Biodiversity Science ›› 2016, Vol. 24 ›› Issue (6): 639-657.doi: 10.17520/biods.2015134

• Orginal Article • Previous Article     Next Article

Detecting density dependence on tree survival in a deciduous broad- leaved forest in Baotianman National Nature Reserve

Xiaojing Liu1, Siyuan Ren2, Luxin Li2, Yongzhong Ye2, Zhiliang Yuan2, Ting Wang2, *()   

  1. 1 Baotianman National Nature Reserve Administrative Bureau, Neixiang, Henan 474350
    2 Henan Agricultural University, Zhengzhou 450002
  • Received:2016-02-15 Accepted:2016-06-06 Online:2016-06-20
  • Wang Ting E-mail:tingwang01@126.com

It has been found that density dependence plays a crucial role in determination of species distribution and coexistence, and the effect of negative density dependence also plays an important part among phylogenetically related species. Based on two census datasets in 2009 and 2014 of the 1-ha deciduous broad- leaved forest plot in Baotianman National Nature Reserve, generalized linear mixed models (GLMMs) were used to examine the density dependence on individual survival of the top 11 species (with high important value) at different neighborhood scales and different DBH sizes (1 cm ≤ DBH< 5 cm, 5 cm ≤ DBH < 10 cm, DBH ≥ 10 cm). The results showed that (1) mean annual mortality and recruitment rate of individuals (DBH ≥ 1 cm) were 5.85% and 0.27%, respectively; (2) survival rate of 5 tree species was negatively correlated with abundance or neighbor conspecific basal area; (3) density dependence and phylogenetic diversity exerted significant effects on survival of small individuals (at 5 m neighborhood scale), whereas no significant influence on medium trees. With increasing tree size, phylogenetic diversity exerted important effect on large individuals at 7.5 m and 10 m neighborhood scales. In conclusion, density dependence and phylogenetic diversity play different roles on tree survival at different life stages and neighborhood scales in the deciduous broad-leaved forest in Baotianman National Nature Reserve.

Key words: density dependence, generalized linear mixed models (GLMMs), neighborhood analysis, phylogenetic density dependence

Table 1

Summary data of two census in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve in 2009 and 2014"

径级 DBH size 物种数
Number of species
个体数
Number of individuals
死亡数(死亡率)
Number of mortality
(mortality rate, %)
新增数(增员率)
Number of recruitment
(recruitment rate, %)
2009 2014 2009 2014
小径级 Small DBH size (1 cm ≤ DBH < 5 cm) 54 46 1,538 1,091 482 (31.34) 35 (2.28)
中径级 Medium DBH size (5 cm ≤ DBH < 10 cm) 39 35 600 523 197 (32.83) 120 (20.0)
大径级 Large DBH size (DBH ≥ 10 cm) 22 24 417 381 68 (16.31) 32 (7.68)
总计 Total (DBH ≥ 1 cm) 58 53 2,555 1,995 747 (29.24) 187

Fig. 1

Phylogenetic relationship among woody species in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve"

Table 2

Importance value (IV) dynamics of top 20 species between 2009 and 2014 in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve"

物种
Species
拉丁名
Latin name
重要值 IV
2009 2014
槲栎 Quercus aliena 20.46 21.65
水榆花楸 Sorbus alnifolia 16.69 19.17
三桠乌药 Lindera obtusiloba 11.26 7.59
青榨槭 Acer davidii 9.62 10.88
野茉莉 Styrax japonicus 4.94 5.72
毛樱桃 Cerasus tomentosa 3.49 3.53
连翘 Forsythia suspensa 2.49 2.75
白檀 Symplocos paniculata 2.42 1.88
卫矛 Euonymus alatus 2.42 2.41
秦岭木姜子 Litsea tsinlingensis 2.38
元宝槭 Acer truncatum 2.24 2.70
千金榆 Carpinus cordata 1.75 2.00
山梅花 Philadelphus incanus 1.59 1.35
暖木 Meliosma veitchioru 1.52 1.74
泡花树 Meliosma cuneifolia 1.44 1.59
马鞍树 Maackia hupehensi 1.55
桦叶荚蒾 Viburnum betulifolium 1.32 1.59
四照花 Dendrobenthamia japonica var. chinensis 1.25 1.55
华东椴 Tilia japonica 1.06
老鸹铃 Styrax hemsleyanus 1.02
灯台树 Bothrocaryum controversum 0.94
粉椴 Tilia oliveri 0.92
其他 Others 10.12 9.03

Table 3

Result of neighborhood analysis for different scales with different species in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve"

种名
Species
参数
Parameter
邻体距离
Neighbourhood distance
5 m 7.5 m 10 m
槲栎
Quercus aliena
CON 0 0 0
HET + + 0
CONBA +++ + 0
HETBA - - - - - - - - -
水榆花楸
Sorbus alnifolia
CON +++ +++ +++
HET - - - - - - - - -
CONBA - - - - - - - - -
HETBA +++ +++ +++
青榨槭
Acer davidii
CON 0 0 0
HET 0 0 0
CONBA - - - - - - - - -
HETBA 0 0 0
三桠乌药
Lindera obtusiloba
CON 0 + ++
HET - - -
CONBA - - - - - -
HETBA 0 0 0
野茉莉
Styrax japonicus
CON - - - - - - - - -
HET 0 0 0
CONBA - - -
HETBA + 0 0
元宝槭
Acer truncatum
CON 0 0 0
HET - - - - -
CONBA 0 - - -
HETBA 0 0 0
毛樱桃
Cerasus tomentosa
CON - - - - -
HET 0 0 0
CONBA 0 0 -
HETBA 0 0 0
白檀
Symplocos paniculata
CON 0 0 0
HET 0 0 0
CONBA - - - - -
HETBA 0 0 0
秦岭木姜子
Litsea tsinlingensis
CON 0 0 0
HET 0 0 0
CONBA 0 0 0
HETBA ++ + 0
千金榆
Carpinus cordata
CON 0 - - -
HET 0 0 0
CONBA 0 0 0
HETBA 0 0 0
暖木
Meliosma veitchiorum
CON - - - - - - -
HET 0 0 0
CONBA 0 0 0
HETBA 0 0 +

Table 4

AIC values of different GLMMs (generalized linear mixed models) at three scales (r) in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve"

模型类型 Model type 邻体距离 Neighbourhood distance
5 m 7.5 m 10 m
小 Small 中 Medium 大 Large 小 Small 中 Medium 大 Large 小 Small 中 Medium 大 Large
基本模型
Basic model
d+n+h+(sp+20s)random 1,484.06 355.5304 380.3177 1,483.798 355.0877 372.4036 1,484.64 359.2236 373.3339
d+c+b+(sp+20s)random 1,480.921 355.6752 378.72 1,482.687 355.3472 371.565 1,479.719 355.676 371.266
d+n+h+c+b+(sp+20s)random 1,483.84 359.2017 381.6294 1,485.789 358.0195 370.1479 1,483.541 357.485 369.087
d+n+h+c+b+i+(sp+20s)random 1,485.83 356.6697 379.306 1,487.509 356.979 372.125 1,485.34 357.0264 370.084
交互作用
模型
Interaction model
d*(n+h) +(sp+20s)random 1,484.249 359.3985 382.5019 1,485.738 358.9014 374.9681 1,486.79 358.066 375.3167
d*(n+h+i) +(sp+20s)random 1,488.12 359.3586 384.9341 1,489.323 362.611 378.8982 1,489.957 361.7479 378.8444
d*(c+b) +(sp+20s)random 1,475.82 358.6642 378.6484 1,479.193 357.8086 375.5305 1,481.48 359.2018 374.0463
d*(c+b+i) +(sp+20s)random 1,479.6 358.9814 380.8261 1,473.86 361.5722 379.2916 1,481.13 363.1487 377.7625
d*(n+h+c+b) +(sp+20s)random 1,480.32 366.2005 383.7345 1,475.386 365.396 377.4086 1,479.243 375.7429 375.7429
d*(n+h+c+b+i) +(sp+20s)random 1,474.3 366.2815 386.4617 1,474.083 369.1937 381.3527 1,480.58 368.7947 379.6699

Fig. 2

Neighbourhood effects of conspecific neighburs (CON), heterospecific neighburs (HET) and neighborhood relatedness index (NRI) on individual survivalSmall, medium and large indicate small DBH class (1 cm ≤ DBH < 5 cm), medium DBH class (5 cm ≤ DBH < 10 cm) and large DBH class (DBH ≥ 10 cm), respectively. The 5 m, 7.5 m and 10 m indicate different neighbourhood scales. ○, ●, ■ indicate correlations at P > 0.05, P < 0.05 and P < 0.01 level, respectively."

Fig. 3

Neighbourhood effects of individual trees with different DBH size and different scales on survivalA, B and C mean different size with small (1 cm ≤ DBH < 5 cm), medium (5 cm ≤ DBH < 10 cm) and large (DBH ≥ 10 cm) DBH, respectively. The number 1, 2, 3 indicate different neighbourhood scales of 5 m, 7.5 m and 10 m. ○ mean no significance correlation (P > 0.05), and ●、▲、■ indicate different significant correlations at p-vale as 0.05, 0.01 and 0.001, respectively."

[1] Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88.
[2] Bagchi R, Press MC, Scholes JD (2010) Evolutionary history and distance dependence control survival of dipterocarp seedlings. Ecology Letters, 13, 51-59.
[3] Bell T, Freckleton RP, Lewis OT (2006) Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9, 569-574.
[4] Bremer B, Bremer K, Chase M, Fay M, Reveal J, Soltis D, Soltis P, Stevens P (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
[5] Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Journal of Wildlife Management, 67, 606.
[6] Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology & Evolution, 10, 18-22.
[7] Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB (1999) Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 354, 1739-1748.
[8] Connell JH (1970) On the role of natural enemies in preventing competitive exclusion in some marine animals and in forest trees. Center Ag Publishing & Documentation Wageningen, 298, 298-312.
[9] Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences, USA, 104, 4979-4983.
[10] Gonzalez MA, Roger Al, Courtois EA, Jabot F, Norden N, Paine CET, Baraloto C, Thébaud C, Chave Jrm (2010) Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. Journal of Ecology, 98, 137-146.
[11] Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495.
[12] Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha Neotropical forest plot. Journal of Ecology, 89, 947-959.
[13] He FL, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688.
[14] Hubbell SP (1980) Seed predation and the coexistence of tree species in tropical forests. Oikos, 35, 214-229.
[15] Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography (Vol. 32). Princeton University Press, Princeton.
[16] Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
[17] John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869.
[18] Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology, 87, S86-S99.
[19] Lewis SL, Phillips OL, Sheil D, Vinceti B, Baker TR, Brown S, Graham AW, Higuchi N, Hilbert DW, Laurance WF, Lejoly J, Malhi Y, Monteagudo A, Vargas PN, Sonke B, Supardi N, Terborgh JW, Martínez RV (2004) Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 92, 929-944.
[20] Liu XB, Liang M, Etienne RS, Wang Y, Staehelin C, Yu SX (2012) Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters, 15, 111-118.
[21] Matos DMS, Freckleton RP, Watkinson AR (1999) The role of density dependence in the population dynamics of a tropical palm. Ecology, 80, 2635-2650.
[22] Metz MR, Sousa WP, Valencia R (2010) Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology, 91, 3675-3685.
[23] Peters HA (2003) Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765.
[24] Piao TF, Comita LS, Jin GZ, Kim JH (2013) Density dependence across multiple life stages in a temperate old-growth forest of Northeast China. Oecologia, 172, 207-217.
[25] Pigot AL, Leather SR (2008) Invertebrate predators drive distance-dependent patterns of seedling mortality in a temperate tree Acer pseudoplatanus. Oikos, 117, 521-530.
[26] Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology, 75, 2-16.
[27] Uriarte M, Swenson NG, Chazdon RL, Comita LS, Kress WJ, Erickson D, Forero-Montaña J, Zimmerman JK, Thompson J (2010) Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: im-plications for community assembly. Ecology Letters, 13, 1503-1514.
[28] Volkov I, Banavar JR, He F, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438, 658-661.
[29] Wang YH, Mi XC, Chen SW, Li MH,Yu MJ (2011) Regeneration dynamics of major tree species during 2002-2007 in a subtropical evergreen broad-leaved forest in Gutianshan National Nature Reserve in East China. Biodiversity Science, 19, 178-189. (in Chinese with English abstract)
[汪殷华, 米湘成, 陈声文, 李铭红, 于明坚 (2011) 古田山常绿阔叶林主要树种2002-2007年间更新动态. 生物多样性, 19, 178-189.]
[30] Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
[31] Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183.
[32] Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, S123-S131.
[33] White PS, Pickett ST (1985) Natural disturbance and patch dynamics: an introduction. in: The Ecology of Natural Disturbance and Patch Dynamics (eds Pickett ST, White PS), pp. 3-13. Academic Press, London.
[34] Zhang ZM, Zhu XL, Ye YZ, Liu XJ, Yao S, Mei SX (2010) Studies on fine root biomass of the Quercus communities in Baotianman National Nature Reserve. Journal of Henan Agricultural University, 44, 210-216.(in Chinese with English abstract)
[张志铭, 朱学灵, 叶永忠, 刘晓静, 姚松, 梅世秀(2010) 宝天曼自然保护区栎类群落细根生物量的研究. 河南农业大学学报, 44, 210-216.]
[35] Zhu Y, Comita LS, Hubbell SP, Ma KP (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957-966.
[1] Siyuan Ren,Ting Wang,Yan Zhu,Yongzhong Ye,Zhiliang Yuan,Cong Li,Na Pan,Luxin Li. (2014) Phylogenetic structure of individuals with different DBH sizes in a deciduous broad-leaved forest community in the temperate-subtropical ecological transition zone, China . Biodiv Sci, 22(5): 574-582.
[2] Ting Wang,Siyuan Ren,Zhiliang Yuan,Yan Zhu,Na Pan,Luxin Li,Yongzhong Ye. (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China . Biodiv Sci, 22(4): 449-457.
[3] Yanjun Du, Keping Ma. (2012) Advancements and prospects in forest seed rain studies . Biodiv Sci, 20(1): 94-107.
[4] Yan Zhu, Fan Bai, Haifeng Liu, Wenchao Li, Liang Li, Guangqi Li, Shunzhong Wang, Weiguo Sang. (2011) Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing . Biodiv Sci, 19(2): 252-259.
[5] Hede Gong, Guoping Yang, Zhiyun Lu, Yuhong Liu. (2011) Diversity and spatial distribution patterns of trees in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan . Biodiv Sci, 19(2): 143-150.
[6] CHEN Ying. (2009) DETECTING EFFECT OF PHYLOGENETIC DIVERSITY ON SEEDLING MORTALITY IN AN EVERGREEN BROAD-LEAVED FOREST IN CHINA . Chin J Plan Ecolo, 33(6): 1084-1089.
[7] Yan Zhu, Xiangcheng Mi, Keping Ma. (2009) A mechanism of plant species coexistence: the negative density-dependent hypothesis . Biodiv Sci, 17(6): 594-604.
[8] Li Rui, Zhong Zhangcheng, M. J. A. Werger. (1997) Density Regulation of the Clonal Growth of New Shoots in the Giant Bamboo Phyllostachys pubescens in Subtropical China . Chin J Plan Ecolo, 21(1): 9-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed