Biodiversity Science ›› 2018, Vol. 26 ›› Issue (4): 396-405.doi: 10.17520/biods.2017245

• Reviews • Previous Article     Next Article

Insect-pollinated cereal buckwheats: Its biological characteristics and research progress

Lingyun Wu, Shuangquan Huang*()   

  1. Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079
  • Received:2017-09-09 Accepted:2017-12-22 Online:2018-09-11
  • Huang Shuangquan E-mail:hsq@mail.ccnu.edu.cn
  • About author:

    # Co-first authors

Buckwheat is a pseudo-cereal with high nutritional and officinal value, a food crop outside of Poaceae. Cultivated buckwheat includes two species: sweet or common buckwheat (Fagopyrum esculentum), a self-incompatible, distylous annual and bitter or tartary buckwheat (F. tartaricum), a self-compatible, homostylous annual herb; the former depends on insect pollination for seed production. Thirty species have been named in the genus Fagopyrum (Polygonaceae) in the world. Investigations of morphology and genetic diversity suggest that Southwest China is the diversity center of Fagopyrum, especially in the area of Three Parallel Rivers, the upper Yangtze River Valley, where ancestral species of the two buckwheat crops were originated. Previous studies of basic biology on the buckwheat crops are briefly summarized here. Future studies of the taxonomical revision on the genus Fagopyrum, collections of wild germplasm resources, exploration of the interspecific relationships and the breeding of cultivars with superior agronomic traits are strongly needed. Palynological and archaeological evidences imply that the buckwheat crop has been cultivated at least 4,500 years in the Yangtze River Valley, and might have ever been a main food for local populations in the mountain areas, providing food resource for emerging of Yangtze River civilization. Deep understanding of the basic biology of buckwheat with modern techniques of genomics could clarify the origin of cultivated buckwheat and factors limiting seed production. The buckwheat could be a superior crop in the mountain areas if the traits with high agronomic and medicinal value can be excavated and exploited.

Key words: Fagopyrum, crop origin, distyly, medicinal value, Yangtze River Valley, wild germplasm resources, phylogeny, ancestral species

Fig. 1

Flowers and fruits in the two cultivated buckwheat species. (A), (B) and (C) indicate flowering individuals of sweet buckwheat (Fagopyrum esculentum), a distylous crop, illustrating long-styled, and short-styled flower, respectively; (D) Fruiting individuals of bitter buckwheat (F. tartaricum), a homostylous crop."

Fig. 2

Buckwheat planting status in the world, showing the prevalence of cultivation in Eurasia, data from FAO (2014)"

Table 1

Fagopyrum species recorded in China, with descriptions of sexual system, life form and geographic distribution"

种名
Species
性系统
Sexual system
生活型
Life form
主要分布区
Distribution
大粒组 Big-achene (cymosum)
金荞麦 F. dibotrys (D. Don) Hara 二型花柱 Distyly 多年生 Perennial 亚洲、欧洲、美洲等 Asia, Europe, America, etc.
甜荞麦 F. esculentum Moench 二型花柱 Distyly 一年生 Annual 亚洲、欧洲、美洲等 Asia, Europe, America, etc.
大野荞 F. megaspartanium Q. F. Chen 二型花柱 Distyly 多年生 Perennial 中国(云南、西藏、贵州)等 China (Yunnan, Tibet, Guizhou), etc.
毛野荞 F. pilus Q. F. Chen 二型花柱 Distyly 多年生 Perennial 中国(云南、西藏)等 China (Yunnan, Tibet), etc.
汶川野荞麦 F. wenchuanense J. R. Shao 二型花柱 Distyly 一年生 Annual 中国(四川) China (Sichuan)
F. homotropicum Ohnishi 同型花柱 Homostyly 一年生 Annual 中国(云南、四川、西藏)等 China (Yunnan, Sichuan, Tibet), etc.
苦荞麦 F. tataricum (L.) Gaertn. 同型花柱 Homostyly 一年生 Annual 亚洲、欧洲、美洲等 Asia, Europe, America, etc.
左贡野荞 F. zuogongense Q. F. Chen 同型花柱 Homostyly 一年生 Annual 中国(云南、四川、西藏) China (Yunnan, Sichuan)
小粒组 Small-achene (urophyllum)
F. callianthum Ohnishi 二型花柱 Distyly 一年生 Annual 中国(云南、西藏)、不丹等 China (Yunnan, Tibet), Bhutan, etc.
F. capillatum Ohnishi 二型花柱 Distyly 一年生 Annual 中国(云南)、尼泊尔等 China (Yunnan), Nepal, etc.
心叶野荞麦 F. gilesii (Hemsl.) Hedb. 二型花柱 Distyly 一年生 Annual 中国(云南、四川、西藏) China (Yunnan, Sichuan, Tibet)
纤梗野荞麦
F. gracilipedoides Ohsako & Ohnishi
二型花柱 Distyly 一年生 Annual 中国(云南) China (Yunnan)
金沙野荞麦
F. jinshaense Ohsako & Ohnishi
二型花柱 Distyly 一年生 Annual 中国(云南) China (Yunnan)
小野荞麦 F. leptopodum (Diels) Hedb. 二型花柱 Distyly 一年生 Annual 中国(云南、四川等) China (Yunnan, Sichuan, etc.)
线叶野荞麦 F. lineare (Sam.) K. Haraldson 二型花柱 Distyly 一年生 Annual 中国(云南等) China (Yunnan, etc.)
F. macrocarpum Ohsako & Ohnishi 二型花柱 Distyly 一年生 Annual 中国(四川) China (Sichuan)
F. pleioramosum Ohnishi 二型花柱 Distyly 一年生 Annual 中国(云南、四川、西藏)、尼泊尔 China (Yunnan, Sichuan, Tibet), Nepal
羌彩野荞麦 F. qiangcai D. Q. Bai 二型花柱 Distyly 一年生 Annual 中国(四川) China (Sichuan)
长柄野荞麦 F. statice (Leveille) Gross 二型花柱 Distyly 多年生 Perennial 中国(云南、贵州) China (Yunnan, Guizhou)
硬枝野荞麦 F. urophyllum Gross 二型花柱 Distyly 多年生 Perennial 中国(云南、四川、甘肃) China (Yunnan, Sichuan, Gansu)
皱叶野荞麦 F. crispatifolium J. L. Liu 同型花柱 Homostyly 一年生 Annual 中国(四川) China (Sichuan)
细柄野荞麦
F. gracilipes (Hemsl.) Dammer
同型花柱 Homostyly 一年生 Annual 中国(云南、四川、贵州、陕西等) China (Yunnan, Sichuan, Guizhou, Shaanxi, etc.)
F. rubrifolium Ohsako & Ohnishi 同型花柱 Homostyly 一年生 Annual 中国(四川) China (Sichuan)
疏穗野荞麦 F. caudatum (Sam.) A. J. Li 不确定 Unknown 一年生 Annual 中国(云南、四川、甘肃) China (Yunnan, Sichuan, Gansu)
密毛野荞麦 F. densivillosum J. L. Liu 不确定 Unknown 一年生 Annual 中国(四川) China (Sichuan)
海螺沟野荞麦 F. hailuogouense J. R.
Shao, M. L. Zhou & Q. Zhang
不确定 Unknown 多年生 Perennial 中国(四川) China (Sichuan)
龙肘山野荞麦
F. longzhoushanense J. R. Shao
不确定 Unknown 一年生 Annual 中国(四川) China (Sichuan)
螺髻山野荞麦 F. luojishanense J. R. Shao 不确定 Unknown 一年生 Annual 中国(四川) China (Sichuan)
花叶野荞麦 F. polychromofolium A. H. Wang J. L. Liu et P. Yang 不确定 Unknown 一年生 Annual 中国(四川) China (Sichuan)
普格野荞麦 F. pugense T. Yu 不确定 Unknown 一年生 Annual 中国(四川) China (Sichuan)
[1] Björkman T (1995) The effectiveness of heterostyly in preventing illegitimate pollination in dish-shaped flowers. Sex Plant Reproduction, 8, 143-146.
[2] Boivin N, Fuller DQ, Crowther A (2012) Old World globalization and the Columbian exchange: Comparison and contrast. World Archaeology, 44, 452-469.
[3] Campbell CG (1976) Buckwheat: Fagopyrum (Polygonaceae). In: Evolution of Crop Plants (ed. Simmonds NW), pp. 235-237. Longman, London & New York.
[4] Cawoy V, Ledent JF, Kinet JM, Jacquemart AL (2009) Floral biology of common buckwheat (Fagopyrum esculentum Moench). The European Journal of Plant Science and Biotechnology, 3, 1-9.
[5] Chen QF (1999) A study of resources of Fagopyrum (Polygonaceae) native to China. Botanical Journal of the Linnean Society, 130, 53-64.
[6] Chen QF (2001) Discussion on the origin of cultivated buckwheat in genus Fagopyrum (Polygonaceae). In: Proceedings of the 8th International Symposium on Buckwheat,pp. 206-213, August,Chunchon, Republic of Korea.
[7] Chen QF (2012) Plant Sciences on Genus Fagopyrum. Science Press, Beijing. (in Chinese)
[陈庆富 (2012) 荞麦属植物科学. 科学出版社, 北京.]
[8] Chen XR (1960) Excavation of Han Tombs in Mozuizi, Wuwei, Gansu Province. Archaeology, (9), 15-28. (in Chinese)
[陈贤儒 (1960) 甘肃武威磨咀子汉墓发掘. 考古, (9), 15-28.]
[9] Cho KS, Yun BK, Yoon YH, Hong SY, Mekapogu M, Kim KH, Yang TJ (2015) Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS ONE, 10, e0125332.
[10] Food and Agriculture Organization of the United Nations (FAO) (2014) Production of Buckwheat by Countries. .
[11] Gondola I, Papp PP (2010) Origin, geographical distribution and phylogenic relationships of common buckwheat (Fagopyrum esculentum Moench). Buckwheat, 2, 17-32.
[12] Gross MH (1913) Remarques sur les Polygonées de l’Asie Orientale. Bulletin de Géographie Botanique, 23, 7-32.
[13] Hedberg O (1946) Pollen morphology in the genus Polygonum L. (s. lat.) and its taxonomical significance. Svensk Botanisk Tidskrift, 40, 371-404.
[14] Hou LL, Zhou ML, Zhang Q, Qi LP, Yang XB, Tang Y, Zhu XM, Shao JR (2015) Fagopyrum luojishanense, a new species of Polygonaceae from Sichuan, China. Novon, 24, 22-26.
[15] Hu YN, Zhang ZW, Wu B, Gao J, Li YQ (2016) Genetic relationships of buckwheat species based on the sequence analysis of ITS and ndhF-rpl32. Biodiversity Science, 24, 296-303. (in Chinese with English abstract)
[胡亚妮, 张宗文, 吴斌, 高佳, 李艳琴 (2016) 基于ITS和ndhF-rpl32序列的荞麦种间亲缘关系分析. 生物多样性, 24, 296-303.]
[16] Jacquemart AL, Cawoy V, Kinet JM, Ledent JF, Quinet M (2012) Is buckwheat (Fagopyrum esculentum Moench) still a valuable crop today? The European Journal of Plant Science and Biotechnology, 6, 1-10.
[17] Jacquemart AL, Gillet C, Cawoy V (2007) Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. The Journal of Horticultural Science and Biotechnology, 82, 104-108.
[18] Kishima Y, Ogura K, Mizukami K, Mikami T, Adachi T (1995) Chloroplast DNA analysis in buckwheat species: Phylogenetic relationships, origin of the reproductive systems and extended inverted repeats. Plant Science, 108, 173-179.
[19] Kreft I (2001) Buckwheat research, past, present and future perspectives 20 years of internationaly coordinated research. In: Proceedings of the 8th International Symposium on Buckwheat, pp. 361-366, August, Chunchon, Republic of Korea.
[20] Levent H, Bilgiçli N (2011) Enrichment of gluten-free cakes with lupin (Lupinus albus L.) or buckwheat (Fagopyrum esculentum M.) flours. International Journal of Food Sciences and Nutrition, 62, 725-728.
[21] Li AR, Hong SP (2003) Fagopyrum.2003) Fagopyrum.
[22] Li X, Dodson J, Zhou X, Zhang H, Masutomoto R (2007) Early cultivated wheat and broadening of agriculture in Neolithic China. Holocene, 17, 555-560.
[23] Li YF (1979) Western Han Tombs in Maquan, Xianyang, Shaanxi Province. Archaeology, (2), 125-135. (in Chinese)
[李毓芳 (1979) 陕西咸阳马泉西汉墓. 考古, (2), 125-135.]
[24] Li YY, Willis KJ, Zhou LP, Cui HT (2006) The impact of ancient civilization on the northeastern Chinese landscape: Palaeoecological evidence from the Western Liaohe River Basin, Inner Mongolia. Holocene, 16, 1109-1121.
[25] Liu JL, Tang Y, Xia MZ, Shao JR, Cai GZ, Luo Q, Sun JX (2008a) Fagopyrum crispatifolium J. L. Liu, a new species of Polygonaceae from Sichuan, China. Journal of Systematics and Evolution, 46, 929-932. (in Chinese with English abstract)
[刘建林, 唐宇, 夏明忠, 邵继荣, 蔡光泽, 罗强, 孙俊秀 (2008a) 中国四川蓼科荞麦属一新种——皱叶野荞麦. 植物分类学报, 46, 929-932.]
[26] Liu JL, Tang Y, Xia MZ, Shao JR, Cai GZ, Luo Q, Sun JX (2008b) Fagopyrum densovillosum J. L. Liu, a new species of Polygonaceae from Sichuan, China. Bulletin of Botanical Research, 28, 530-533. (in Chinese with English abstract)
[刘建林, 唐宇, 夏明忠, 邵继荣, 蔡光泽, 罗强, 孙俊秀. (2008b). 中国荞麦属(蓼科)一新种——密毛野荞麦. 植物研究, 28, 530-533.]
[27] Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ, Penin AA (2011) De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics, 12, 30.
[28] Logacheva MD, Samigullin TH, Dhingra A, Penin AA (2008) Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale—a wild ancestor of cultivated buckwheat. BMC Plant Biology, 8, 59.
[29] Ma KH, Kim NS, Lee GA, Lee SY, Lee JK, Yi JY, Park YJ, Kim TS, Gwag JG, Kwon SJ (2009) Development of SSR markers for studies of diversity in the genus Fagopyrum. Theoretical and Applied Genetics, 119, 1247-1254.
[30] Matano T, Ujihara A (1979) Agroecological classification and geographical distribution of the common buckwheat, Fagopyrum esculentum M. in the East Asia. Japan Agricultural Research Quarterly, 13, 157-162.
[31] Murai M, Ohnishi O (1996) Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench X. Diffusion routes revealed by RAPD markers. Genes & Genetic Systems, 71, 211-218.
[32] Nakao S (1957) Transmittance of cultivated plants through the Sino-Himalayan route. In: Peoples of Nepal Himalaya (ed. Kihara H), pp. 397-420. Fauna and Flora Research Society, Kyoto.
[33] Nishimoto Y, Ohnishi O, Hasegawa M (2003) Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae). Genes & Genetic Systems, 78, 139-153.
[34] Ohnishi O (1988) Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. VII. Allozyme variability in Japan, Korea, and China. The Japanese Journal of Genetics, 63, 507-522.
[35] Ohnishi O (1993) Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. VIII. Local differentiation of land races in Europe and the silk road. The Japanese Journal of Genetics, 68, 303-316.
[36] Ohnishi O (1995) Discovery of new Fagopyrum species and its implication for the studies of evolution of Fagopyrum and of the origin of cultivated buckwheat. In: Proceedings of the 6th International Symposium on Buckwheat,pp. 175-190, August,Shinshu, Japan.
[37] Ohnishi O (1998) Search for the wild ancestor of buckwheat. I. Description of new Fagopyrum (Polygonaceae) species and their distribution in China and the Himalayan hills. Fagopyrum, 15, 18-28.
[38] Ohnishi O (2004) On the origin of cultivated buckwheat. In: Proceedings of the 9th International Symposium on Buckwheat,pp. 18-22, August,Prague, Czech.
[39] Ohnishi O, Matsuoka Y (1996) Search for the wild progenitor of buckwheat. II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes & Genetic Systems, 71, 383-390.
[40] Ohsako T, Ohnishi O (1998) New Fagopyrum species revealed by morphological and molecular analyses. Genes & Genetic Systems, 73, 85-94.
[41] Ohsako T, Ohnishi O (2000) Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. American Journal of Botany, 87, 573-582.
[42] Ohsako T, Yamane K, Ohnishi O (2002) Two new Fagopyrum (Polygonaceae) species, F. gracilipedoides and F. jinshaense from Yunnan, China. Genes & Genetic Systems, 77, 399-408.
[43] Ren CZ, Zhao G (2015) Chinese Buckwheat Science. China Agriculture Press, Beijing. (in Chinese)
[任长忠, 赵钢 (2015) 中国荞麦学. 中国农业出版社, 北京.]
[44] Shao JR, Zhou ML, Zhu XM, Wang DZ, Bai DQ (2011) Fagopyrum wenchuanense and Fagopyrum qiangcai, two new species of Polygonaceae from Sichuan, China. Novon 21, 256-261.
[45] Sharma TR, Jana S (2002) Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theoretical and Applied Genetics, 105, 306-312.
[46] Slawinska J, Obendorf RL (2001) Buckwheat seed set in planta and during in vitro inflorescence culture: Evaluation of temperature and water deficit stress. Seed Science Research, 11, 223-233.
[47] Steward AN (1930) The Polygoneae of Eastern Asia. Contributions from the Gray Herbarium of Harvard University, 5, 1-129.
[48] Tang Y, Ding MQ, Tang YX, Wu YM, Shao JR, Zhou ML (2016) Germplasm resources of buckwheat in China. In: Molecular Breeding and Nutritional Aspects of Buckwheat (eds Zhou ML, Kreft I, Woo SH, Chrungoo NK, Wieslander G), pp. 13-20. Academic Press, London.
[49] Tang Y, Zhou ML, Bai, DQ, Shao JR, Zhu XM, Wang DZ, Tang YX (2010) Fagopyrum pugense (Polygonaceae), a new species from Sichuan, China. Novon, 20, 239-242.
[50] Tsuji K, Ohnishi O (2000) Origin of cultivated tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 47, 431-438.
[51] Tsuji K, Ohnishi O (2001) Phylogenetic relationships among wild and cultivated tartary buckwheat (Fagopyrum tataricum Gaert.) populations revealed by AFLP analyses. Genes & Genetic Systems, 76, 47-52.
[52] Wang CL, Li ZQ, Ding MQ, Tang Y, Zhu XM, Liu JL, Shao JR, Zhou ML (2017) Fagopyrum longzhoushanense, a new species of Polygonaceae from Sichuan, China. Phytotaxa, 291, 73-80.
[53] Wei YM (1995) Buckwheat production in China. In: Proceeding of the 6th International Symposium on Buckwheat,pp. 24-29, August,Shinshu, Japan.
[54] Weisskopf A, Fuller DQ (2014) Buckwheat: Origins and development. In: Encyclopedia of Global Archaeology (ed. Smith C), pp. 1025-1028. Springer-Verlag, New York.
[55] Wu LY, Chang FF, Liu SJ, SW Armbruster, Huang SQ (2018) Heterostyly promotes compatible pollination in buckwheats: Comparisons of intraflower, intraplant, and interplant pollen flow in distylous and homostylous Fagopyrum. American Journal of Botany, 105, 108-116.
[56] Wu LY, Wang B, Schoen DJ, Huang SQ (2017) Transitions from distyly to homostyly are associated with floral evolution in the buckwheat genus (Fagopyrum). American Journal of Botany, 104, 1232-1240.
[57] Xia MZ, Wang AH, Cai GZ, Yang P, Liu JL (2007) A new variety of Fagopyrum Polygonaceae discovered in Sichuan, China—Fagopyrum polychromofolium A. H. Wang, J. L. Liu et P. Yang. Journal of Xichang College, 21, 11-13. (in Chinese with English abstract)
[夏明忠, 王安虎, 蔡光泽, 杨坪, 刘建林 (2007) 中国四川荞麦属(蓼科)一新种——花叶野荞麦. 西昌学院学报, 21, 11-13.]
[58] Yamane K, Ohnishi O (2001) Phylogenetic relationships among natural populations of perennial buckwheat, Fagopyrum cymosum Meisn., revealed by allozyme variation. Genetic Resources and Crop Evolution, 48, 69-77.
[59] Yang J, Lu C, Shen Q, Yan Y, Xu C, Song C (2016) The complete chloroplast genome sequence of Fagopyrum cymosum. Mitochondrial DNA Part A, 27, 2410-2411.
[60] Yang MJ, Guo ZX, Yang Y, Chen YQ (2008) A brief history of buckwheat cultivation in China. Inner Mongolia Agricultural Science and Technology, (5), 85-86. (in Chinese)
[杨明君, 郭忠贤, 杨媛, 陈有清 (2008) 我国荞麦种植简史. 内蒙古农业科技, (5), 85-86.]
[61] Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, Aii J, Sato S, Mori M (2016) Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Research, 23, 215-224.
[62] Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T (2012) S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS ONE, 7, e31264.
[63] Yasui Y, Ohnishi O (1998a) Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenic region. American Journal of Botany, 85, 1134-1142.
[64] Yasui Y, Ohnishi O (1998b) Phylogenetic relationships among Fagopyrum species revealed by the nucleotide sequences of the ITS region of the nuclear rRNA gene. Genes & Genetic Systems, 73, 201-210.
[65] Yi S, Saiton T, Zhao Q, Wang P (2003) Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quaternary Science Reviews, 22, 1501-1519.
[66] Yukio D (1960) Cytological studies in Polygonum and related genera. Botanical Magazine (Tokyo), 73, 337-340.
[67] Zhang LJ, Li XX, Ma B, Gao Q, Du HL, Han YH, Li Y, Cao YH, Qi M, Zhu YX, Lu HW, Ma MC, Liu LL, Zhou JP, Nan CH, Qin YJ, Wang J, Cui L, Liu HM, Liang CZ, Qiao ZJ (2017) The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 10, 1224-1237.
[68] Zhao ZC, Li BG, Zhou MD (2007) Resources of Tartary Buckwheat and Related Wild Species in China. Sichuan Science and Technology Press, Chengdu. (in Chinese with English abstract)
[赵佐成, 李伯刚, 周明德 (2007) 中国苦荞及其近缘野生种资源. 四川科技出版社, 成都.]
[69] Zhou ML, Wang CL, Wang DZ, Zheng YD, Li FL, Zhu XM, Tang YX, Shao JR, Tang Y, Wu YM (2014) Phylogenetic relationship of four new species related to southwestern Sichuan Fagopyrum based on morphological and molecular characterization. Biochemical Systematics and Ecology, 57, 403-409.
[70] Zhou ML, Zhang Q, Zheng YD, Tang Y, Li FL, Zhu XM, Shao JR (2015) Fagopyrum hailuogouense (Polygonaceae), one new species from Sichuan, China. Novon, 24, 222-224.
[71] Zhou X, Wen L, Li Z, Zhou Y, Chen Y, Lu Y (2015) Advance on the benefits of bioactive peptides from buckwheat. Phytochemistry Reviews, 14, 381-388.
[1] Yue-Mei ZHAO Zhenyan Yang Yongping Zhao Xiaoling Li Zhixin Zhao Gui-Fang ZHAO. Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae [J]. Chin Bull Bot, 2019, 54(4): 0-0.
[2] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[3] Meiling Ge,Qinzeng Xu,Shiliang Fan,Zongxing Wang,Xuelei Zhang. Taxonomy at order and family levels of the benthic groups of Polychaeta in the coastal waters of China [J]. Biodiv Sci, 2018, 26(9): 998-1003.
[4] Luo Junjie, Wang Ying, Shang Hui, Zhou Xile, Wei Hongjin, Huang Sunan, Gu Yufeng, Jin Dongmei, Dai Xiling, Yan Yuehong. Phylogeny and Systematics of the Genus Microlepia (Dennstaedtiaceae) based on Palynology and Molecular Evidence [J]. Chin Bull Bot, 2018, 53(6): 782-792.
[5] Shaojun Ling, Qianwan Meng, Liang Tang, Mingxun Ren. Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships [J]. Biodiv Sci, 2017, 25(8): 807-815.
[6] Wenying Li, Xia Li, Kaizhi Xie, Wangqiu Deng, Wenying Zhuang. Systematics and species diversity of botryosphaeriaceous fungi [J]. Biodiv Sci, 2017, 25(8): 874-885.
[7] Xue Zhang, Yurui Wang, Yangbo Fan, Xiaotian Luo, Xiaozhong Hu, Feng Gao. Morphology, ontogeny and molecular phylogeny of Euplotes aediculatus Pierson, 1943 (Ciliophora, Euplotida) [J]. Biodiv Sci, 2017, 25(5): 549-560.
[8] Xiaoxu Jia, Xiujun Tang, Yanfeng Fan, Junxian Lu, Shenghai Huang, Qinglian Ge, Yushi Gao, Wei Han. Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region [J]. Biodiv Sci, 2017, 25(5): 540-548.
[9] Xile Zhou, Dongmei Jin, Yicheng Liu, Hui Shang, Yuehong Yan. Sporangia Morphology of Ferns I. Lindsaeaceae [J]. Chin Bull Bot, 2017, 52(3): 322-330.
[10] Wang Qian, Sun Wenjing, Bao Ying. Evolutionary Pattern of the GBSS Gene Family in Plants [J]. Chin Bull Bot, 2017, 52(2): 179-187.
[11] Xiuqin Ci,Jie Li. Phylogenetic diversity and its application in floristics and biodiversity conservation [J]. Biodiv Sci, 2017, 25(2): 175-181.
[12] Mingli Zhang. A review on the floristic phytogeography in arid northwestern China and Central Asia [J]. Biodiv Sci, 2017, 25(2): 147-155.
[13] YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
[14] Xin Wang, Fenglin Zhang, Jian Zhang. Biodiversity information resources. I. Species distribution, catalogue, phylogeny, and life history traits [J]. Biodiv Sci, 2017, 25(11): 1223-1238.
[15] Lili Xie,Lei Xu,Qiuqi Lin,Boping Han. Phylogenetics of the Daphnia longispina complex in Tibetan lakes [J]. Biodiv Sci, 2015, 23(6): 784-792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xiaohong He, Xiuli Han, Weijun Guan, Kechuan Tian, Wenbin Zhang, Yuehui Ma. Genetic variability and relationship of 10 Bactrian camel populations revealed by microsatellite markers[J]. Biodiv Sci, 2012, 20(2): 199 -206 .
[2] Xiaolei Huang,Gexia Qiao. Sharing and publishing of biodiversity data: recent trends and future suggestions[J]. Biodiv Sci, 2014, 22(3): 293 -301 .
[3] TIAN Mei-Hua , , TANG An-Jun , , SONG Song-Quan. The Effects of Temperature and Osmotic Stress on the Germination of Scorzonera pusilla (Compositae) Seeds[J]. Plant Diversity, 2007, 29(06): 682 -686 .
[4] Ding Jixiang. Improvement of the Three Tools to Make Field Sampling Investigation of the Plant Community[J]. Chin J Plan Ecolo, 1983, 7(3): 260 -264 .
[5] Jing Yan,Guoliang Zhang,Ruihai Zhang,Zhen Song,Xiaohong Zhao,Yusheng Liu,Weidong Fu. The effect of Flaveria bidentis litter decomposition on the structure of arthropod communities[J]. Biodiv Sci, 2016, 24(11): 1288 -1295 .
[6] QIU Jun, GU Jia-Cun, JIANG Hong-Ying, WANG Zheng-Quan. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica[J]. Chin J Plan Ecolo, 2010, 34(9): 1066 -1074 .
[7] Alrun Siebenkäs, Jens Schumacher, Christiane Roscher. Trait variation in response to resource availability and plant diversity modulates functional dissimilarity among species in experimental grasslands[J]. J Plant Ecol, 2017, 10(6): 981 -993 .
[8] Wang Fu-Hsiung, Lee Shen-Chang, Chen Zu-Keng. The embryogeny of Taiwania in comparison with that of other genera of Taxodiaceae[J]. J Syst Evol, 1980, 18(2): 129 -137 .
[9] Guangbin Yu, Xiaodong Yang. Characteristics of litter and soil arthropod communities at different suc-cessional stages of tropical forests[J]. Biodiv Sci, 2007, 15(2): 188 -198 .
[10] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .