生物多样性 ›› 2014, Vol. 22 ›› Issue (4): 458-466.doi: 10.3724/SP.J.1003.2014.13232

• • 上一篇    下一篇

四川都江堰迁地保育的42种杜鹃属植物开花-展叶物候节律

庄平*()   

  1. 中国科学院植物研究所华西亚高山植物园, 四川都江堰 611830
  • 收稿日期:2013-10-28 接受日期:2014-02-26 出版日期:2014-07-20
  • 通讯作者: 庄平 E-mail:pzhuang@ibcas.ac.cn
  • 基金项目:
    四川省科技厅高山杜鹃花低海拔开发试验示范(2013NZ0031)和中国科学院战略生物资源技术支撑体系专项(CZBZX-1)

Analysis of the flowering-leafing phenorhythm of 42 Rhododendron species conserved ex situ in Dujiangyan, Sichuan Province, China

Ping Zhuang*()   

  1. West China Sub-alpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Dujiangyan, Sichuan 611830
  • Received:2013-10-28 Accepted:2014-02-26 Online:2014-07-20
  • Contact: Zhuang Ping E-mail:pzhuang@ibcas.ac.cn

目前有研究表明被子植物类群中单一的开花或展叶物候模式可能具有遗传性, 但两类物候事件的节律关系是否受遗传因素控制, 各种节律模式的形成与演化机制及其与生物系统演化的关系仍不清楚。作者对四川都江堰市迁地保育的2个海拔点的杜鹃属(Rhododendron)4亚属4组13亚组42种植物的开花-展叶节律模式进行了5年的观察研究。作者假定杜鹃属的开花-展叶节律模式为进化遗传特性, 包括先花后叶(F→L)、先花后叶部分重叠(F+L)、叶期包花期(L∈F)、先叶后花部分重叠(L+F)和先叶后花(L→F)等5种类型。同一地点不同年份以及不同地点同一物种的相关物候观察结果均显示, 尽管它们5年的物候发生时间随年度和观察点海拔不同而有波动, 但物候发生次序和开花-展叶节律模式均未见随年份而变化, 即每个物种只对应一种节律模式, 支持了上述假设。作者进一步提出了开花-展叶节律模式与物种的系统演化存在进化程度上的差异和序列关系的假设。不同节律模式的物种其区系地理以及不同海拔和分类群中的物种数量分布特征表明: (1)进化程度不同的节律模式分别对应于古老的中国-日本森林植物亚区和年轻的中国-喜玛拉雅森林植物亚区物种, 较原始的节律模式倾向于出现在中高山海拔区域, 并与杜鹃属可能起源山地的一定海拔区域构成关联, 而进化程度较高的节律模式倾向于出现在更高或更低的海拔地段; (2)节律模式的进化程度与有关亚属、组、亚组的系统位置和进化程度有一定关联; (3)节律模式的演化与生活型、叶性进化同步, 环境胁迫、生长期长度变化、光资源竞争等都可能是节律模式演化的外部动力。研究还表明, 在气候波动条件下物候事件间的发生次序比单一物候事件的时间属性更加稳定。

关键词: 开花-展叶节律, 物候学, 系统演化, Rhododendron

Recent research suggests that the timing of flowering and leafing out are genetically controlled. It remains unknown, however, whether it is genetic or environmental factors that control the flowering-leafing phenorhythm, and whether this character can be linked to the systematic evolution of a group. In this study, the flowering-leafing phenorhythm type of 42 Rhododendron species belonging to 4 subgenera, 4 sections and 13 subsections were determined conserved ex situ at two sites with different elevations in Dujiangyan, Sichuan Province, China. The phenorhythm of the Rhododendron species was divided into five types: (1) flowering before leafing (F→L); (2) flowering ahead and covering part time of leafing (F+L); (3) leafing covers flowering (L∈F); (4) leafing ahead and covering part time of flowering (L+F); and (5) leafing before flowering (L→F). We tested the following hypotheses: flowering-leafing phenorhythm type is a heritable trait for Rhododendrons, and phenorythm is related to evolutionary processes resulting in an evolutionary sequence among the five types. The results showed that Rhododendron species at the same site or at different sites displayed only one flowering-leafing phenorhythm type that did not change throuth time, thereby supporting the hypothesis that phenorhythm is heritable. Floristic components, proportion of Rhododendron species at different elevations, and the different taxa showed that the phenorhythm type is related to the phylogenetic evolution supporting the second hypothesis. The primitive species are present at the mid- elevation range and the advanced species are present at a lower and higher range. The evolution of these phenorhythm types agree with life form and leaf trait evolution. Environmental stress, growing season length and light resource availability could be selective pressures driving phenorhythm type evolution. Overall, the results indicate that the timing sequences of phenological events are more stable than the specific timing of any single phenological event in response to climate change.

Key words: flowering-leafing phenorhythm, phenology, phylogenetic evolution, Rhododendron

表1

42种杜鹃属植物开花-展叶节律模式与地理区系成分的关系"

地理区系 Geographic flora 观察种数
No. of species
F→L F+L L∈F L+F L→F
N % N % N % N % N %
中国-日本亚区 Sino-Japan subregion 18 10 55.6 2 11.1 3 16.7 3 16.7 - -
常绿杜鹃亚属 Subgen. Hymenanthes 11 7 63.6 2 18.2 2 18.2 1 9.1 - -
杜鹃亚属 Subgen. Rhododendron 5 3 60.0 - - 1 20.0 1 20.0 - -
中国-喜玛拉雅亚区 Sino-Himalaya subregion 12 1 8.3 4 33.3 2 16.7 3 25.0 2 16.7
常绿杜鹃亚属 Subgen. Hymenanthes 4 - - 2 50.0 1 25.0 - - 1 25.0
杜鹃亚属 Subgen. Rhododendron 8 1 12.5 2 25.0 1 12.5 3 37.5 1 12.5
两亚区共有 Common species between the two subregions 12 4 33.3 1 8.3 3 25.0 2 16.7 2 16.7
常绿杜鹃亚属 Subgen. Hymenanthes 5 2 40.0 - - 2 40.0 1 20.0 - -
杜鹃亚属 Subgen. Rhododendron 6 2 33.3 1 16.7 1 16.7 1 16.7 1 16.7

表2

42种杜鹃属植物开花-展叶节律模式与海拔分布的关系"

矫正海拔区间(m)
Rectified elevation range
观察种数
No. of species
F→L F+L L∈F L+F L→F
N % N % N % N % N %
<1,500 5 2 40.0 - - 1 20.0 1 20.0 1 20.0
1,500-2,000 8 4 50.0 1 12.5 2 25.0 1 12.5 - -
2,000-2,500 12 6 50.0 2 16.7 1 8.3 2 16.7 1 8.3
2,500-3,000 12 3 25.0 3 25.0 2 16.7 3 25.0 1 8.3
>3,000 5 - - 1 20.0 2 40.0 1 20.0 1 20.0

表3

42种杜鹃属开花-展叶节律模式与系统发育的关系"

类群
Group
观察种数
No. of species
F→L F+L L∈F L+F L→F
N % N % N % N % N %
常绿杜鹃亚属 Subgen. Hymenanthes 21 9 42.9 4 19.1 5 23.8 2 9.5 1 4.8
云锦杜鹃亚组 Subsect. Fortunea 6 4 66.7 - - 1 17.5 1 17.5 - -
银叶杜鹃亚组 Subsect. Argyrophylla 5 3 60.0 2 40.0 - - - - - -
麻花杜鹃亚组 Subsect. Maculifera 3 1 33.3 - - 1 33.3 1 33.3
杜鹃亚属 Subgen. Rhododendron 18 6 33.3 3 16.7 3 16.7 5 27.8 1 5.6
三花杜鹃亚组 Subsect. Triflora 13 2 15.4 3 23.1 2 15.4 5 38.6 1 7.7
映山红亚属 Subgen. Tsutsusi 2 - - - - - - 1 50.0 1 50.0
羊踯躅亚属 Subgen. Pentanthera 1 - - - - - - - - 1 100.0
合计 Total 42 15 35.7 7 21.4 8 19.1 8 19.1 4 9.5

图1

杜鹃属植物亚属间关系及其花叶物候节律模式的演化方向。各节律模式的含义见表1。“?”表示相应亚属的花叶节律尚不清楚。"

附表1

都江堰迁地保护的42种杜鹃属植物开花-展叶节律模式"

花叶节律模式
Phenorhythmotype
种类
Species
来源
Source
海拔
Elevation
(m)
开花展叶物候时间
Phenologic timing of flowering and leafing
3月 March 4月Apr. 5月May 6月June 7月July
F→L: 先花后叶型Flowering before leafing 美容杜鹃 R. calophytum 龙池 Longchi 2,000 ○○○○ △△△△△△
腺果杜鹃 R. davidii 龙池 Longchi 1,800 ○○○○△△△△
山光杜鹃 R. oreodoxa 龙池 Longchi 2,500 ○○○○○ △△△
团叶杜鹃 R. orbiculare 汶川 Wenchuan 2,500 ○○○ △△△△△
大王杜鹃 R. rex 椅子丫口 Yiziyakou 2,500 ○○○○ △△△△△
紫斑杜鹃 R. strigillosum var. monosematum 峨眉山 Emeishan 2,500 ○○○○△△△△△
岷江杜鹃 R. hunnewellianum 龙池 Longchi 1,400 ○○○○○○△△△
海绵杜鹃 R. pingianum 峨眉山 Emeishan 2,400 ○○○△△△
繁花杜鹃 R. floribundum 龙肘山 Longzhoushan 2,900 ○○○ △△△△△△△△
百合花杜鹃 R .liliiflorum 庐山 Lushan 1,300 ○○○○△△△△△
多鳞杜鹃 R. polylepis 龙池 Longchi 1,700 ○○○○△△△△△
黄花杜鹃 R. lutescensx 龙池 Longchi 1,700 ○○○△△△
红棕杜鹃 R. rubiginosum 木里 Muli 3,200 ○○○△△△△
柔毛碎米花 R. mollicomum 战河 Zhanhe 3,200 ○○○△△△△
腋花杜鹃 R. racemosum 战河 Zhanhe 2,700 ○○○△△△△
F+L: 先花后叶、部分重叠型 Flowering ahead and covering part time of leafing 窄叶杜鹃 R. araiophyllum 新主 Xinzhu 2,600 ○◎◎△
银叶杜鹃 R. argyrophyllum 峨眉山 Emeishan 2,200 ○○◎◎△
峨嵋银叶杜鹃 R. argyrophylum subsp. omeiense 龙池 Longchi 1,800 ○○◎◎△△
巴郎杜鹃 R. balangense 卧龙 Wolong 2,700 ○◎◎△
基毛杜鹃 R. rigidum 木里 Muli 3,200 ○◎◎△△
紫花杜鹃 R. amesiae 海螺沟 Hailuogou 3,500 ○◎◎△
张口杜鹃 R. augustinii subsp. chasmanthum 片马 Pianma 3,100 ○◎◎◎△△
L∈F: 叶期包花期型 Leafing covers flowering , 喇叭杜鹃 R. discolor 龙池 Longchi 1,600 △◎◎◎△
绒毛杜鹃 R. pachytrichum 海螺沟 Hailuogou 3,200 △◎◎◎△
马缨杜鹃 R. delavayi 大方 Dafang 1,700 △△△◎◎◎△
皱皮杜鹃 R. wiltonii 峨眉山 Emeishan 2,400 △◎◎◎△
毛肋杜鹃 R. augustinii 龙池 Longchi 2,000 △△◎◎◎△
云南杜鹃 R. yunnanense 玉龙雪山 Yulongxueshan 3,600 △◎◎◎△
硬毛杜鹃 R. hirtipes 多雄拉 Duoxiongla 3,500 △◎◎◎△△△△△△△△△△△△△△
亮鳞杜鹃 R. heliolepis 泸定 Luding 3,100 △△△◎◎◎△
L+F: 先叶后花、部分重叠型 Leafing ahead and covering part time of flowering 大白杜鹃 R. decorum 泸定 Luding 1,800 △◎◎○○
硬叶杜鹃 R. tatsienense 片马 Pianma 3,200 △△◎◎○
长毛杜鹃 R. trichanthum 川西 Chuanxi 2,200 △△◎○○
问客杜鹃 R. ambiguum 龙池 Longchi 2,400 △◎◎◎○
山育杜鹃 R. oreotrephes 泸定 Luding 3,000 △△◎◎○○
三花杜鹃 R. triflorum 多雄拉 Duoxiongla 3,000 △△△◎○○
映山红 R. simsii 大方 Dafang 1,700 △△△◎◎○
长鳞杜鹃 R. longesquamatum 龙池 Longchi 2,700 △△◎○○
L→F: 先叶后花型Leafing before flowering 云雾杜鹃 R. chamaethomsonii 多雄拉 Duoxiongla 4,000 △△△ ○○○
白面杜鹃 R. zaleucum 玉龙雪山 Yulongxueshan 3,400 △△△○○○
亮毛杜鹃 R. microphyton 无量山 Wuliangshan 2,700 △△△△○○○
羊踯躅 R. moll 庐山 Lushan 1,300 △△△△○○○○
[1] Billings WD (1974) Adaptations and origins of alpine plants.Arctic and Alpine Research, 6, 129-142.
[2] Billings WD, Mooney HA (1968) The ecology of arctic and alpine plant.Biological Reviews, 43, 481-529.
[3] Brody AK (1997) Effects of pollinators, herbivores, and seed predators on flowering phenology.Ecology, 78, 1624-1631.
[4] Chamberlain DF, Hyam R, Argent G (1996) The Genus Rhododendron: Its Classification and Synonymy. Royal Botanic Garden Edinburgh, Edinburgh.
[5] Chen CD (陈昌笃), Zhuang P (庄平), Hu JC (胡锦矗) (2000) Biodiversity Research and Conservation in Dujiangyan,China (都江堰生物多样性研究与保护), pp. 11-27. Sichuan Science and Technology Press, Chengdu. (in Chinese)
[6] Christian K (translated by Wu N (吴宁), Luo P (罗朋)) (2009) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (高山植物功能生态学), pp. 7-36, 87-96, 190-194, 223-236. Science Press, Beijing. (in Chinese)
[7] Cullen J, Chamberlain DF (1978) A preliminary synopsis of the genus Rhododendron.Notes from the Royal Botanic Garden Edinburgh, 36, 105-126.
[8] Dahl E (1986) Zonation in arctic and alpine tundra and fell-field ecobiomes. In: Ecosystem Theory Application (ed. Polunin N), pp. 35-62. Wiley, London.
[9] Ding BY (丁炳扬), Jin XF (金孝锋) (2009) Taxonomic Study on Rhododendron Subgen. Tsutsusi Sleumer (Ericaceae) (杜鹃花属映山红亚属的分类研究), pp. 246-256. Science Press, Beijing. (in Chinese)
[10] Escaravage N, Wagner J (2004) Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population.Plant Biology, 6, 606-615.
[11] Fang MY, Fang RZ (2005) Flora of China, Vol. 14. pp. 255-455. Science Press, Beijing.
[12] Fang RZ (方瑞征), Min TL (闵天禄) (1981) The influence of uplift of Himalayas on the floristic formation of genus Rhododendron.Acta Botanica Yunnanica(云南植物研究), 3, 147-157. (in Chinese with English abstract)
[13] Fang RZ (方瑞征), Min TL (闵天禄) (1995) The floristic study on the genus Rhododendron.Acta Botanica Yunnanica(云南植物研究), 17, 359-379. (in Chinese with English abstract)
[14] Fennera M (1998) The phenology of growth and reproduction in plants. Perspectives in Plant Ecology,Evolution and Systematics, 1, 78-91.
[15] Forrest J, Abraham JM (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution.Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3101-3112.
[16] Gaku K (1993) Relationships between flowering time and fruit set of the entomophilous alpine shrub, Rhododendron aureum (Ericaceae), inhabiting snow patches.American Journal of Botany, 80, 1300-1304.
[17] Gaku K, Akira SH, Yuka K (2011) Pollination efficiency of bumblebee queens and workers in the alpine shrub Rhododendron aureum.International Journal of Plant Sciences, 172, 70-77.
[18] Ge QS (葛全胜), Dai JH (戴君虎), Zheng JY (郑景云) (2010) The progress of phenology studies and challenges to modern phenology research in China.Disciplinary Development(科学发展), 25, 310-316. (in Chinese with English abstract)
[19] Gibbs D, Chamberlain D, Argent G (2011) The Red List of Rhododendrons, pp. 6-8Botanic Gardens Conservation International, Richmond, UK.
[20] Hideyuki D, Mayumi T, Izumi K (2010) Genetic diversity increases regional variation in phenological dates in response to climate change.Global Change Biology, 16, 373-379.
[21] Hirao AS, Kameyama Y, Ohara M, Isagi Y, Kudo G (2006) Seasonal changes in pollinator activities influence pollen dispersal and seed production of the alpine shrub Rhododendron aureum (Ericaceae).Molecular Ecology, 15, 1165-1173.
[22] Hu WG (胡文光) (1990) A study on the genus Rhododendron L. Subsection Fortunea Sleumer in China.Acta Botanica Yunnanica(云南植物研究), 12, 367-374. (in Chinese with English abstract)
[23] Kudo G, Ida TY, Tani T (2008) Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants.Ecology, 89, 321-331.
[24] Li YN (李亚男), Yang DM (杨冬梅), Sun SC (孙书存), Gao XM (高贤明) (2008) Effects of twig size on biomass allocation within twigs and on Lamina area supporting efficiency in Rhododendron: allometric scaling analyses.Journal of Plant Ecology(植物生态学报), 32, 1175-1183. (in Chinese with English abstract)
[25] Makrodimos N, Blionis GJ, Krigas N, Vokou D (2007) Flower morphology, phenology and visitor patterns in an alpine community on Mt. Olympos, Greece. Flora, 203, 449-468.
[26] Malciūtė A, Naujalis JR, Šaulienė I (2010) The seasonal development characteristic of different rhododendrons taxa and cultivars in Northern Lithuania. 1. Leafing peculiarities.Agriculture, 97, 107-114.
[27] Miller-Rushing AJ, Inouye DW (2009) Variation in the impact of climate change on flowering phenology and abundance: an examination of two pairs of closely related wildflower species.American Journal of Botany, 96, 1821-1829.
[28] Min TL (闵天禄), Fang RZ (方瑞征) (1979) On the origin and geographic distribution of genus Rhododendron L.Acta Botanica Yunnanica(云南植物研究), 1, 121-127. (in Chinese with English abstract)
[29] Min TL (闵天禄), Fang RZ (方瑞征) (1990) The phylogeny and evolution of genus Rhododendron.Acta Botanica Yunnanica(云南植物研究), 12, 353-365. (in Chinese with English abstract)
[30] Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants.Arctic and Alpine Research, 25, 391-402.
[31] Nilsen ET (2003) Unique anatomical traits in leaves of Rhododendron section Vireya: a discussion of functional significance. In: Rhododendrons in Horticulture and Science (eds Argent G, McFarlane M), pp. 20-36. Edinburg, Scotland.
[32] Sailesh R, Eike L, Krishna KS, Kaiyun G, Xu JC (2013) Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas.International Journal of Biometeorology, 57, 225-240.
[33] Sun H (孙航) (2002) Tethys retreat and Himalayas- Hengduanshan Mountains uplift and their significance on the origin and development of the Sino-Himalayan elements and alpine flora.Acta Botanica Yunnanica(云南植物研究), 24, 273-288. (in Chinese with English abstract)
[34] Wan WM (宛渭敏), Liu XZ (刘秀珍) (1979) Observation Method for China’s Phenology (中国物候观测方法), pp. 1-40. Science Press, Beijing. (in Chinese)
[35] Wu ZY (吴征镒) (1991) The areal-types of Chinese genera of seed plant.Acta Botanica Yunnanica(云南植物研究), 13(Suppl. IV), 1-139. (in Chinese with English abstract)
[36] Wu ZY (吴征镒), Sun H (孙航), Zhou ZK (周浙昆), Li DZ (李德铢), Peng H (彭华) (2011) Floristics of Seed Plants of China (中国种子植物区系地理), pp. 52-120. Science Press, Beijing. (in Chinese)
[37] Xiong ZX (熊子仙), Du Q (杜青), Wang QD (王启德) (2000) Taxon and anatomy leaves in Rhododendron from China.Guihaia(广西植物), 20, 335-338. (in Chinese with English abstract)
[38] Ying TS (应俊生), Chen ML (陈梦玲) (2011) Plant Geography of China (中国植物地理), pp. 68-79. Shanghai Science and Technology Press, Shanghai. (in Chinese)
[39] Zhuang P (庄平) (2012) Discussion on the Rhododendron geographical distribution types and their cause of formation in China.Guihaia(广西植物), 32, 150-156. (in Chinese with English abstract)
[40] Zhuang P (庄平), Gao XM (高贤明) (2002) The concept of “The West China Rainy Zone” and its significance to the biodiversity conservation in China.Biodiversity Science(生物多样性), 10, 339-344. (in Chinese with English abstract)
[41] Zhuang P (庄平), Zheng YR (郑元润), Shao HM (邵慧敏), Wang F (王飞) (2012) An assessment on the adaptability of Rhododendron plants under ex situ conservation.Biodiversity Science(生物多样性), 20, 665-675. (in Chinese with English abstract)
[42] Zhuang P (庄平), Wang F (王飞), Shao HM (邵慧敏) (2013) Comparative study on Rhododendron and its distribution in W-Sichuan and SE-Tibet.Guihaia(广西植物), 33, 791-797. (in Chinese with English abstract)
[1] 葛美玲, 徐勤增, 范士亮, 王宗兴, 张学雷. 中国近海多毛纲底栖类群目与科水平的分类[J]. 生物多样性, 2018, 26(9): 998-1003.
[2] 孙军, 薛冰. 全球气候变化下的海洋浮游植物多样性[J]. 生物多样性, 2016, 24(7): 739-747.
[3] 邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 赖钟雄, 叶露莹. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1): 90-99.
[4] 吉乃提汗·马木提, 谭敦炎. 被子植物雌全同株性系统: 系统演化、性表达与进化意义[J]. 植物生态学报, 2014, 38(1): 76-90.
[5] . 温带森林展叶物候学[J]. 生物多样性, 2013, 21(1): 111-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed