Biodiversity Science ›› 2017, Vol. 25 ›› Issue (9): 972-980.doi: 10.17520/biods.2017163

• Original Papers: Plant Diversity • Previous Article     Next Article

Comparative study on reproductive success of Corydalis sheareri (Papaveraceae) between alkaline limestone soil and red soil habitats in a karst area

Zhihuan Huang1, Qifeng Lu1, Yingzhuo Chen2, *()   

  1. 1 Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006
    2 Chengnan Academy, Hunan First Normal University, Changsha 410205
  • Received:2017-06-02 Accepted:2017-09-04 Online:2017-10-04
  • Chen Yingzhuo
  • About author:# Co-first authors

The discontinuous distribution between alkaline limestone soil with high calcium content and acidic red soil with low calcium content is characteristic of karst areas, and strongly affects plant species composition in natural communities. Whether the soil types affect plant reproductive success, however, remains unknown. Two populations of Corydalis sheareri, a species commonly occurring in alkaline limestone soil and acidic red soil, were investigated. The soil properties of the two habitats were examined, and flowering phenology, floral traits, floral visitor types and their behavior, breeding system and reproductive success were compared. Organic matter, total nitrogen, total calcium, and pH value were higher in the limestone soil, while soil moisture content was lower than that found in the red soil. Floral longevity was not significantly different between plants from the two habitats. However, plants found in the limestone soil were shorter in height and bloomed one week later with a shorter flowering period (4 weeks) than those found in the red soil (6 weeks). Floral traits (inflorescence size, flower length, opening size, spur length and stigma diameter) were not significantly different between the two habitats. Corydalis sheareri was obligately xenogamous, with sexual reproduction dependent on insect pollinators. The major floral visitor was Anthophora melanognatha, a long-tongued nectar collecting bee. Bee visit frequency and seed set per flower were not significantly different between the two habitats, but fruit set per plant in the limestone soil was significantly lower. Our results indicated that, no difference in the seed set could be explained by similar pollinator abundance, while the differences of flowering phenology and fruit set could be caused by differences in the soil properties between the two habitats.

Key words: Corydalis sheareri, soil property, flowering phenology, breeding system, fruit set, seed set, reproductive success

Fig. 1

(A) Plants of Corydalis sheareri inhabited in the red soil (acidic); (B) Plants growing near the moist limestone caves with moss (calcareous); (C) A bee (Anthophora melanognatha) collecting nectar from C. sheareri; (D) A hawkmoth (Macroglossum corythus) sucking nectar from C. sheareri."

Table 1

Comparisons of soil properties (mean ± SE) between the limestone and red soil from the two habitats of Corydalis sheareri"

土壤特性 Soil property 样本量 Sample size 石灰岩土壤 Limestone soil 红壤 Red soil T P
含水量 Moisture (%) 3 21.73 ± 0.98 25.15 ± 0.62 2.95 0.04
有机质 Organic matter (g/kg) 3 61.10 ± 1.36 28.37 ± 1.44 -18.36 <0.001
全氮 Total nitrogen (mg/kg) 3 214.36 ± 7.31 87.46 ± 5.89 -13.53 <0.001
全磷 Total phosphorus (mg/kg) 3 11.09 ± 0.81 13.32 ± 1.14 1.52 0.20
全钾 Total potassium (mg/kg) 3 121.35 ± 7.17 110.06 ± 6.45 -1.17 0.31
全钙 Total calcium (g/kg) 3 28.62 ± 3.84 3.18 ± 1.50 -6.54 0.003
pH 3 7.75 ± 0.12 6.29 ± 0.08 -10.27 <0.001

Fig. 2

Flowering phenology of Corydalis sheareri in the two habitats with different soil types"

Table 2

Comparisons of floral traits of Corydalis sheareri from the two habitats with different soil types"

花部特征 Floral characters 样本量 Sample size 红壤 Red soil 石灰岩土壤 Limestone soil T P
植株高度 Plant height (cm) 20 34.8 ± 1.8 30.2 ± 1.3 -2.08 0.04
花数/花序 Flower number/inflorescence 20 20.6 ± 0.7 19.7 ± 0.7 -0.95 0.34
花长 Floral length (mm) 20 27.96 ± 0.24 27.39 ± 0.22 -1.76 0.09
开口大小 Opening size (mm) 20 13.02 ± 0.27 12.45 ± 0.23 -1.62 0.11
距长 Spur length (mm) 20 17.45 ± 0.15 17.12 ± 0.17 -0.98 0.34
柱头直径 Stigma diameter (mm) 20 1.54 ± 0.01 1.49 ± 0.02 -1.86 0.07

Fig. 3

Comparisons of visit frequency among the three floral visitors in the two habitats. The same letter (case-sensitive) means no significant difference between the same floral visitor, while different letters mean significant difference of the same floral visitor between the two habitats; * mean visitation frequency of Anthophora melanognatha significantly higher than the other two floral visitors."

Table 3

Floral visitor types and their visitation frequency to Corydalis sheareri in the two habitats. The different letters for the same column indicate visit frequency was significantly different between plots for the same floral visitor at the level of P < 0.05 by GLM (Gaussian distribution and identity link function)."

Soil type
Observed censuses (0.5 h)
访问次数/花数?小时 Visits/flowers?h
条蜂 Anthophora 蜜蜂 Honeybee 天蛾 Sphingid
Red soil
池塘边 Poolside 14 0.19 ± 0.02ab 0b 0.10 ± 0.03ab
路边 Roadside 16 0.16 ± 0.03ab 0.07 ± 0.02a 0c
苗圃角落 Yard’s corner 16 0.24 ± 0.03a 0.11 ± 0.02a 0.16 ± 0.04a
Limestone soil
洞穴外 Near the cave 12 0.20 ± 0.04ab 0b 0.05 ± 0.03b
石缝处 Stony crevices 16 0.11 ± 0.03b 0b 0c
石山小径 Stony pathlet 16 0.17 ± 0.04ab 0b 0.12 ± 0.04ab
[8] Conner JK, Rush S, Jennetten P (1996) Measurements of natural selection on floral traits in wild radish (Raphanus raphanistrum). I. Selection through lifetime female fitness. Evolution, 50, 1127-1136.
doi: 10.2307/2410654 pmid: 28565285
[9] Dai YL (2014) The influence of different habitat and planting density on growth development and ornamental value of Cancrinia discoidea (Ledeb.) Poljak. Master dissertation. Xinjiang Agricultural University, Urumchi. (in Chinese with English abstract)
[戴永丽 (2014) 不同生境与栽培密度对小甘菊生长发育与观赏价值的影响. 新疆农业大学硕士学位论文, 乌鲁木齐.]
[10] Fan XL, Barrett SCH, Lin H, Chen LL, Zhou X, Gao JY (2012) Rain pollination provides reproductive assurance in a deceptive orchid. Annals of Botany, 110, 953-958.
doi: 10.1093/aob/mcs165 pmid: 3448421
[11] Fortuna MA, García C, Guimar?es PR Jr, Bascompte J (2008) Spatial mating networks in insect-pollinated plants. Ecology Letters, 11, 490-498.
doi: 10.1111/j.1461-0248.2008.01167.x pmid: 18318718
[12] Herrera J (2005) Flower size variation in Rosmarinus officinalis: individuals, populations and habitats. Annals of Botany, 95, 431-437.
doi: 10.1093/aob/mci041 pmid: 15585545
[13] Higashi S, Ohara M, Arai H, Matsuo K (1988) Robber-like pollinators: overwintered queen bumblebees foraging on Corydalis ambigua. Ecological Entomology, 13, 411-418.
doi: 10.1111/j.1365-2311.1988.tb00373.x
[14] Huang BQ, An DJ (2013) Impacts of microenvironment on pollination success of an orchid species Phaius delavayi in Huanglong Valley, Sichuan. Bulletin of Botanical Research, 33, 80-85. (in Chinese with English abstract)
[黄宝强, 安德军 (2013) 两种生境对四川黄龙沟少花鹤顶兰有性繁殖成功的影响. 植物研究, 33, 80-85.]
[15] Huang SQ, Shi XQ (2013) Flower isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference? New Phytologist, 199, 858-865.
doi: 10.1111/nph.12327 pmid: 23672259
[16] IUCN (1993) Parks for Life: Report of the IVth World Congress on National Parks and Protected Areas. The World Conservation Union, Gland, Switzerland.
[17] Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 51, 45-53.
pmid: 28568792
[18] Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. Journal of Experimental Botany, 67, 47-60.
doi: 10.1093/jxb/erv441 pmid: 26428061
[19] Kiew R (1991) The limestone flora. In: The State of Nature Conservation in Malaysia (ed. Kiew R), pp. 42-50. Malayan Nature Society, Kuala Lumpur.
[20] Kiew R (2001) Towards a limestone flora of Sabah. Malayan Nature Journal, 55, 77-93.
[21] Kudo G, Maeda T, Narita K (2001) Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): pollination efficiency or resource limitation? Journal of Ecology, 89, 48-56.
doi: 10.1046/j.1365-2745.2001.00512.x
[22] Li WP, Liu SX (1997) Reproductive ecology of Corydalis sheareri var. bulbillifera (Papaveraceae). I. Pollination ecology. Journal of Central China Normal University (Natural Sciences Edition), 31, 87-91. (in Chinese with English abstract)
[黎维平, 刘胜祥 (1997) 珠芽紫堇的生殖生态学研究. I. 传粉生态学. 华中师范大学学报(自然科学版), 31, 87-91.]
[23] Liu HX, Li B, Hu XH, Deng T, Huang SX (2017) A study on adaptation of 3 species of Gesneriaceae in limestone soil and red soil. Guihaia, doi:10.11931/guihaia.gxzw201612011. (in Chinese with English abstract)
[刘合霞, 李博, 胡兴华, 邓涛, 黄仕训 (2017) 三种苦苣苔对石灰土和红壤的适应性分析. 广西植物, doi:10.11931/guihaia.gxzw201612011.]
[24] Liu ZX, Chen XM, Jing Y, Huang QR, Li QX (2013) Hydraulic characteristics and its impact factors in typical red soil region. Bulletin of Soil and Water Conservation, 33, 21-25. (in Chinese with English abstract)
[刘祖香, 陈效民, 靖彦, 黄欠如, 李秋霞 (2013) 典型旱地红壤水力学特性及其影响因素研究. 水土保持通报, 33, 21-25.]
[25] MacKinnon K, Hatta G, Halim H, Mangalik A (1996) The Ecology of Kalimantan. Periplus Editions, Singapore.
[26] Maloof JE (2000) Reproductive biology of a North American subalpine plant: Corydalis caseana A. Gray ssp. brandegei (S. Watson) GB Ownbey. Plant Species Biology, 15, 281-288.
doi: 10.1111/j.1442-1984.2000.00047.x
[27] McMaster GS, Wilhelm WW (2003) Phenological responses of wheat and barley to water and temperature: improving simulation models. The Journal of Agricultural Science, 141, 129-147.
doi: 10.1017/S0021859603003460
[28] Mohamed H, Yong KT, Damanhuri A, Latiff QA (2005) Moss diversity of Langkawi Islands, Peninsular Malaysia. Malayan Nature Journal, 57, 243-254.
[29] Nie YP, Chen HS, Wang KL, Tan W, Deng PY, Yang J (2011) Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant and Soil, 34, 399-412.
doi: 10.1007/s11104-010-0653-2
[30] Ohara M, Higashi S (1994) Effects of inflorescence size on visits from pollinators and seed set of Corydalis ambigua (Papaveraceae). Oecologia, 98, 25-30.
doi: 10.1007/BF00326086 pmid: 28312792
[31] Olsson K, ?gren J (2002) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. Journal of Evolutionary Biology, 15, 983-996.
doi: 10.1046/j.1420-9101.2002.00457.x
[32] Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179-214.
doi: 10.1146/
[33] Richardson DM, Py?ek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concept and definitions. Diversity and Distributions, 6, 93-107.
doi: 10.1046/j.1472-4642.2000.00083.x
[34] Robertson JL, Wyatt R (1990) Evidence for pollination ecotypes in the yellow fringed orchid, Platanthera ciliaris. Evolution, 44, 121-133.
doi: 10.1111/evo.1990.44.issue-1
[35] Ruhsam M, Hollingsworth PM, Ennos RA (2013) Patterns of mating, generation of diversity, and fitness of offspring in a Geum hybrid swarm. Evolution, 67, 2728-2740.
doi: 10.1111/evo.2013.67.issue-9
[36] Shui W, Chen YP, Wang YW, Su ZA, Zhang S (2015) Origination, study progress and prospect of karst Tiankeng research in China. Acta Geographica Sinica, 70, 431-446.
doi: 10.11821/dlxb201503007
[税伟, 陈毅萍, 王雅文, 苏正安, 张素 (2015) 中国喀斯特天坑研究: 起源、进展与展望. 地理学报, 70, 431-446.]
doi: 10.11821/dlxb201503007
[37] Stolle J (2004) Biological flora of Central Europe: Corydalis pumila (Host) Rchb. Flora, 199, 204-217.
doi: 10.1078/0367-2530-00148
[38] Thomson JD (2006) Tactics for male reproductive success in plants: contrasting insights of sex allocation theory and pollen presentation theory. Integrative and Comparative Biology, 46, 390-397.
doi: 10.1093/icb/icj046 pmid: 21672751
[39] Tu YL (1995) An analysis of flora and ecological characteristics of karst scrubs in Guizhou Province. Journal of Guizhou Normal University (Natural Sciences), 13(3), 1-8. (in Chinese with English abstract)
[屠玉麟 (1995) 贵州喀斯特灌丛区系与生态特征分析. 贵州师范大学学报(自然科学版), 13(3), 1-8.]
[40] van Kleunen M, Manning JC, Pasqualetto V, Johnson SD (2007) Phylogenetically independent associations between autonomous self-fertilization and plant invasiveness. The American Naturalist, 171, 195-201.
doi: 10.1086/525057 pmid: 18197772
[41] Wang H (2014) Divergence in floral traits under the selection of pollinators in sympatric Corydalis species. PhD dissertation. Wuhan University, Wuhan. (in Chinese with English abstract)
[王慧 (2014) 同域分布紫堇属植物传粉选择压力下的花部特征分化, 武汉大学博士学位论文, 武汉.]
[42] Wang H, Li XX (2017) Differentiation in breeding system and pollination of three sympatric Corydalis species. Plant Science Journal, 35, 186-193. (in Chinese with English abstract)
[王慧, 李肖夏 (2017) 同域分布的紫堇属三种植物的繁育系统和传粉差异. 植物科学学报, 35, 186-193.]
[43] Wang H, Tie S, Yu D, Guo YH, Yang CH (2014) Change of floral orientation affects pollinator behavior and pollination efficiency in a bee-pollinated plant, Corydalis sheareri. PLoS ONE, 9, e95381.
doi: 10.1371/journal.pone.0095381 pmid: 24743567
[44] Wang YJ, Fang X, Zhang ZC (2010) Effect of different habitats on floral, fruit and seed traits of Iris japonica Thunb. Acta Ecologica Sinica, 30, 4628-4635. (in Chinese with English abstract)
[王永健, 方兴, 钟章成 (2010) 不同生境对蝴蝶花花部与果实特征的影响. 生态学报, 30, 4628-4635.]
[45] Waser NM, Price MV (1983) Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature, 302, 422-424.
doi: 10.1038/302422a0
[1] Aronson J, Kigel J, Shmida A, Klein J (1992) Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia, 89, 17-26.
doi: 10.1007/BF00319010 pmid: 28313390
[2] Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution, 9, 347-349.
[46] Wu ZY, Zhuang X, Su ZY (1996) The systematic evolution of Corydalis in relation to florogenesis and floristic regionalization in the world. Acta Botanica Yunnanica, 18, 241-268. (in Chinese with English abstract)
doi: 10.1007/BF02951625
[吴征镒, 庄璇, 苏志云 (1996) 论紫堇属的系统演化与区系发生和区系分区的关系. 云南植物研究, 18, 241-268.]
doi: 10.1007/BF02951625
[3] Baker HG (1967) Support for Baker’s law—as a rule. Evolution, 21, 853-856.
doi: 10.1111/evo.1967.21.issue-4
[4] Bayaerta, Jia P, Yang X, Du GZ (2010) Response of dominating species flowering phenology to fertilization in Qinghai-Tibetan alpine meadow. Acta Prataculturae Sinica, 19, 233-239. (in Chinese with English abstract)
[47] Xia Q, Zhou SB, Zhang D, Chao TC (2012) Floral syndrome and breeding system of Corydalis edulis. China Journal of Chinese Materia Medica, 37, 1191-1196. (in Chinese with English abstract)
[夏青, 周守标, 张栋, 晁天彩 (2012) 紫堇的花部综合特征与繁育系统的研究. 中国中药杂志, 37, 1191-1196.]
[48] Yang QH, Feng HL, Ye WH, Cao HL, Deng X, Xu KY (2003) An investigation of the effects of environmental factors on the flowering and seed setting of Mikania micrantha H. B. K (Compositae). Journal of Tropical and Subtropical Botany, 11, 123-126. (in Chinese with English abstract)
[杨期和, 冯惠玲, 叶万辉, 曹洪麟, 邓雄, 许凯扬 (2003) 环境因素对薇甘菊开花结实影响初探. 热带亚热带植物学报, 11, 123-126.]
[4] [巴雅尔塔, 贾鹏, 杨晓, 杜国祯 (2010) 青藏高原高寒草甸组分种花期物候对施肥响应. 草业学报, 19, 233-239.]
[5] Cao JH, Yuan DX, Pan GX (2003) Some soil features in karst ecosystem. Advance in Earth Sciences, 18, 37-44. (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-8166.2003.01.006
[49] Yong HS, Ng FSP, Lee EYE (2004) Sarawak bau limestone biodiversity. Sarawak Museum Journal, 80(6), 105-146.
[50] Zhang ML, Su ZY, Lidén M, Grey-Wilson C (2008) Papaveraceae. In: Flora of China (eds Wu ZY, Raven PH, Hong DY), Volume 7, Menispermaceae through Capparaceae. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis.
[51] Zhang YW, Yu Q, Zhao JM, Guo YH (2009) Differential effects of nectar robbing by the same bumble-bee species on three sympatric Corydalis species with varied mating systems. Annals of Botany, 104, 33-39.
doi: 10.1093/aob/mcp104 pmid: 19465751
[52] Zhong JX (1982) Flora Atlas of Limestone Plants in Guangxi. Guangxi People’s Publishing House, Nanning. (in Chinese)
[5] [曹建华, 袁道先, 潘根兴 (2003) 岩溶生态系统中的土壤. 地球科学进展, 18, 37-44.]
doi: 10.3321/j.issn:1001-8166.2003.01.006
[6] Chin SC (1977) The limestone hill flora of Malaya: Part 1. Gardens’ Bulletin Singapore, 30, 165-220.
[52] [钟济新 (1982) 广西石灰岩石山植物图谱. 广西人民出版社, 南宁.]
[53] Zhou W, Wang H (2007) The physiological and molecular mechanisms of calcium uptake, transport, and metabolism in plants. Chinese Bulletin of Botany, 24, 762-778. (in Chinese with English abstract)
[周卫, 汪洪 (2007) 植物钙吸收、转运及代谢的生理和分子机制. 植物学通报, 24, 762-778.]
[54] Zhou YC (1997) A study on the part plants’ main nutrient elements content of Guizhou Karst region. Journal of Guizhou Agricultural College, 16(1), 11-16. (in Chinese with English abstract)
[7] Clements R, Sodhi NS, Schilthuizen M, Ng PK (2006) Limestone karsts of Southeast Asia: imperiled arks of biodiversity. AIBS Bulletin, 56, 733-742.
doi: 10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2
[54] [周运超 (1997) 贵州喀斯特植被主要营养元素含量分析. 贵州农学院学报, 16(1), 11-16.]
[1] Wang Xiaoyue,Zhu Xinxin,Yang Juan,Liu Yunjing,Tang Xiaoxin. (2019) Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume) . Biodiv Sci, 27(2): 159-167.
[2] Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. (2018) On reproductive strategies of invasive plants and their impacts on native plants . Biodiv Sci, 26(5): 457-467.
[3] Congcong Xu, Hongxia Cui, Lei Shi, Fei Xia, Zhaoyin Yin, Deshan Zhang. (2017) Response of Flowering Phenology of Viburnum to Abnormal Meteorological Events . Chin Bull Bot, 52(3): 297-306.
[4] Zhenna Qian,Mingxun Ren. (2016) Floral evolution and pollination shifts of the “Malpighiaceae route” taxa, a classical model for biogeographical study . Biodiv Sci, 24(1): 95-101.
[5] Jiaxiao Du,Lu Meng,Haiqin Sun,Ying Bao. (2015) Effects of nectar robbing on pollinator behavior and pollination success in facultative selfing Incarvillea sinensis var. sinensis . Biodiv Sci, 23(5): 658-664.
[6] Xiaoli Hu,Chia-Hao Chang-Yang,Xiangcheng Mi,Yanjun Du,Zhaoyang Chang. (2015) Influence of climate, phylogeny, and functional traits on flowering phenology in a subtropical evergreen broad-leaved forest, East China . Biodiv Sci, 23(5): 601-609.
[7] WANG Xin-Qi,WANG Chuan-Kuan,HAN Yi. (2015) Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species . Chin J Plan Ecolo, 39(11): 1033-1043.
[8] Yunfang Zhong,Zhe Zhang,Xiqiang Song,Zhaode Zhou. (2014) Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes . Biodiv Sci, 22(4): 467-475.
[9] Juan Qiu,Dilinuer Shalimu,Dunyan Tan. (2013) Reproductive characteristics of the invasive species Solanum rostratum in different habitats of Xinjiang, China . Biodiv Sci, 21(5): 590-600.
[10] LIU Su-Xia, XING Bo, YUAN Guo-Fu, MO Xing-Guo, and LIN Zhong-Hui. (2013) Relationship analysis between soil moisture in root zone and top-most layer in China . Chin J Plan Ecolo, 37(1): 1-17.
[11] Xinxin Liu, Xiaoqin Wu, Dianxiang Zhang. (2012) Distyly and heteromorphic self-incompatibility of Hedyotis pulcherrima (Rubiaceae) . Biodiv Sci, 20(3): 337-347.
[12] Min Chen, Linde Liu, Li Zhang, Lijuan Wang. (2012) Pollination Ecological Studies of Tamarix chinensis in the Middle Reaches of Heihe River and Yantai Seashore . Chin Bull Bot, 47(3): 264-270.
[13] Jing Xia, Youhao Guo. (2012) Effects of flowering date and co-flowering species on pollination and reproduction in Pedicularis gruina . Biodiv Sci, 20(3): 330-336.
[14] TAN Xiao-Mei, ZHOU Zhi-Chun, JIN Guo-Qing, and ZHANG Yi. (2011) Paternity analysis and pollen dispersal for the second generation clonal seed orchard of Pinus massoniana . Chin J Plan Ecolo, 35(9): 937-945.
[15] Xiaoli Ma, Dunyan Tan, Xinrong Li. (2011) Variation in floral sex allocation, pollinator movement and reproductive success in Ammopiptanthus mongolicus inflorescences . Biodiv Sci, 19(4): 432-440.
Full text