in China

Chenchen Ding1, 2#, Yiming Hu1, 2#, Chunwang Li1, 2, Zhigang Jiang1, 2, *()   

  1. 1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-01-11 Accepted:2018-05-26 Online:2019-01-05
  • Jiang Zhigang
  • About author:

    # Co-first authors

Gaur (Bos gaurus) are found in the Yunnan Province and Zangnan in southern Tibet in China. We conducted two field surveys in Xishuangbanna, Pu’er and Mt. Gaoligongshan in Yunnan Province, from February to March and November to December in 2016. We collected 47 valid occurrence locations of gaur by combining survey data and records from literature. Our analysis suggests that there are 180-210 gaurs in the Yunnan Province which face a serious survival crisis. No gaur signs were found in Mt. Gaoligongshan. Next, we used MaxEnt models to predict the potentially suitable habitats for gaur. We grouped 14 habitat predictor variables into five classes—terrain, land cover type, human footprint index, the distance to water and road, as well as climatic factors, and determined the contribution of each habitat factor to habitat suitability for gaur. The accuracy of our prediction models was accessed by the area under the curve (AUC) values for a receiver operating characteristic (ROC) curve. The validation showed that the results had high average AUC value of 0.994. The simulated potential habitat was divided into four classes—the most suitable habitat, moderately suitable habitat, low suitability habitat, and unsuitable habitat. The most suitable habitats for gaur are mainly located in southern Yunnan and Zangnan and spanned 4,987 km² and 13,995 km² respectively. Habitats with moderate suitability (total area = 32,778 km²) were located in the marginal areas of the most suitable habitats and in the Mt. Gongligongshan area. The most suitable habitats were mixed with habitat patches of moderate and low suitability for gaur in the southern parts of Xishuangbanna. In contrast, the central and northern parts of the study area were classified entirely as low suitable habitats and unsuitable habitats. The results of a Jackknife test indicated that temperature seasonality and isothermality had the strongest influence on habitat suitability for gaur, whereas terrain factor and precipitation had little effect. Temperature difference, land cover type and human footprint index were the main variables that explained patterns of gaur distribution. The results of land cover classification (using remote sensing) showed that rubber plantations have fragmented the suitable habitat and reduced landscape connectivity for gaur. We recommend that the relevant management authorities should protect natural forests, control the development of rubber plantations and other agricultural development in habitats suitable for gaur, and improve landscape connectivity to restore gaur populations in the landscape.

Key words: Yunnan, Zangnan, Bos gaurus, ecological niche model, rubber plantations, habitat suitability assessment

Fig. 1

Occurrence points of gaur in China"

Table 1

Environmental variables used to model the potential distribution range of the gaur"

编码 Code 描述 Description 来源 Source
BIO1 年均温 Annual mean temperature WorldClim database Version 1.4
BIO3 等温线 Isothermality WorldClim database Version 1.4
BIO4 季节温度变化 Temperature seasonality WorldClim database Version 1.4
BIO7 气温年较差 Temperature annual range WorldClim database Version 1.4
BIO9 最旱季均温 Mean temperature of driest quarter WorldClim database Version 1.4
BIO12 年均降水量 Annual precipitation WorldClim database Version 1.4
BIO15 降水季节性 Precipitation seasonality WorldClim database Version 1.4
BIO19 最冷季均温 Precipitation of coldest quarter WorldClim database Version 1.4
LCT 土地覆被类型 Land cover type Global Land Cover Facility
HFI 人类足迹指数 Human footprint influence Last of the Wild Data Version 2
ALT 海拔 Altitude Chinese Natural Resources Database
Slop 坡度 Slope Chinese Natural Resources Database
Dis_road 距主要道路距离 Distance to major roads National Catalogue Service for Geographic Information
Dis_water 距水源地距离 Distance to water source National Catalogue Service for Geographic Information


Jackknife evaluation of environmental variables in gaur distribution"

Fig. 3

Potential suitable habitats of gaur in China"

Fig. 4

Land use in Xishuangbanna in 2016"

[1] Araujo M, Pearson R, Thuiller WM (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504-1513.
[2] Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behavioral Science, 12, 153-155.
[3] Catry FX, Rego FC, Bação F, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18, 921-931.
[4] Chen LD, Fu BJ (1996) The ecological significance and application of landscape connectivity. Chinese Journal of Ecology, 15, 37-42. (in Chinese with English abstract)
[陈利顶, 傅伯杰 (1996) 景观连接度的生态学意义及其应用. 生态学杂志, 15, 37-42.]
[5] China’s State Forestry Administration(2009) National Survey on Key Terrestrial Wildlife Resources in China. China Forestry Publishing House, Beijing.
[国家林业局(2009) 中国重点陆生野生动物资源调查. 中国林业出版社, 北京.]
[6] Choudhury A (2002) Distribution and conservation of the gaur Bos gaurus, in the Indian subcontinent. Mammal Review, 32, 199-226.
[7] Conry PJ (1989) Gaur Bos gaurus, and development in Malaysia. Biological Conservation, 49, 47-65.
[8] Costanza R, D’Arge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Neill R, Paruelo J, Raskin RG, Sutton P, Belt M (1997) The value of the world’s ecosystem services and natural capital. World Environment, 25, 3-15.
[9] Duckworth JW, Sankar K, Williams AC, Samba KN, Timmins RJ (2016) Bos gaurus. The IUCN Red List of Threatened Species.2016) Bos gaurus. The IUCN Red List of Threatened Species.
[10] Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science, 309, 570-574.
[11] Gan HX, Hu HB (2008) Biodiversity conservation corridor design based on habitat selection of gaur (Bos gaurus): A case study from Xishuangbanna, China. Chinese Journal of Ecology, 27, 2153-2158. (in Chinese with English abstract)
[甘宏协, 胡华斌 (2008) 基于野牛生境选择的生物多样性保护廊道设计: 来自西双版纳的案例. 生态学杂志, 27, 2153-2158.]
[12] Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25, 173-182.
[13] Heinen JT, Sompoad S (1996) Status and protection of Asian wild cattle and buffalo. Conservation Biology, 10, 931-934.
[14] Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145, 111-121.
[15] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English)
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
[16] Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY (2017) China’ mammalian diversity(2nd edition). Biodiversity Science, 25, 886-895. (in Chinese with English abstract)
[蒋志刚, 刘少英, 吴毅, 蒋学龙, 周开亚 (2017) 中国哺乳动物多样性(第2版). 生物多样性, 25, 886-895.]
[17] Leshowitz B (1969) Comparison of ROC curves from one- and two- interval rating-scale procedures. Journal of the Acoustical Society of America, 46, 399-402.
[18] Li H, Aide TM, Ma Y, Liu W, Cao M (2007) Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodiversity & Conservation, 16, 1731-1745.
[19] Li MY, Ju YW, Kumar S, Stohlgren TJ (2009) Modeling of potential habitat for endangered wild animals: A case study of gaur Bos gaurus. Journal of Northeast Forestry University, 37, 88-91. (in Chinese with English abstract)
[李明阳, 巨云为, Kumar S, Stohlgren TJ (2009) 濒危野生动物潜在生境空间建模方法——以印度野牛(Bos gaurus)为例. 东北林业大学学报, 37, 88-91.]
[20] Liao CH, Li P, Feng ZM, Zhang JH (2014) Area monitoring by remote sensing and spatiotemporal variation of rubber plantations in Xishuangbanna. Transactions of the Chinese Society of Agricultural Engineering, 30, 170-180. (in Chinese with English abstract)
[廖谌婳, 李鹏, 封志明, 张景华 (2014) 西双版纳橡胶林面积遥感监测和时空变化. 农业工程学报, 30, 170-180.]
[21] Lian ZM, Yu GZ (2000) Edge effect and biodiversity. Chinese Biodiversity, 8, 120-125. (in Chinese with English abstract)
[廉振民, 于广志 (2000) 边缘效应与生物多样性. 生物多样性, 8, 120-125.]
[22] Liu XN, Feng ZM, Jiang LG, Zhang JH (2012) Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping. Resources Science, 34, 1769-1780. (in Chinese with English abstract)
[刘晓娜, 封志明, 姜鲁光, 张景华 (2012) 西双版纳橡胶林地的遥感识别与数字制图. 资源科学, 34, 1769-1780.]
[23] Margules CR, Pressey RL (2000) Systematic conservation planning. Nature, 405, 243-253.
[24] Mishra C, Madhusudan MD, Datta A (2006) Mammals of the high altitudes of western “Arunachal Pradesh”, eastern Himalaya: An assessment of threats and conservation needs. Oryx, 40, 1-7.
[25] Myers N, Mittermeier RA, Mittermeier CG, Da FG, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
[26] Pan QH, Wang YX, Yan K (2007) A Field Guide to the Mammals of China. China Forestry Publishing House, Beijing. (in Chinese)
[潘清华, 王应祥, 岩崑 (2007) 中国哺乳动物彩色图鉴. 中国林业出版社, 北京.]
[27] Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology & Biogeography, 12, 361-371.
[28] Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
[29] Shou ZH, Cai XT (1958) New record for gaur in Xishuangbanna, Yunnan. Science Bulletin, 3, 112-113. (in Chinese)
[寿振黄, 蔡希陶 (1958) 云南西双版纳发现的野牛. 科学通报, 3, 112-113.]
[30] Smith AT, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Press, Changsha. (in Chinese)
[Smith AT, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.]
[31] Sreekar R, Huang G, Yasuda M, Quan RC, Goodale E, Richard T, Corlett RT, Tomlinson KW (2016) Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations. Scientific Reports, 6, 21822.
[32] Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
[33] Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372. (in Chinese with English abstract)
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007) ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
[34] Yang DH, Zhang JY (1988) Population and distribution of Bos gaurus in Yunnan. Chinese Journal of Zoology, 23(1), 39-41. (in Chinese)
[杨德华, 张家银 (1988) 云南野牛的数量分布. 动物学杂志, 23(1), 39-41.]
[35] Yin F, Ma K, Liu DZ (2015) Population status, ecological habitat and threatened factors of wild gaur (Bos gaurus): A review. Journal of Beijing Normal University (Natural Science), 51, 504-510. (in Chinese with English abstract)
[尹峰, 马凯, 刘定震 (2015) 野牛的种群现状、生态习性及致危因素. 北京师范大学学报(自然科学版), 51, 504-510.]
[36] Yunnan Institute of Forest Inventory and Planning(1989) The Nature Reserve in Yunnan. China Forestry Publishing House, Beijing. (in Chinese)
[云南省林业调查规划院(1989) 云南自然保护区. 中国林业出版社, 北京.]
[37] Zhang HL, Li ZX, Wang RC (2000) A study on Bos gaurus habitat using multivariate statistical techniques and GIS—Taking the Naban River Basin Biosphere Reserve in Xishuangbanna as an example. Tropical Geography, 20, 152-155. (in Chinese with English abstract)
[张洪亮, 李芝喜, 王人潮 (2000) 应用多元统计技术和GIS技术进行印度野牛生境定量分析——以西双版纳纳板河流域生物圈保护区为例. 热带地理, 20, 152-155.]
[38] Zhang HL, Wang RC (1999) GIS-based ecotope types and their relationship with survival of Bos gaurus. Chinese Journal of Applied Ecology, 10, 619-622. (in Chinese with English abstract)
[张洪亮, 王人潮 (1999) 基于GIS的生境类型及其与印度野牛生存关系的研究. 应用生态学报, 10, 619-622.]
[39] Zhang ZY, Yang HP, Luo AD (2016) Population, distribution and conservation status of gaur (Bos gaurus) in Xishuangbanna Prefecture. Forest Inventory and Planning, 41, 115-119. (in Chinese with English abstract)
[张忠员, 杨鸿培, 罗爱东 (2016) 西双版纳印度野牛种群数量、分布和保护现状. 林业调查规划, 41, 115-119.]
[40] Zhu ZH, Wu QA, Yang LP (2003) Present status and conservation strategy of wild animal and plant resources in Gaoligongshan National Nature Reserve. Forestry Science & Technology, 28, 63-65. (in Chinese with English abstract)
[朱振华, 毋其爱, 杨礼攀 (2003) 高黎贡山自然保护区野生动植物资源现状及保护. 林业科技, 28, 63-65.]
[1] HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. (2020) Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum . Chin J Plant Ecol, 44(1): 44-55.
[2] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. (2019) Genetic diversity and population structure of Populus yunnanensis . Biodiv Sci, 27(4): 355-365.
[3] Fan Jingyu, Li Hanpeng, Yang Zhuo, Zhu Gengping. (2019) Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China . Biodiv Sci, 27(2): 140-148.
[4] SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. (2019) Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin . Chin J Plant Ecol, 43(11): 946-958.
[5] Zhu Xinxin, Wang Jun, Liao Shuai, Ma Jinshuang. (2019) Synopsis of Aristolochia L. and Isotrema Raf. (Aristolochiaceae) in China . Biodiv Sci, 27(10): 1143-1146.
[6] Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. (2018) Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California . Biodiv Sci, 26(8): 878-891.
[7] Qin ZHANG, Dong-Fang ZHANG, Ming-Li WU, Jie GUO, Cheng-Zhong SUN, Cai-Xiang XIE. (2017) Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models . Chin J Plan Ecolo, 41(7): 770-778.
[8] Junwei Ye, Yongge Yuan, Li Cai, Xiaojuan Wang. (2017) Research progress of phylogeographic studies of plant species in temperate coniferous and broadleaf mixed forests in Northeastern China . Biodiv Sci, 25(12): 1339-1349.
[9] Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang. (2017) The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest . Biodiv Sci, 25(11): 1182-1191.
[10] Hua Shao,Dayuan Xue. (2017) Influence of traditional Wa culture on vegetable germplasm diversity in Yunnan Province . Biodiv Sci, 25(1): 46-52.
[11] Wei Zhou,Minghui Li,Youlan Li. (2016) Fish diversity in four nature reserves in Southwest Yunnan, China and the evaluation indicators . Biodiv Sci, 24(3): 313-320.
[12] Jianyong Wu,Hua Peng,Xuelong Jiang,Dayuan Xue,Fan Du,Lianxian Han,Zhuliang Yang,Yumin Shui,Peigui Liu,Xiaojun Yang,Wanggao Jiang,Yuehua Wang,Fuwei Zhao,Rong Dai. (2016) An inventory of county-level biodiversity in Northwest Yunnan . Biodiv Sci, 24(12): 1414-1420.
[13] Xiangyan Cui,Wenjuan Wang,Xiaoqiang Yang,Shu Li,Shengyuan Qin,Jun Rong. (2016) Potential distribution of wild Camellia oleifera based on ecological niche modeling . Biodiv Sci, 24(10): 1117-1128.
[14] Gengping Zhu,Huijie Qiao. (2016) Effect of the Maxent model’s complexity on the prediction of species potential distributions . Biodiv Sci, 24(10): 1189-1196.
[15] LI Su,LIU Wen-Yao,SHI Xian-Meng,LIU Shuai,HU Tao,HUANG Jun-Biao,CHEN Xi,SONG Liang,WU Chuan-Sheng. (2015) Responses of the distribution of four epiphytic cyanolichens to habitat changes in subtropical forests . Chin J Plan Ecolo, 39(3): 217-228.
Full text