生物多样性, 2023, 31(9): 23257 doi: 10.17520/biods.2023257

国家植物园体系建设专题

《昆明-蒙特利尔全球生物多样性框架》与国家植物园体系建设

陈进,,*

中国科学院西双版纳热带植物园, 云南勐腊 666303

Kunming-Montreal Global Biodiversity Framework and the construction of the national botanical garden system

Jin Chen,,*

Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303

通讯作者: *E-mail:cj@xtbg.org.cn

编委: 马克平

责任编辑: 周玉荣

收稿日期: 2023-07-17   接受日期: 2023-08-18  

Corresponding authors: *E-mail:cj@xtbg.org.cn

Received: 2023-07-17   Accepted: 2023-08-18  

摘要

《生物多样性公约》第十五次缔约方大会通过《昆明-蒙特利尔全球生物多样性框架》(简称《昆蒙框架》), 是全世界应对生物多样性危机的又一次集体行动, 也开启了中国主导全球环境治理之先河。国家植物园体系建设是生物多样性保护的创新实践, 在建设过程中, 应该将《昆蒙框架》的目标作为其重要内容。本文对照《昆蒙框架》的长期目标和2030年具体目标, 提出国家植物园体系建设中可以研究回答的26个问题和27项保护行动, 并提出植物物种大普查、国家重点保护植物的遗传多样性调查、生物多样性关键地区植物零灭绝保护实践、生态修复计划、应对气候变化的相关研究、保护与可持续教育、生物多样性保护国际合作等7项优先行动。通过国家植物园体系建设, 提高我国执行《昆蒙框架》的能力与水平, 也是检验植物园体制创新成效最为直接的试金石, 其成功实践也将为全球其他生物多样性大国提供样板和借鉴。

关键词: 昆明-蒙特利尔全球生物多样性框架; 国家植物园体系; 履约; 优先行动

Abstract

Aim: The adoption of the Kunming-Montreal Global Biodiversity Framework by the 15th Meeting of Conference of the Parties to the Convention on Biological Diversity signifies another collective effort by the international community to tackle the ongoing biodiversity crisis. It also marks the beginning of China’s leadership in global environmental governance. The establishment of the national botanical garden system serves as an innovative practice to biodiversity conservation. This article aims to examine the potential of the national botanical garden system in facilitating the implementation of the Kunming-Montreal Framework in China.

Method: Through an analysis of the Kunming-Montreal Framework’s long-term objectives and specific targets for the year 2030, this study identifies the essential inquiries and conservation actions that can be implemented by the national botanical garden system in China.

Results: This study outlines 26 research questions and 27 conservation actions that can be undertaken by the national botanical garden system. Furthermore, it highlights 7 priority actions that should be given immediate attention. These include conducting a thorough survey of plant species, examining the genetic diversity of nationally protected plants, implementing conservation strategies to mitigate plant extinctions in critical biodiversity areas, executing ecological restoration plans, conducting research on climate change adaptation, promoting education on conservation and sustainable development, and fostering international cooperation in biodiversity conservation.

Conclusion: The establishment of the national botanical garden system in China not only strengthens China’s capacity to implement the Kunming-Montreal Framework, but also provides a valuable opportunity to evaluate the innovative accomplishments of this system. The successful implementation of this initiative will serve as a benchmark and source of inspiration for other countries worldwide with significant biodiversity.

Keywords: the Kunming-Montreal Global Biodiversity Framework; the national botanical garden system; compliance; priority actions

PDF (362KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈进 (2023) 《昆明-蒙特利尔全球生物多样性框架》与国家植物园体系建设. 生物多样性, 31, 23257. doi:10.17520/biods.2023257.

Jin Chen (2023) Kunming-Montreal Global Biodiversity Framework and the construction of the national botanical garden system. Biodiversity Science, 31, 23257. doi:10.17520/biods.2023257.

2022年12月19日, 《生物多样性公约》第十五次缔约方大会通过了《昆明-蒙特利尔全球生物多样性框架》(以下简称《昆蒙框架》), 体现了国际社会对生物多样性危机的共识以及应对这一全球性挑战的决心。中国作为大会主席国在其中发挥了引领和建设性作用; 我国生物多样性领域的专家也和国际同行一道, 为框架文本的形成作出了重要贡献。《昆蒙框架》为今后10‒30年全球生物多样性保护设立了具体目标、规划了主要路径, 开启了全人类为解决生物多样性危机的又一次共同行动。然而, 这仅是第一步, 在框架的执行过程中, 仍存在大量的研究工作, 需要从事生物多样性保护的相关人员继续为之做出积极努力。植物园是从事生物多样性保护的专业机构和植物迁地保护与研究的重要机构, 特别是适逢我国国家植物园体系建设正式启动, 在国家植物园体系建设的过程中, 应将《昆蒙框架》的落实及相关研究作为重要内容。

1 昆蒙框架的主要目标

《昆蒙框架》的全文已在联合国官方网站上发布, 其主要内容及相关影响也已有介绍与讨论(马克平, 2023; 徐靖和王金洲, 2023)。框架包括4个2050年全球长期目标和23个以行动为导向的具体目标。与此前的相关公约相比, 该框架体现了讨论前期中国作为《生物多样性公约》第十五次缔约方大会主席国提出的“具有雄心、公约目标平衡和具有可操作性”的特点(马克平, 2023)。

《昆蒙框架》提出生物多样性2050年愿景, “到2050年, 生物多样性将被重视、保护、恢复以及合理利用, 以维持生态系统服务功能, 维护地球的健康及为全人类提供必需的惠益”。2050年愿景包括(A)生物多样性状态、(B)可持续利用生物多样性、(C)公平公正分享惠益和(D)提供执行保障等4个长期目标。到2030年实现的23个具体目标包括减少对生物多样性的威胁(目标1‒8)、通过可持续利用和惠益分享以满足人类需求(目标9‒13)、执行和主流化的工具和解决方案(目标14‒23)。下文将针对23个具体目标的实现作进一步讨论。

2 国家植物园体系建设与昆蒙框架的执行

国家植物园体系建设本身即是我国生物多样性保护在体制和机制上的创新性实践(陈进, 2022; Ren & Blackmore, 2023)。拟创建的国家植物园体系将以植物的有效迁地保护为优先任务, 通过自上而下的顶层设计以及“统筹就地保护和迁地保护相协调”的手段, 实现全覆盖的综合保护。在建设国家植物园体系的同时, 谋划部署关于《昆蒙框架》的研究和保护行动不仅是我国执行《昆蒙框架》的迫切需求, 也是我国在生态文明建设中通过体制创新促进人和自然和谐共生的一次生动诠释。

本研究对照《昆蒙框架》2030年23个具体目标, 讨论了与国家植物园体系建设的关联度及应开展的研究与保护行动。从23个目标看, 与植物园及国家植物园体系关联度高或很高的目标有10个, 植物园及国家植物园体系可以参与回答/研究的科学问题有26个, 可以开展的保护行动有27个(表1)。

表1   国家植物园体系建设与《昆蒙框架》2030年目标的关联度、需要研究的科学问题及开展的保护行动

Table 1  The relevance of national botanical garden system construction and the Kunming-Montreal Framework 2030 targets, research questions to be investigated, and conservation actions to be undertaken

2030年目标
2030 targets*
关联度
Relevance
科学问题
Research questions (Q)
保护行动
Conservation actions (A)
目标1
Target 1
高 HighQ1. 还有多少新的物种未被发现?
How many new species to be discovered?
Q2. 区域性生态系统及植物物种受威胁状况如何?
How many threatened ecosystems and species in this area?
A1. 植物物种大普查
A thorough survey of plant species
目标2
Target 2
高 HighQ3. 如何有效开展大规模生态修复?
How to conduct large-scale ecological restoration?
Q4. 生态系统连通性如何影响系统的韧性及对气候变化的响应?
How does ecosystem connectivity affect system resilience and response to climate change?
A2. 大规模生态系统恢复实践及成效评价(与合作方)
Large-scale ecosystem restoration practices and effectiveness assessment (in collaboration with partners)
A3. 改善生态系统连通性为目的的生态修复实践及成效评估(与合作方)
Ecological restoration practices and effectiveness assessment for improving ecosystem connectivity (in collaboration with partners)
目标3
Target 3
高 HighQ5. 哪些地方(生态系统)应得到优先保护?
Which areas (ecosystems) should receive priority protection?
Q6. 保护地的保护成效如何?
How about the effectiveness of the protected areas?
Q7. 如何将原住民(特别是少数民族)的传统生态智慧应用于生物多样性保护?
How to apply the traditional ecological wisdom of indigenous peoples (especially ethnic groups) to biodiversity conservation?
A4. 以国家公园为主体的保护地成效评估及动态监测
Effectiveness assessment and dynamic monitoring for protected areas particularly for the national parks

A5. 传统知识与智慧在生物多样性保护与可持续利用的实践与示范
The practice and demonstration of traditional knowledge and wisdom in biodiversity conservation and sustainable utilization
目标4
Target 4
高 HighQ8. 如何评估植物的灭绝风险?
How to evaluate the extinction risk of plants?
Q9. 如何开展严重受威胁物种的遗传增强?
How to conduct genetic enhancement of critically endangered species?
Q10.如何开展针对国家重点保护物种(I级)覆盖全部(>90%)遗传多样性的迁地保护?
How to carry out ex-situ conservation targeting national key protected species (Level I) to cover the entire (>90%) genetic diversity?
Q11.回归引种与辅助迁移应遵循的技术规程有哪些?
What are the technical guidelines for the implementation of reintroduction and assisted migration?
A6. 开展针对国家重点保护植物(Ⅰ、Ⅱ级)遗传多样性与居群遗传结构调查与迁地保护
Conduct investigations on the genetic diversity and population genetic structure of nationally protected plants (Class I and II) and ex-situ conservation
A7. 提高受威胁物种回归引种比例
Enhance the proportion of endangered species with reintroduction program
A8. 针对生物多样性关键地区实现植物零灭绝的综合保护行动
Integrative conservation actions to achieve zero plant extinction in key biodiversity areas
目标5
Target 5
中 IntermediateQ12.如何针对珍稀濒危植物开展有效的保护教育?
How to effectively implement conservation education for rare and endangered plants?
Q13.如何构建野生资源植物可持续利用的指标体系和相应的政策、法规?
How to establish an indicator system and corresponding policies and regulations for the sustainable use of wild plant resources?
A9. 针对珍稀濒危植物开展保护教育项目及成效评估
Conservation education and its effectiveness assessment for rare and endangered plant species
A10.野生资源植物可持续利用实践与示范
Practices and demonstration for sustainable use of wild plant resources
目标6
Target 6
高 HighQ14.区域性入侵植物有哪些?危害程度如何?
What are the regional invasive plants? How about their negative impacts?
Q15.气候变化及人为活动如何影响入侵及潜在入侵植物?
How does climate change and human activities affect plant invasions and potential invasive species?
A11.针对产生严重危害的入侵植物的防控实践及成效评价
Practices and effectiveness assessment for the control measures in managing invasive plants with substantial ecological impact
目标7
Target 7
低 Low
目标8
Target 8
中 IntermediateQ16.影响植物对极端气候适应能力的因素有哪些?
What are the factors that determine plants’ adaptability to extreme climates?
A12.开展植物的抗逆弹性的评估
Assessment of plants’ resilience to stress
目标9
Target 9
中 Intermediate同问题Q13
Same as Q13
A13.原住民可持续利用植物资源及传统农耕系统的传统智慧的调查、应用示范
Investigation and application demonstration of the traditional wisdom of indigenous peoples in the sustainable utilization of plant resources and traditional farming systems
目标10
Target 10
高 HighQ17.如何构建高效、环境友好的农林复合系统?
How to build efficient and environmentally friendly agroforestry systems?
Q18.如何创制环境(生物多样性)友好的新种质用于农林生产?
How to create environmentally (biodiversity) friendly new germplasm for agricultural and forestry production?
A14.环境友好的高效农林复合系统试验示范
Experimentation and demonstration for efficient and environmental friendly agroforestry systems
目标11
Target 11
中 IntermediateQ19.如何科学核算自然生态系统的自然资本及生态系统服务功能价值?
How to properly calculate the natural capital and ecosystem service value of natural ecosystems?
Q20.如何通过生态补偿机制促进生物多样性保护?
How can biodiversity conservation be promoted through ecological compensation mechanisms?
A15.区域性森林生态系统服务功能价值的评估及动态监测
Assessment and dynamic monitoring of regional ecosystem service value of forests
目标12
Target 12
高 HighQ21.如何构建低碳、生物多样性包容性城市绿地景观?
How to build low-carbon and biodiversity-inclusive urban green spaces?
Q22.不同类型的绿地空间对城市居民亲生物性、自然联结及生物多样性保护意愿有何影响?
What is the impact of different types of green spaces on urban residents’ biophilia, nature connectedness, and willingness to protect biodiversity?
A16.生物多样性包容性城市绿地景观构建与示范
Construction and demonstration of biodiversity-inclusive urban green spaces
A17.面向儿童的高质量自然教育与科学教育实践
High-quality nature and science education practices for children
目标13
Target 13
中 IntermediateA18.完善遗传资源惠益分享相关的制度体系
Developing a comprehensive institutional framework for benefit sharing of genetic resources
A19.促进遗传资源惠益分享的最佳实践示范
Best practice and demonstration for enhancing benefit sharing of genetic resources
目标14
Target 14
中 IntermediateQ23.如何有效推进生物多样性主流化教育
How to promote education for biodiversity mainstreaming?
Q24.如何实现生物多样性变化信息的可视化和保护公众的知情权?
How to visualize biodiversity change information and safeguarding public awareness?
A20.发布植物多样性变化报告
Periodic reporting and assessment of plant biodiversity changes.
A21.开展以生物多样性监测、保护为主要目的的公民科学项目
Initiate citizen science projects with a primary focus on biodiversity monitoring and conservation
目标15
Target 15
中 Intermediate同Q12、Q23
Same as Q12, Q23
目标16
Target 16
高 HighQ25.如何有效改变人们生产生活行为, 实践低碳、可持续生活方式变革?
How to effectively modifying production and lifestyle behaviors in order to implement low-carbon and sustainable lifestyle transformations?
A22.实施低碳可持续园区管理政策
Adapt low-carbon and sustainable management policy
A23.开展有效可持续教育项目, 包括构建生动的园区解说体系和开发针对儿童的可持续教育项目
Conduct effective sustainable education programs, including establishing an inspiring interpretation system and develop sustainable education initiatives specifically designed for children
目标17
Target 17
中 IntermediateA24.完善生物安全相关政策及操作规程
Enhancement of biosafety policies and operational procedures
目标18、19
Target 18, 19
低 Low
目标20
Target 20
高 HighQ26.如何通过国际合作帮助经济欠发达国家保护生物多样性和提高《昆蒙框架》执行能力?
How can international cooperation assist economically underdeveloped countries in conserving biodiversity and enhancing the implementation capacity for the Kunming-Montreal Framework?
A25.构建“一带一路”植物园联盟, 开展能力建设和国际合作
Establishing botanical garden alliance in the “Belt and Road Initiative” countries for capacity building and international cooperation
A26.开展“一带一路”国家植物园伙伴计划, 开展履约合作研究
Initiate the Botanical Garden Partnership program in the “Belt and Road Initiative” countries to promote collaborative research and implementation for the Kunming-Montreal Framework
目标21
Target 21
高 High同Q24
Same as Q24
A27.建设权威、实时、界面友好的植物多样性(物种分布、受威胁状况、保护状况等)的信息系统, 并面向公众开放
Develop an authoritative, real-time, and user-friendly information system for plant biodiversity (including species distribution, threat status, conservation status, etc.), and make it accessible to the public
目标22、23
Target 22, 23
低 Low

* 23个具体目标见https://www.unep.org/resources/kunming-montreal-global-biodiversity-framework

* The content for the 23 targets is available at https://www.unep.org/resources/kunming-montreal-global-biodiversity-framework.

新窗口打开| 下载CSV


3 国家植物园体系建设过程中的优先行动

从2030年23个具体目标看, 《昆蒙框架》是一个极其复杂并具有雄心的计划。植物园作为生物多样性保护的专业机构, 可望也应该为《昆蒙框架》的全面落实做出重要贡献。近日, 经国务院批准的《国家植物园体系布局方案》已发布。该方案从我国气候带、典型生态系统及植物多样性分布特点以及各地区植物园发展基础的实际出发, 通过顶层设计, 系统规划了我国国家植物园体系的未来蓝图, 明确了我国未来植物园与植物多样性保护工作高质量发展的方向与目标。在建设国家植物园体系的过程中, 结合国家落实《昆蒙框架》的实际, 还应该优先谋化布置下列保护行动:

(1)植物物种大普查。我国虽然已在20世纪完成了植物志的出版, 然而, 我国到底有多少植物物种仍是一个未知数。从全球范围看, 仍有很多国家和地区调查极不充分。现今世界已被描述的维管植物大约有382,000种(http://worldfloraonline.org)。据统计, 过去10年全球每年新发表2,000‒3,000个植物物种(万霞和张丽兵, 2022)。然而, 据估计全球至少仍有10%‒25%的物种待发现(Cheek et al, 2020), 如果按现有速度计算, 人类至少仍需要数十年才能完成植物新物种的描述。这不仅是一个令人难以接受的事实, 新物种发现的滞后可能也会影响人们对植物灭绝速率的估算和保护行动的开展。我国作为一个生物多样性大国应努力成为生物多样性研究强国, 以国家植物园体系建设为契机, 应在全国范围内开展新一轮的物种大普查, 尽快高水平摸清家底, 特别针对一些过去调查研究相对薄弱的地区, 如西藏南部地区、西南跨边境地区、南方喀斯特岩溶地区、海岛等。在继续发现新物种的同时, 对一些分类学上长期存疑的类群开展进一步的系统修订也势在必行, 应积极引入分子手段, 加快分类修订工作。近期, 我国学者对唇形科豆腐柴属(Premna)进行整理, 将该属18个名称(原先代表8种1变种)归并整理为3种, 即体现出分类修订工作的重要性(Tan & Li, 2014; Tan et al, 2016)。

(2)国家重点保护植物的遗传多样性调查。《昆蒙框架》提出要结合迁地保护和就地保护手段, 实现物种的遗传多样性保护(长期目标A, 2030年目标4)。这对植物园迁地保护工作提出更高的要求。我们应该结合国家植物园体系建设, 针对国家重点保护植物(首先针对I级), 明确各植物园分工, 开展覆盖全部居群的物种遗传多样性研究, 为进一步开展高水平迁地保护奠定基础。中国科学院昆明植物研究所已经针对漾濞槭(Craigia yunnanensis) (Yang et al, 2016)、滇桐(Hibiscus aridicola) (Zhang et al, 2019)、白魔芋(Amorphophallus albus) (Tang et al, 2020)等十余个极小种群物种开展了研究, 起到很好的示范作用。

(3)生物多样性关键地区植物零灭绝保护实践。《昆蒙框架》明确提出降低物种的灭绝风险, 虽然关于物种灭绝速率的评估在学界仍有争议(Humphreys et al, 2019), 但对植物而言, 实现关键地区的零灭绝不仅是必须的, 而且是可实现的(Corlett, 2023)。以西双版纳为例, 自2012年起, 中国科学院西双版纳热带植物园发起了针对西双版纳地区的植物零灭绝计划, 通过对全州4,200种本土植物的快速评估, 确定345种受威胁植物种类, 经过近10年努力, 受威胁植物在植物园迁地保存的比例已由项目前的39%提高到约70%, 最终希望实现100%迁地保护。同时, 加大回归引种比例。结合我国植物多样性分布特点, 应在全国范围内选择条件相对成熟的地区开展统筹就地保护、迁地保护、回归引种等多手段的植物零灭绝保护试验示范。

(4)生态修复计划。《昆蒙框架》目标2明确提出应保证30%受干扰生态系统得到修复。我国已经在植树造林、退耕还林方面投入了大量资金和人力, 也取得了显著成效。然而, 生态修复更加注重提高/恢复自然生态系统的生态服务功能和连通性。过去植物园在生态修复中有过一些研究, 但总体上看, 针对不同生态系统类型实现大规模有效生态修复的成功案例并不多见。与此同时, 在人类世的背景下, 生态修复的定义及范式也被拓展, 如何利用城市绿地创造更多生物多样性包容性强、近自然的绿色空间也应是下一步生态修复的内容之一。

(5)应对气候变化的相关研究。生物多样性丧失和气候变化是人类面临的两大危机, 且两者互相叠加、交织影响。基于植物和基于自然/生态系统的解决方案可能是应对上述两个危机的最为重要的选项。应该结合国家植物园体系建设, 系统开展植物(优先不同森林类型中的优势种、建群种)的抗逆弹性评估, 开展针对严重受威胁物种应对气候变化辅助迁移的研究, 以及生态系统连通性对气候变化适应性影响的研究。

(6)保护与可持续教育。《昆蒙框架》提出在扼制物种灭绝趋势的同时, 应努力改变人们的生产、生活方式, 最终实现人与自然和谐发展的愿景。要实现该目标, 教育在其中可以发挥极其重要的作用。国家植物园体系应发挥其在面向公众上的独特优势, 构建更加有效的园区解说和保护教育系统, 面向儿童开展自然教育、科学教育的实践示范, 开展以生物多样性保护为主题的公民科学, 为生物多样性(保护)的主流化作出贡献。在保护教育中重视和尊重传统知识以及原住民对生物多样性保护的贡献。同时, 还要针对教育的范式及成效展开研究, 用教育研究的理论成果指导实践。

(7)生物多样性保护国际合作。《昆蒙框架》展示的是全人类的集体行动, 是人类命运共同体构建的重要内容。一些生物多样性丰富的欠发达国家的执行能力是决定框架成败的关键。中国更应以担当有为的姿态, 为其他大国做出表率。在过去10年间, 中国科学院在境外设立的海外机构, 如中国科学院东南亚生物多样性研究中心、中国科学院中-非联合研究中心等, 已经做了积极的探索, 并取得了可喜的进展。国家植物园体系建设中应以执行《昆蒙框架》为中心, 并将相关国际合作纳入到“一带一路”的合作计划中。通过发起南-南合作、多边合作机制, 开展能力建设和履约研究合作, 为世界范围内探索通过国际合作提高全世界履约成效提供案例。

4 结语

《昆蒙框架》的通过再次展示了全人类携手共建人类命运共同体的良好意愿与决心, 也开辟了中国作为一个负责任大国主导全球环境治理之先河。拟建设的国家植物园体系不仅在我国典型气候带和生态系统中都有布局, 而且涵盖了我国从事植物多样性保护研究最具实力的研究机构和绝大多数的研究力量。通过国家植物园体系建设, 提高我国执行《昆蒙框架》的能力与水平, 也是检验植物园体制创新成效最为直接的试金石, 其成功实践也将为全球其他生物多样性大国提供样板和借鉴。

参考文献

Cheek M, Lughadha EN, Kirk P, Lindon H, Carretero J, Looney B, Douglas B, Haelewaters D, Gaya E, Llewellyn T, Llewellyn T, Ainsworth AM, Gafforov Y, Hyde K, Crous P, Hughes M, Walker BE, Forzza RC, Wong KM, Niskanen T (2020)

New scientific discoveries: Plants and fungi

Plants, People, Planet, 2, 371-388.

DOI:10.1002/ppp3.v2.5      URL     [本文引用: 1]

Corlett RT (2023)

Achieving zero extinction for land plants

Trends in Plant Science, 28, 913-923.

DOI:10.1016/j.tplants.2023.03.019      PMID:37142532      [本文引用: 1]

Despite the importance of plants for humans and the threats to their future, plant conservation receives far less support compared with vertebrate conservation. Plants are much cheaper and easier to conserve than are animals, but, although there are no technical reasons why any plant species should become extinct, inadequate funding and the shortage of skilled people has created barriers to their conservation. These barriers include the incomplete inventory, the low proportion of species with conservation status assessments, partial online data accessibility, varied data quality, and insufficient investment in both in and ex situ conservation. Machine learning, citizen science (CS), and new technologies could mitigate these problems, but we need to set national and global targets of zero plant extinction to attract greater support.Copyright © 2023 Elsevier Ltd. All rights reserved.

Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS (2019)

Global dataset shows geography and life form predict modern plant extinction and rediscovery

Nature Ecology & Evolution, 3, 1043-1047.

[本文引用: 1]

Ma KP (2023)

Kunming-Montreal Global Biodiversity Framework: An important global agenda for biodiversity conservation

Biodiversity Science, 31, 23133. (in Chinese)

DOI:10.17520/biods.2023133      [本文引用: 2]

[马克平 (2023)

《昆明-蒙特利尔全球生物多样性框架》是重要的全球生物多样性保护议程

生物多样性, 31, 23133.]

DOI:10.17520/biods.2023133      [本文引用: 2]

Ren H, Blackmore S (2023)

The role of national botanical gardens to benefit sustainable development

Trends in Plant Science, 28, 731-733.

DOI:10.1016/j.tplants.2023.04.009      PMID:37188556      [本文引用: 1]

China has an in situ conservation system built around national parks, and has begun establishing an ex situ conservation system led by National Botanical Gardens. We highlight how this National Botanical Gardens system will serve the global biodiversity conservation goal of harmonious coexistence between humans and nature.Copyright © 2023 Elsevier Ltd. All rights reserved.

Tan YH, Chen YJ, Li B (2016)

New synonyms for Premna yunnanensis (Lamiaceae) in China

Phytotaxa, 283, 196-200.

DOI:10.11646/phytotaxa.283.2      URL     [本文引用: 1]

Tan YH, Li B (2014)

Taxonomic studies on the genus Premna (Lamiaceae) in China. I. The identities of P. fulva and P. tapintzeana

Phytotaxa, 173, 207-216.

DOI:10.11646/phytotaxa.173.3      URL     [本文引用: 1]

Tang R, Liu EX, Zhang YZ, Schinnerl J, Sun WB, Chen G (2020)

Genetic diversity and population structure of Amorphophallus albus, a plant species with extremely small populations (PSESP) endemic to dry-hot valley of Jinsha River

BMC Genetics, 21, 102.

DOI:10.1186/s12863-020-00910-x      [本文引用: 1]

Amorphophallus albus P. Y. Liu & J. F. Chen (Araceae) is a plant species with extremely small populations (PSESP) and an important economic crop endemic to dry-hot valleys along the Jinsha River. In order to gain information for sustaining the development and conservation of A. albus, we studied the genetic diversity and population structure of this species using microsatellite markers (SSR). In this study, we analysed 364 individuals belonging to 24 populations, including four wild populations and three ex-situ cultivated populations, collected in the provinces Yunnan, Sichuan and Hubei.

Wan X, Zhang LB (2022)

Global new taxa of vascular plants published in 2021

Biodiversity Science, 30, 22116. (in Chinese with English abstract)

DOI:10.17520/biods.2022116      [本文引用: 1]

<p id="p00015"><strong>Aims:</strong> Vascular plants provide most of the planet&#x02019;s biomass. Thousands of new vascular plant species have been discovered and described every year recently. Timely analysis of the published data of new vascular plants taxa can show the research hotspots of vascular plant taxonomy in details and provide reference data for studies of related fields such as botany, ecology, and conservation science.</p><p id="p00020"><strong>Methods:</strong> The data were derived from the IPNI (https://www.ipni.org/), Tropicos (https://www.tropicos.org/), WCSP (https://wcsp.science.kew.org/) and The Plant List (http://www.theplantlist.org/). Statistics of new taxa of vascular plants published in 2021 were available as of April 16, 2022 excluding new combinations, new statuses or new names and bryophyte data.</p><p id="p00025"><strong>Results:</strong> In 2021, at least 2,219 new taxa of vascular plants were described worldwide, including 1 new subfamily, 7 new tribes, 7 new subtribes, 68 new genera, 7 new subgenera, 15 new sections, 8 new subsections, 10 new series, 1,979 new species, 46 new subspecies, 59 new varieties, and 12 new forms. These new taxa belong to 185 families and 881 genera, among which Orchidaceae, Asteraceae and Rubiaceae had received more attentions. In 2021, 2,219 new taxa of vascular plants were described worldwide in 165 journals and 14 books by 1,942 scholars, of which 42 authors have published more than 11 new taxa. <i>Phytotaxa</i> and <i>PhytoKeys</i> were the top two journals in terms of the numbers of new taxa of vascular plants published in 2021 and published 586 and 112, respectively. Among the 2,096 new species and infraspecific taxa, 1,940 belonged to angiosperms, 147 to pteridophytes, and only 9 to gymnosperms, among which Orchidaceae are the most, with 227. The 2,096 new species and infraspecific taxa were from 115 countries and regions in the world. Asia and South America were the hotspots of discoveries of new species and infraspecific taxa, with 837 and 571, respectively. By country, China, Brazil, and Madagascar were the top three with the most new species and infraspecific taxa discovered in 2021, with 283, 269, and 169, respectively. Considering the fact that IPNI added 797 new species described in 2020 after February 1, 2021, we estimate ca. 700 new species described in 2021 will be added in various databases after April 16, 2022. This will increase the number of new species (and infraspecific taxa) published in 2021 to ca. 2,800, which is comparable to the annual numbers since 2001.</p>

[万霞, 张丽兵 (2022)

世界维管植物新分类群2021年年度报告

生物多样性, 30, 22116.]

[本文引用: 1]

Xu J, Wang JZ (2023)

Analysis of the main elements and implications of the Kunming-Montreal Global Biodiversity Framework

Biodiversity Science, 31, 23020. (in Chinese with English abstract)

DOI:10.17520/biods.2023020      [本文引用: 1]

<p id="p00010"><strong>Background &amp; Aim:</strong> The Conference of the Parties to the Convention on Biological Diversity adopted a new global biodiversity strategy—the Kunming-Montreal Global Biodiversity Framework (the Kunming-Montreal GBF). The following five package outcomes were also adopted: Monitoring Framework; Mechanisms for Planning, Monitoring, Reporting and Review; Resource Mobilization; Capacity-Building and Development, Scientific and Technological Cooperation; and Genetic Resources Digital Sequence Information. Parties to the Convention need to implement the Kunming-Montreal GBF and its package of outcomes domestically. In order to facilitate China’s implementation of the Kunming-Montreal GBF, the paper briefly reviews the development process and the main contents of the Kunming-Montreal GBF and its package of outcomes.</p> <p id="p00015"><strong>Review Results:</strong> Comments on the global and national impact of the Kunming-Montreal GBF are given. In order to implement the Kunming-Montreal GBF, developed countries should enhance biodiversity financing and ensure the level of international funds related to biodiversity flowing to developing countries. Developing countries should revise or update national biodiversity strategies and action plans, monitor and report national implementation progress by using indicators, and accept review. China should host the inter-sessional process of the CBD and facilitate the implementation of the package deals of the Kunming-Montreal GBF.</p> <p id="p00020"><strong>Recommendations:</strong>Recommendations on how to implement the Kunming-Montreal GBF in China are provided: updating and revising the national biodiversity strategic action plan, formulating laws and policies to promote biodiversity mainstreaming, strengthening monitoring and evaluation of national implementation progress, promoting the development of biodiversity financing tools, and establishing partnerships with broad participation by the entire society.</p>

[徐靖, 王金洲 (2023)

《昆明-蒙特利尔全球生物多样性框架》主要内容及其影响

生物多样性, 31, 23020.]

DOI:10.17520/biods.2023020      [本文引用: 1]

《生物多样性公约》第十五次缔约方大会通过了新的全球生物多样性战略, 即《昆明-蒙特利尔全球生物多样性框架》(简称《昆蒙框架》)。随之通过的还包括《&lt;昆蒙框架&gt;的监测框架》《规划、监测、报告和审查机制》《资源调动》《能力建设与发展和科技合作》《遗传资源数字序列信息》等一揽子成果文件。《公约》缔约方需要在国内执行《昆蒙框架》及其一揽子成果。为支持我国执行《昆蒙框架》, 本文简要回顾了《昆蒙框架》及其一揽子成果的制定进程, 解读了《昆蒙框架》及相关一揽子成果的主要内容, 评论了《昆蒙框架》对全球和国家的影响, 并就我国如何执行《昆蒙框架》提出了建议, 包括更新修订国家生物多样性战略行动计划, 制定法律和政策以促进生物多样性的主流化, 强化国家执行进展监测和评估, 促进生物多样性融资工具的开发, 建立全社会广泛参与的伙伴关系。

Yang J, Gao ZR, Sun WB, Zhang CQ (2016)

High regional genetic differentiation of an endangered relict plant Craigia yunnanensis and implications for its conservation

Plant Diversity, 38, 221-226.

DOI:10.1016/j.pld.2016.07.002      URL     [本文引用: 1]

Zhang X, Zhang L, Schinnerl J, Sun WB, Chen G (2019)

Genetic diversity and population structure of Hibiscus aridicola, an endangered ornamental species in dry-hot valleys of Jinsha River

Plant Diversity, 41, 300-306.

DOI:10.1016/j.pld.2019.07.001      PMID:31934674      [本文引用: 1]

is an endangered ornamental shrub of the family Malvaceae that is endemic to the dry-hot valleys of Jinsha River in southwestern China. This species is a typical plant species with extremely small populations (PSESP). To support and monitor future conservation, develop management measures, and genotype this species, we performed extensive field studies together with genetic analyses. Specifically, we screened eleven microsatellite loci of 69 individuals of from four accessions. The population genetics analyses indicated that possesses high genetic diversity at both the population (0.6962-0.7293) and species level (0.7837) compared to other endemic/endangered species in China. The low differentiation of populations (Fst = 0.0971) and the high gene flow between populations of (Nm = 2.3236) could be due to its distribution along rivers in the hot-valleys of the Jinsha River and the wind-mediated dispersal of its seeds. Furthermore, the genetic diversity of is slightly positively correlated with geographic distance. Two populations are undergoing a genetic bottleneck, and require more specific attention from conservationists. Additionally, our analyses of the population genetics of demonstrate that the declines in populations are not the result of the internal genetics of these populations but due to external human activities over the past decades.© 2019 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

/