生物多样性, 2023, 31(6): 22647 doi: 10.17520/biods.2022647

研究报告: 植物多样性

广东省植物园植物多样性迁地保护现状及发展建议

李仕裕,1,2,#, 张奕奇1,#, 邹璞,,1,*, 宁祖林,,1,*, 廖景平,1

1.中国科学院华南植物园广东省数字植物园重点实验室, 广州 510650

2.中国科学院大学, 北京 100049

Ex situ conservation of plant diversity status and suggestions for the development of botanical gardens in Guangdong Province

Shiyu Li,1,2,#, Yiqi Zhang1,#, Pu Zou,,1,*, Zulin Ning,,1,*, Jingping Liao,1

1. Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650

2. University of Chinese Academy of Sciences, Beijing 100049

通讯作者: * E-mail:zlning@scbg.ac.cn;zoupu@scbg.ac.cn

第一联系人: # 共同第一作者

编委: 严岳鸿

责任编辑: 周玉荣

收稿日期: 2022-11-17   接受日期: 2023-06-20  

基金资助: 广东省重点领域研发计划项目(2022B1111040003)
2022年度广东省自然资源事务专项资金——生态林业建设项目

Corresponding authors: * E-mail:zlning@scbg.ac.cn;zoupu@scbg.ac.cn

First author contact: # Co-first authors

Received: 2022-11-17   Accepted: 2023-06-20  

摘要

植物多样性迁地保护评价对于植物园制定更加科学的迁地保护策略和未来发展计划至关重要。本文基于数据调查和文献资料整理, 研究了广东省植物园的地理空间分布及其植物多样性迁地保护现状和存在问题, 旨在为制定华南国家植物园保护策略、广东省植物园体系布局乃至我国国家植物园建设提供参考依据。结果表明: (1)广东省植物园仅分布于南亚热带常绿阔叶林地带和北热带半常绿季雨林地带, 与自然植被分布存在偏差; (2)广东省植物园至少迁地保育了15,026种高等植物, 隶属329科3,030属, 其中我国本土野生维管植物9,068种, 占我国已知本土野生维管植物物种的23%; (3)系统发育分析表明, 广东省植物园活植物收集对广东本土野生维管植物多样性具较高的覆盖率, 分别占广东本土野生维管植物科的95%、属的80%、物种的58%; (4)受威胁和重点保护物种分析表明, 广东省植物园保育了64%的广东本土受威胁维管植物、83%的广东省分布的国家重点保护野生维管植物; (5)资源植物分析表明, 广东省植物园保育了72%的广东本土野生资源维管植物, 涵盖目前通用的所有用途类别, 各类资源保育率均超过69%。上述结果表明, 广东省植物园为植物多样性迁地保护发挥了重要作用。建议广东省植物园体系未来建设中, (1)完善区域迁地保护网络体系建设; (2)构建国家活植物收集综合保藏体系; (3)建立关键物种“苗圃栽培-人工群落-异地种植”实验体系, 实施整合保护研究计划, 促进植物多样性保护、科学研究和可持续利用。

关键词: 植物园; 活植物收集; 迁地保护评价; 植物多样性; 整合保护策略

Abstract

Aims: The evaluation of living plant collections is critical for botanical garden to formulate conservation strategy and future development plans. This paper studies the current geospatial distribution of Guangdong botanical gardens and their status quo and problems of ex situ collections of plant diversity, aims to provide references for an updated conservation strategy of South China National Botanical Garden, a conservation network of Guangdong botanical gardens and the development of China’s national botanical gardens system.

Methods: On the basis of investigation, we identify the geographic locations and vegetation zones of the all 15 botanical gardens in Guangdong Province with reference to the literature analysis of Chinese vegetation and Guangdong vegetation. According to the plant lists provided by the 12 botanical gardens, we quantify the living plant diversity in ex situ collections, analyze phylogenetic bias, threatened species representation and useful plant composition by synthesis of updated taxonomy, conservation categories and economic uses.

Results: (1) There is an obvious bias in the distribution of Guangdong botanical gardens from the natural vegetation areas. The gardens are only located in the south subtropical monsoon evergreen broad-leaved forest zone and the north tropical semi-evergreen monsoon forest zone, but no one in the middle subtropical zone. (2) We reveal that the Guangdong botanical gardens manage at least 15,026 species, belonging to 3,030 genera in 329 families. Of which, there are 9,068 vascular plant species native to China, belonging to 2,131 genera in 275 families, equating to 23% of the known vascular plant diversity in China. (3) Phylogenetic analysis indicates that the Guangdong botanical gardens hold a remarkable degree of taxonomic coverage within ex situ living collections for Guangdong native vascular plants, accounting for 95% of the family, 80% of the genera, and 58% of the species, respectively. (4) The analysis of threatened status and key conserved species shows that the Guangdong botanical gardens preserved 64% of the provincial threatened vascular plants native to Guangdong, and 83% of the wild vascular plants distributed in Guangdong Province and listed in the List of National Key Protected Wild Plants (version 2021). (5) The analysis of useful plant collections shows that the Guangdong botanical gardens held 72% of the vascular plants in Guangdong Province in ex situ living collections, covering all the useful categories that are currently common, and the resource preservation rate of each category exceeds 69%.

Conclusion: The results indicate that Guangdong botanical gardens play an important role in plant diversity conservation, but they should be integrated with in situ conservation institutions and adopted an updated conservation strategy to enhance future biodiversity conservation. We put forward some suggestions: (1) improving the regional ex situ conservation network system, with the South China National Botanical Garden as the core, geographical distribution of ex situ institutions and their integration with the natural reserve system. (2) building a comprehensive preservation capacity system for national collections, focus on increasing research collections of key taxa, undertake conservation collections of priority threatened species and coordinate core collections of germplasm, to expand both conservation efficiency and the utilization of wild plants resources. (3) establishing an experiment research system of “nursery cultivation-artificial community-inter situ planting” for key endangered species, implement an integrated conservation research plan, and promote plant diversity conservation, scientific research and sustainable use.

Keywords: botanical garden; living collections; ex situ conservation evaluation; plant diversity; integrated conservation strategies

PDF (5349KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李仕裕, 张奕奇, 邹璞, 宁祖林, 廖景平 (2023) 广东省植物园植物多样性迁地保护现状及发展建议. 生物多样性, 31, 22647. doi:10.17520/biods.2022647.

Shiyu Li, Yiqi Zhang, Pu Zou, Zulin Ning, Jingping Liao (2023) Ex situ conservation of plant diversity status and suggestions for the development of botanical gardens in Guangdong Province. Biodiversity Science, 31, 22647. doi:10.17520/biods.2022647.

自1992年《生物多样性公约》(Convention on Biological Diversity, CBD)通过以来, 保护生物多样性已成为全球关注的问题(Corlett, 2020; Huang et al, 2020)。就地保护和迁地保护是生物多样性保护的两种主要方法(Frankel & Soulé, 1981; 黄宏文, 2018a)。尽管过去几十年人类为保护世界植物多样性付出了巨大努力, 但此前的保护战略并未能充分有效地防止生物多样性持续下降, 而且这一趋势越来越明显(Heywood, 2017)。CBD第十五次缔约方大会通过的“昆明-蒙特利尔全球生物多样性框架” (Kunming-Montreal Global Biodiversity Framework)指出, 除了传统的保护和修复外, 人类必须依靠全社会共同参与和努力, 在全球、区域和国家层面采取紧急政策行动, 进行可持续生产和消费等变革性转型才能实现制止和反转生物多样性丧失曲线的宏伟目标(Obura et al, 2023)。面对人类世气候变化和生物多样性丧失双重危机(Steffen et al, 2011; Corlett, 2020; Tortell, 2020), 我国希望通过制定和实施该领域强有力的国家计划来解决生物多样性丧失问题(Huang et al, 2017; Crane et al, 2019; 周桔等, 2021), 目前正加快构建以国家公园为主体的自然保护地体系(李博炎等, 2021; 王伟和李俊生, 2021; 闫颜等, 2021; 赵智聪和杨锐, 2021)和以国家植物园为主体的迁地保护体系(陈进, 2022; 黄宏文和廖景平, 2022; 马金双, 2022; 任海等, 2022)。国家植物园、华南国家植物园先后揭牌标志着我国国家植物园体系建设在新征程上迈出了坚实的步伐。无疑, 广东省植物园体系也迎来了发展新机遇。

植物园和植物种质资源库是迁地保护机构, 在植物迁地保护中发挥着重要作用(Heywood, 2017; Breman et al, 2021)。作为迁地保护科学研究和资源可持续利用的重要基础, 植物园活植物收集基础数据研究在国际上已有探索案例(Mounce et al, 2017)。世界植物园植物多样性迁地保护存在两大偏差: 一是生物地理偏差, 即全球植物园分布及其物种丰富度呈纬度正相关性, 植物园的地理分布直接影响其活植物收集的生物地理代表性; 二是系统发育偏差, 尽管总体而言世界植物园迁地保护的植物在科属种水平上均具有较高的分类学多样性覆盖率, 但显然, 不同主要谱系的受威胁物种的迁地保存百分比重要性不同, 启示在新一代的全球植物保护战略目标中应细化和调整不同谱系的迁地收集目标(Pautasso & Parmentier, 2007; Mounce et al, 2017)。由于此前植物园迁地保护规划或实施实践存在缺乏针对性等问题, 植物园对受威胁物种的迁地保育覆盖率普遍较低(Sharrock & Jones, 2011; Mounce et al, 2017; Zhao et al, 2022)。此外, 人口和气候的加速变化将对园艺、农业和林业造成严重后果, 人类对能适应新生态、新气候条件的各种新植物种质资源的需求日益增长, 植物引种的重要性日益凸显(Heywood, 2011)。我国植物园活植物收集统计结果显示, 11个植物园迁地保育了396科3,633属约23,340种植物(黄宏文和张征, 2012), 52个植物园迁地保育了344科3,927属24,534种植物(Zhao et al, 2022)。目前, 也有学者就一类植物或特定植物园的迁地保护现状进行评价(张玲玲等, 2020; 席辉辉等, 2022; 王利松等, 2023; Ye et al, 2023)。由于长期以来不重视引种信息记录和管理, 缺乏规范化、体系化和科学化的活植物信息管理平台, 我国上述基于活植物数据的研究存在研究对象代表性不足、内容单一、分散并缺乏系统性、数据来源繁杂且质量参差不齐等问题, 且尚无省级尺度植物多样性迁地保护论述。

地区尺度迁地保护量化评价有利于拓展到国家尺度保护目标的落实, 最终促进全球保护目标的实现(Obura et al, 2021)。本文通过研究广东省内植物园和树木园等迁地保护机构(简称广东省植物园)地理空间分布和迁地保育活植物多样性现状, 旨在探讨: (1)广东省植物园植物多样性迁地保护的生物地理空白, 迁地保育活植物的科、属、种数量及特征; (2)保育优势科、属类群和空缺科、属类群, 针对不同类群的特点探讨未来的保护策略; (3)珍稀濒危植物和经济植物迁地保育的成果、存在问题和发展对策, 以期为广东省植物园、华南国家植物园迁地保护及其网络体系建设乃至其他的国家植物园或全国植物多样性整合保护策略提供参考。

1 材料与方法

1.1 区域概况

广东省(109°45′-117°20′ E, 20°09′-25°31′ N)地处中国大陆最南端, 也是欧亚大陆东南部, 毗邻太平洋, 陆地面积1.797 × 105 km2, 其中岛屿面积1,448 km2, 属于东亚季风区, 自北向南依次跨越中亚热带、南亚热带、北热带3个气候带(广东年鉴编纂委员会, 2021), 光、热和水资源丰富, 雨热同季, 拥有丰富多样的生态系统, 孕育了极为丰富的生物多样性, 是我国生物多样性保护优先区。主要的植被类型有北热带半常绿季雨林、南亚热带典型季风常绿阔叶林、中亚热带常绿阔叶林, 以及海岸红树林(广东省植物研究所, 1976)。广东省拥有本土维管植物5,967种, 其中受威胁植物645种(王瑞江, 2022)。

1.2 数据处理和方法

1.2.1 数据来源和依据

通过实地考察、问卷调查、组织开展广东省植物整合保护策略暨粤港澳大湾区植物园联盟筹备研讨会等多种形式, 收集广东省植物园相关信息。参考《中国植物园》(黄宏文, 2018b)并根据是否有植物园或树木园名称、是否实施活植物迁地保育及整理活植物收集名录等情况进一步梳理广东省植物园资料; 参考《中国植被》(吴征镒, 1980)和《中国植物区系与植被地理》(陈灵芝, 2014)的植被区划原则和系统, 根据《广东植被》(广东省植物研究所, 1976)的植被类型和植被分区, 分析广东省植物园所在植被地带类别(图1, 附录1)。

图1

图1   广东省植物园和自然保护区分布图。植物园缩写对应的植物园名称及相关数据见附录1和附录2。基于广东省标准地图服务子系统(http://nr.gd.gov.cn/map/bzdt/Index.aspx)下载的标准地图制作, 审图号为粤S(2020)132号, 底图边界无修改。

Fig. 1   Distribution of the botanical gardens and nature reserves in Guangdong Province. The full name and related data that corresponding to each garden’s abbreviation see Appendix 1 and Appendix 2. It is based on the standard map (Guangdong S(2020)132) downloaded from Guangdong Province Standard Map Service Subsystem (http://nr.gd.gov.cn/map/bzdt/Index.aspx). The boundaries of the bottom map have not been modified.


1.2.2 迁地保育现状分析

使用在线植物学名检查工具TNRS (Taxonomic Name Resolution Service v5.0, https://tnrs.biendata.org/)对物种学名进行检查和标准化; 剔除未正式发表物种、未鉴定分类单元、园艺分类群; 依据世界维管植物名录(The World Checklist of Vascular Plants, WCVP; http://wcvp.science.kew.org/)对物种进行科、属、种(含种下分类单元)等分类处理, 被子植物采用APG IV系统(APG, 2016), 石松类和蕨类及裸子植物采用Plants of the World所用的系统(Christenhusz et al, 2017), 木兰科植物采用《中国木兰》(刘玉壶, 2014)的分类系统; 合并重复项后得到总名录。运用Excel 2010完成科、属、种统计分析(附录2)。中国已知本土野生维管植物总数以《中国生物物种名录2022版》(http://www.sp2000.org.cn/)为基数, 剔除中国外来植物数据集(林秦文等, 2022)中的非本土野生植物后统计。

依据活植物的科、属、种组成, 特别是它们所包含的属、种总数应占区系的50%以上(李锡文, 1996), 同时依据科内属、种数占世界属、种数的比例以及该科在区域植被组成中的重要性(陈涛和张宏达, 1994), 确定广东省植物园保育优势科和优势属。世界属种数量参考全球植物在线(Plants of the World Online, https://powo.science.kew.org/)。参照吴征镒等(2006)和李德铢等(2018)种子植物分布区类型系统, 统计保育优势科、属分布区类型组成。科属范畴发生变动时, 参考全球植物在线(https://powo.science.kew.org/)中该科属在世界的分布范围, 依据吴征镒等(2006)分布区类型划分原则做出相应调整。

参照《广东高等植物红色名录》(王瑞江, 2022), 统计广东本土维管植物空缺物种, 并在属级水平使用R软件包V.PhyloMaker2 (Jin & Qian, 2022)可视化, 开展广东省本土维管植物属级水平活植物收集系统发育空缺分析。

1.2.3 受威胁和重点保护植物迁地保育现状分析

参照世界自然保护联盟(IUCN)濒危物种红色名录(The IUCN Red List of Threatened Species) 2022-2版(https://www.iucnredlist.org/about/citationinfo, 访问日期2023-03-20)、《濒危野生动植物种国际贸易公约》附录(CITES Checklist, https://checklist.cites.org, 访问日期2023-03-20), 根据物种野生分布区域, 将IUCN红色名录(2022)和CITES附录物种整理成中国本土物种(在中国有野生分布)和外国物种(在中国无野生分布)两类, 统计数量及其占比, 从全球尺度上分析受威胁植物迁地保育状况。

参照生态环境部和中国科学院联合更新的《中国生物多样性红色名录: 高等植物卷(2020)》(https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202305/t20230522_1030745.html)及《中国种子植物多样性名录与保护利用》(覃海宁, 2020)、2013版的《中国生物多样性红色名录: 高等植物卷》(https://www.mee.gov.cn/gkml/hbb/bgg/201309/t20130912_260061.htm)、《广东高等植物红色名录》(王瑞江, 2022)和《国家重点保护野生植物名录》(2021版) (http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm), 统计迁地保育的相应物种数量、占比及空缺, 分别从国家尺度和省级尺度上分析受威胁植物的迁地保育状况。同时列出广东分布的国家重点保护植物迁地保育空缺物种清单。使用TBtools (Chen et al, 2020)统计分析并可视化广东植物园对国家重点保护野生植物的迁地保育贡献。

1.2.4 资源植物迁地保育现状分析

参照中国本土资源维管植物名录(Zhuang et al, 2021)的用途类别划分系统, 统计迁地收集数量及占比; 参照《广东高等植物红色名录》(王瑞江, 2022), 分别统计广东省植物园对广东本土各类资源植物的迁地收集数量及占比。参照《广东中药志》第一、二卷) (广东中药志编辑委员会, 1994, 1996), 统计广东本土中药资源活植物收集空缺物种清单。

2 结果

2.1 广东省植物园的建立、发展、隶属与区域分布

目前广东省有植物园、树木园等迁地保护机构15个(附录1), 涵盖区域综合性植物园、城市植物园、教学植物园、树木园和特色植物专类园, 隶属于不同主管单位, 主要有科技(含中国科学院)、住房与城乡建设、自然资源、教育、林业园林、农业等。

广东省植物园的建立与社会经济发展息息相关。1978年及以前是探索建立阶段, 不同行业、不同系统建立的植物园有5个(附录1), 其建设以中国科学院建设现代植物园为契机, 以华南植物园为范例, 以开展植物资源调查和植物收集、引种驯化、科学研究和资源应用为主要任务, 同时对广东省各行业的发展起到支撑作用, 为现代植物科学的学科建设、人才培养等发挥了积极作用。

1978年以后, 随着改革开放的快速发展和全球植物保护意识的兴起与发展, 广东省的植物园建设进入高峰期, 特别是2000年以后新建了9个植物园(附录1)。目前已步入多种模式植物园并存格局。

从四大地理区域看(图1, 附录1), 广东省植物园分布于珠三角(12个)、粤西(2个)、粤东(1个), 而粤北缺乏植物园等迁地保护机构。按气候带统计, 广东省植物园仅分布于南亚热带和北热带, 中亚热带缺乏植物园布局。按植被带统计, 广东省植物园仅分布于南亚热带常绿阔叶林地带和北热带季节性雨林地带, 中亚热带山地常绿阔叶林地带缺乏植物园布局。在南亚热带常绿阔叶林地带, 有11个植物园均位于珠江三角洲平原植被区, 1个位于潮汕平原植被区, 而其他3个植被区(云开大山丘陵山地植被区、绥江河谷丘陵山地植被区和东江小游丘陵山地植被区)缺乏植物园布局; 在北热带季节性雨林地带, 2个植物园位于雷州半岛台地植被区, 而其他2个植被区(粤中沿海丘陵植被区和粤东沿海丘陵台地植被区)均缺乏植物园布局。从海陆位置来看, 缺乏海岸带和岛屿植物园布局。从自然环境地形看, 植物园仅分布于珠江三角洲平原、潮汕平原和粤西山地台地, 而粤东山地丘陵、粤北山地以及独特地貌如喀斯特地貌和海蚀地貌等缺乏植物园。显然, 以植物园为主体的迁地保护机构数量和区域代表性均不足, 尚未实现全省主要气候带、植被带和典型植被类型植物迁地保护机构全覆盖布局。

2.2 迁地保育现状

2.2.1 迁地保育活植物的科、属、种数量及特征

广东省植物园共迁地保育高等植物15,026种, 隶属329科3,030属(附录2), 其中苔藓植物41种, 石松类和蕨类植物1,086种, 裸子植物361种, 被子植物13,538种; 分别占迁地保育总数的0.27%、7.23%、2.4%和90.1%。广东省植物园迁地保育中国本土野生维管植物9,068种, 隶属于275科2,131属, 约占中国已知本土野生维管植物物种的23% (9,068/ 38,903), 科的89% (275/309), 属的64% (2,131/ 3,325); 迁地保育广东省本土野生维管植物218科1,095属3,061种, 分别占广东本土野生维管植物(王瑞江, 2022)科的95% (235/248)、属的80% (1,229/1,532)、物种的58% (3,450/5,967), 表明广东省植物园机构对广东本土野生维管植物的收集具有较高的物种多样性, 但苔藓植物的迁地收集尚未受到足够重视。

广东省植物园迁地保护物种多样性不均衡(附录2), 华南植物园和仙湖植物园保存活植物物种数最多, 占广东省植物园迁地保育活植物物种总数的92% (13,800/15,026)。深圳兰科中心迁地保育了53% (130/246)的广东野生兰科植物(王瑞江, 2022)。神州木兰园迁地保育了100%广东省野生木兰科植物(王瑞江, 2022)、64% (92/144)的我国野生木兰科植物。广东药科大学药用植物园迁地保育了478种药用植物, 其中53% (254/478)为《广东中药志》(第一、二卷)收录的广东本土药用植物, 占该书收录的广东本土药用植物资源的35% (254/732)。

2.2.2 优势科级及属级类群

优势科级类群分析(表1)表明, 迁地保育100种以上的科有37科, 涵盖1,824属10,870种, 分别占活植物收集总属数的60% (1,824/3,030)、物种总数的72% (10,870/15,026), 表明广东省植物园对科级类群活植物的收集优势现象十分明显。优势属级类群分析(表2)表明, 50种及以上的属有37属(3,394种), 占活植物收集物种总数的23%。

表1   广东省植物园迁地保育优势科级类群分布区类型与属种组成及占世界属种的比例

Table 1  The area types and genera and species composition and their proportion of the world of the dominant families ex situ conservation in botanical gardens of Guangdong Province

序号
ID

Family
种数及占比
No. of species (%)
属数及占比
No. of genus (%)
科的分布区类型
Area type of family
1兰科 Orchidaceae1,091 (3.36)175 (23.8)世界广布 Cosmopolitan
2仙人掌科 Cactaceae952 (36.89)112 (70.88)东亚(热带、亚热带)及热带南美间断分布
Tropics & Subtropics East Asia & Tropics America disjuncted
3苦苣苔科 Gesneriaceae568 (13.33)58 (38.41)东亚(热带、亚热带)及热带南美间断分布
Tropics & Subtropics East Asia & Tropics America disjuncted
4豆科 Fabaceae493 (1.79)181 (23.2)世界广布 Cosmopolitan
5夹竹桃科 Apocynaceae490 (6.83)90 (24.19)泛热带分布 Pantropic
6景天科 Crassulaceae469 (20.23)27 (75)世界广布 Cosmopolitan
7禾本科 Poaceae465 (3.6)120 (14.96)世界广布 Cosmopolitan
8水龙骨科 Polypodiaceae445 (9.42)46 (64.78)世界广布 Cosmopolitan
9凤梨科 Bromeliaceae420 (10.63)40 (53.33)热带非洲-热带美洲间断分布
Tropics Africa & Tropics America disjuncted
10天南星科 Araceae393 (8.77)56 (40)泛热带分布 Pantropic
11棕榈科 Arecaceae278 (9.79)96 (53.33)泛热带分布 Pantropic
12天门冬科 Asparagaceae271 (7.15)37 (30.83)世界广布 Cosmopolitan
13菊科 Asteraceae268 (0.62)135 (7.99)世界广布 Cosmopolitan
14铁角蕨科 Aspleniaceae247 (6.51)18 (69.23)世界广布 Cosmopolitan
15报春花科 Primulaceae247 (6.35)13 (22.8)世界广布 Cosmopolitan
16大戟科 Euphorbiaceae246 (3.32)45 (19.82)泛热带分布 Pantropic
17樟科 Lauraceae244 (6.9)21 (37.5)泛热带分布 Pantropic
18秋海棠科 Begoniaceae244 (11.56)1 (50)泛热带分布 Pantropic
19阿福花科 Asphodelaceae229 (13.74)17 (41.46)世界广布 Cosmopolitan
20蔷薇科 Rosaceae226 (3.44)38 (33.33)世界广布 Cosmopolitan
21爵床科 Acanthaceae223 (3.77)54 (26.08)泛热带分布 Pantropic
22茜草科 Rubiaceae219 (1.37)83 (13.62)世界广布 Cosmopolitan
23唇形科 Lamiaceae216 (2.23)68 (29.31)世界广布 Cosmopolitan
24姜科 Zingiberaceae208 (10.1)28 (49.12)热带亚洲至热带大洋洲分布
Tropics Asia to Tropics Australasia Oceania
25木兰科 Magnoliaceae165 (40.64)13 (76.47)东亚及北美间断分布 East Asia & North America disjuncted
26杜鹃花科 Ericaceae162 (2.73)11 (9.09)北温带分布 North Temperate
27锦葵科 Malvaceae159 (2.59)61 (24.89)泛热带分布 Pantropic
28凤尾蕨科 Pteridaceae149 (9.97)14 (43.75)泛热带分布 Pantropic
29番杏科 Aizoaceae148 (7.45)41 (34.16)泛热带分布 Pantropic
30泽米铁科 Zamiaceae139 (54.5)9 (100)热带非洲-热带美洲间断分布
Tropics Africa & Tropics America disjuncted
31桃金娘科 Myrtaceae133 (1.9)23 (18.25)泛热带分布 Pantropic
32石蒜科 Amaryllidaceae132 (4.85)27 (39.13)北温带分布 North Temperate
33壳斗科 Fagaceae117 (9.23)5 (62.5)北温带分布 North Temperate
34桑科 Moraceae109 (6.85)13 (27.65)世界广布 Cosmopolitan
35山茶科 Theaceae103 (22.34)6 (75)东亚(热带、亚热带)和热带南美间断分布
Tropics & Subtropics East Asia & Tropical America disjuncted
36无患子科 Sapindaceae102 (4.48)27 (18.88)世界广布 Cosmopolitan
37荨麻科 Urticaceae100 (4.08)15 (25)世界广布 Cosmopolitan

新窗口打开| 下载CSV


表2   广东省植物园迁地保育优势属级类群物种数量及占世界种数的比例

Table 2  The species number and their proportion of the world of the dominant genus ex situ conservation in botanical gardens of Guangdong Province

序号
ID

Genus
种数及占比
No. of species (%)
属的分布区类型
Area type of genus
1秋海棠属 Begonia244 (12.24)2-2 热带亚洲-热带非洲-热带美洲(南美洲)分布
Tropics Asia-Tropics Africa-Tropics America (South America)
2球兰属 Hoya238 (43.66)5 热带亚洲至热带大洋洲分布 Tropics Asia to Tropics Australasia Oceania
3报春苣苔属 Primulina174 (78.73)15 中国特有分布 Endemic to China
4石斛属 Dendrobium169 (10.57)5(7e) 热带亚洲至热带大洋洲分布 Tropics Asia to Tropics Australasia Oceania
5石豆兰属 Bulbophyllum156 (7.26)2(6) 泛热带分布 Pantropic
6大戟属 Euphorbia142 (6.8)2 泛热带分布 Pantropic
7芦荟属 Aloe138 (23.5)6 热带亚洲至热带非洲分布 Tropics Asia to Tropics Africa
8乳突球属 Mammillaria122 (87.76)(3d) 环加勒比海分布 Circum-Caribbean
9铁兰属 Tillandsia115 (17.71)(3d) 环加勒比海分布 Circum-Caribbean
10花烛属 Anthurium106 (9.26)(3d) 环加勒比海分布 Circum-Caribbean
11拟石莲属 Echeveria105 (52.76)(3d) 环加勒比海分布 Circum-Caribbean
12杜鹃花属 Rhododendron89 (8.26)8-4 (14SH,7d) 北温带和南温带间断分布
North Temperate & South Temperate disjuncted
13山茶属 Camellia82 (36.6)7a (14) 西马来(基本上在新华莱士线以西) West Malesia beyond New Wallace Line
14尖萼凤梨属 Aechmea79 (31.47)(3d) 环加勒比海分布 Circum-Caribbean
15榕属 Ficus78 (8.85)2 泛热带分布 Pantropic
16簕竹属 Bambusa77 (50)2-2 热带亚洲-热带非洲-热带美洲(南美洲)分布
Tropics Asia-Tropics Africa-Tropics America (South America)
17鳞毛蕨属 Dryopteris76 (21.9)1 世界广布 Cosmopolitan
18喜林芋属 Philodendron73 (12.92)(3d) 环加勒比海分布 Circum-Caribbean
19马铃苣苔属 Oreocharis73 (51.77)7-4 越南(或中南半岛)至华南或西南分布
Vietnam or Indochinese Peninsula to South or Southwest China
20青锁龙属 Crassula71 (33.8)1 世界广布 Cosmopolitan
21报春花属 Primula71 (13.62)8 北温带分布 North Temperate
22耳蕨属 Polystichum68 (17.43)1 世界广布 Cosmopolitan
23鹿角柱属 Echinocereus65 (89.04)(3b) 热带、亚热带中美至南美 Tropics & Subtropics Center to South America
24裸萼球属 Gymnocalycium62 (93.93)(3g) 巴西南部、乌拉圭、阿根廷、智利(温带)
South Brazil, Uruguay, Argentina, Chile (Temperate)
25苏铁属 Cycas61 (52.58)5 热带亚洲至热带大洋洲分布 Tropics Asia to Tropics Australasia Oceania
26冬青属 Ilex61 (10.68)3 东亚(热带、亚热带)和热带美洲间断分布
Tropics & Subtropics East Asia & Tropical America disjuncted
27紫金牛属 Ardisia61 (8.35)2 泛热带分布 Pantropic
28润楠属 Machilus58 (48.33)7 热带亚洲分布 Tropics Asia
29景天属 Sedum57 (12.28)8 北温带分布 North Temperate
30悬钩子属 Rubus56 (3.85)1 世界广布 Cosmopolitan
31铁角蕨属 Asplenium55 (7.08)1 世界广布 Cosmopolitan
32非洲铁属 Encephalartos54 (81.81)(6b) 热带非洲(Sahara以南至南非) Tropics Africa (South Sahara to South Africa)
33马蓝属 Strobilanthes53 (11.72)7 热带亚洲分布 Tropics Asia
34沼泽蕨属 Thelypteris52 (4.71)8 北温带分布 North Temperate
35栎属 Quercus52 (11.2)8 北温带分布 North Temperate
36贝母兰属 Coelogyne51 (8.6)7 热带亚洲分布 Tropics Asia
37龙舌兰属 Agave50 (17.66)(3b) 热带、亚热带中美至南美 Tropics & Subtropics Center to South America

新窗口打开| 下载CSV


世界广布科有兰科、禾本科、菊科等16科, 热带性质的科有棕榈科、天南星科、夹竹桃科等共17科, 温带性质的科仅杜鹃花科、石蒜科、壳斗科和木兰科共4科(表1)。世界广布属5属, 热带性属25属, 温带性属7属(表2)。总体上看热带成分占绝对优势, 广东省植物园植物迁地保育物种表现出热带性质, 并与广东省自然植被植物区系地理成分吻合, 具有明显的亚热带特色。上述结果体现出生物地理学收集是广东省植物园活植物引种收集的重点策略, 并在一定程度上反映了对典型森林植被代表性类群、系统发育关键类群的收集及其科学研究的关注。

占世界属、种的比例均在50%以上的科仅有泽米铁科, 占世界属的50%以上且占世界物种比例10%-50%的科有仙人掌科、景天科、凤梨科、秋海棠科、木兰科及山茶科共6科, 其他占世界物种比例10%以上的科有阿福花科、苦苣苔科及姜科共3科。保育物种数占世界物种数50%以上的属(表2)有报春苣苔属(Primulina)、乳突球属(Mammillaria)、拟石莲属(Echeveria)、簕竹属(Bambusa)、马铃苣苔属(Oreocharis)、鹿角柱属(Echinocereus)、裸萼球属(Gymnocalycium)、苏铁属(Cycas)、非洲铁属(Encephalartos)。未来世界级或国家级、省级等重点收集类群应从上述具有数量和占比双重优势的科属类群中锚定。

值得注意的是, 保育优势属(表2)不一定隶属于保育优势科(表1), 如苏铁属、非洲铁属、冬青属(Ilex)、马蓝属(Strobilanthes)、紫金牛属(Ardisia)等(表2); 相反, 保育物种数占世界物种数较少的科(表1)却在相对应的属中保育物种数占比较大(表2), 如表1的禾本科(3.6%)在表2对应的簕竹属(50%)、表1的夹竹桃科(6.83%)在表2对应的球兰属(Hoya, 43.66%), 表明这些类群以属为重点收集单元具有更大优势; 而棕榈科、石蒜科、蔷薇科、爵床科、锦葵科、唇形科、豆科、茜草科、菊科(表1)等作为科级重点收集或者集中收集科内相应的地理成分类群、系统发育关键类群、重要种质资源等具有更大优势。

2.2.3 广东省本土维管植物迁地保育科级及属级空缺类群

广东省迁地保育科级类群空缺分析结果(附录3)表明, 广东省本土维管植物有13科(含19种)未引入植物园栽培, 它们是水蕹科、川蔓藻科、丝粉藻科、白玉簪科、霉草科、川苔草科、亚麻科、牻牛儿苗科、刺茉莉科、帽蕊草科、楔瓣花科、透骨草科及花柱草科。其中10科是广东本土单属单种科, 多数是水生、湿生或寄生植物。例如, 水蕹(Aponogeton lakhonensis)为多年生淡水草本, 川蔓藻(Ruppia maritima)为沉水草本, 针叶藻(Syringodium isoetifolium)为多年生海生沉水草本, 川苔草科生于急流石头或木桩上, 楔瓣花(Sphenoclea zeylanica)、狭叶花柱草(Stylidium tenellum)及花柱草(S. uliginosum)多生于田野湿润处、池沼边、稻田内或水沟边疏林下, 是亚热带山地沼泽植被、亚热带高山湖泊植被的重要组成部分。此外, 蛇菰科、帽蕊草科寄生于寄主植物根部, 霉草科是以菌根营养的腐生草本, 拥有特殊生活史。由此可见, 未来华南植物多样性保护体系建设应综合考虑上述亚热带山地沼泽植被、亚热带高山湖泊植被等特殊类型植被和寄生、腐生植物。

广东省迁地保育属级类群系统发育空缺分析结果(图2)显示, 广东本土野生维管植物共26科的活植物收集缺失3属及以上, 按照缺失属的数量由多到少依次为: 禾本科缺56属, 如燕麦属(Avena)假稻属(Leersia)高粱属(Sorghum)等; 菊科缺27属, 如小苦荬属(Ixeridium)、苦荬菜属(Ixeris)、非洲菊属(Gerbera); 唇形科缺17属, 如绵穗苏属(Comanthosphace)荆芥属(Nepeta)鸡脚参属(Orthosiphon); 豆科缺13属, 如蝶豆属(Clitoria)、睫苞豆属(Geissaspis)、大豆属(Glycine)等; 兰科缺12属, 如无叶兰属(Aphyllorchis)、异型兰属(Chiloschista)、丹霞兰属(Danxiaorchis)等; 茜草科缺11属, 如雪花属(Argostemma)、岩上珠属(Clarkella)、红芽大戟属(Knoxia)等; 列当科缺9属, 如假野菰属(Christisonia)、山罗花属(Melampyrum)、马先蒿属(Pedicularis)等; 葫芦科缺9属, 如白兼果属(Baijiania)、毒瓜属(Diplocyclos)、帽儿瓜属(Mukia)等; 夹竹桃科缺8属, 如海岛藤属(Gymnanthera)、尖槐藤属(Oxystelma)、鲫鱼藤属(Secamone)等; 莎草科缺7属, 如一本芒属(Cladium)、海滨莎属(Remirea)等; 旋花科缺7属, 如三翅藤属(Tridynamia)、鳞蕊藤属(Lepistemon)等; 毛茛科缺6属, 如锡兰莲属(Naravelia)、尾囊草属(Urophysa)等; 石竹科缺5属, 如卷耳属(Cerastium); 锦葵科缺5属, 如十裂葵属(Decaschistia); 荨麻科缺5属, 如舌柱麻属(Archiboehmeria); 大戟科缺4属, 如粗毛藤属(Cnesmone); 龙胆科缺4属, 如百金花属(Centaurium); 桑寄生科缺4属, 如五蕊寄生属(Dendrophthoe); 水龙骨科缺3属, 如革舌蕨属(Scleroglossum); 苋科缺3属, 如滨藜属(Atriplex)、十字花科缺3属, 如阴山荠属(Yinshania); 鸭跖草科缺3属, 如竹叶子属(Streptolirion); 远志科缺3属, 如鳞叶草属(Epirixanthes); 鼠李科缺3属, 如猫乳属(Rhamnella); 檀香科缺3属, 如重寄生属(Phacellaria)。

图2

图2   广东省本土维管植物属级水平活植物收集系统发育空缺分析。系统树中, 青色尖端表示该属存在于迁地保护网络中, 红色尖端表示该属不存在于迁地保护网络中。

Fig. 2   Phylogenetic gap analysis in the living collections at genera level of native vascular plants in botanical gardens of Guangdong Province. In the tree, cyan tips indicate that tips are present in the ex situ conservation network, and red tips indicate that tips are not present in the ex situ conservation network.


收集最缺乏的是温带类群, 如列当科是北温带广布科, 在广东野生自然分布有14属, 但其中11属(79%)未迁地保育。其次是葫芦科, 属热带广布科, 为一年生或多年生草质或木质藤本, 在广东自然分布有14属, 9属(64%)缺乏迁地保育。再次是世界广布的禾本科, 为一年生或多年生草本或竹类植物, 其中广东本土125属有56属(44.8%)尚未保育; 以及菊科, 多为草本、偶有亚灌木或灌木, 稀乔木, 其中广东本土菊科79属中有27属(34%)缺乏迁地保育。

上述结果表明, 绝大多数未保育物种的生活型为草本, 少数为藤本, 几乎没有木本植物, 且禾本科和菊科的许多物种是农田杂草, 并不是植物园迁地保护的目标收集类群。但是, 由于禾本科、豆科、葫芦科有大量粮食、牧草、蔬菜等重要种质或作物野生近缘种, 在区域性或国家层面植物多样性保护中应注重以特殊环境及重要资源为重点的核心种质战略性收集规划(邹璞等, 2022)。

2.3 受威胁和重点保护植物的迁地保育现状

受威胁和重点保护植物分析结果表明, 广东省植物园十分注重以珍稀濒危野生植物保护为核心的保护性收集。在全球尺度上收集保育了IUCN濒危物种红色名录(2022-2版)植物共869种(含极危190种、濒危311种、易危357种、野外灭绝9种、灭绝2种), 其中中国物种320种, 外国物种549种; 保育CITES附录植物2,182种(含附录I物种163种、附录II 物种1,980种、附录III物种39种), 其中中国物种759种, 外国物种1,423种, 表明广东省植物园对世界受威胁植物、CITES附录物种的迁地保护关注明显和贡献较大。

在国家尺度上, 保育了《国家重点保护野生植物名录》(2021版) 625种, 占比52% (625/1,205) (图3), 远远超过广东省自然分布的国家重点保护野生植物比例(13%, 161/1,205), 表明在迁地保护国家重点保护野生植物方面, 广东省植物园不仅担当起本省受威胁植物的迁地保护责任, 同时迁地保护了周边省份相同或相近地理区系的国家重点保护野生植物。此外, 保育列入《中国生物多样性红色名录: 高等植物卷》(2013)受威胁植物954种, 占比25% (954/3,767); 保育列入《中国高等植物受威胁物种名录》(覃海宁等, 2017)受威胁植物1,025种, 占比26% (1,025/3,879); 保育列入《中国种子植物多样性名录与保护利用》(覃海宁, 2020)及《中国生物多样性红色名录: 高等植物卷(2020)》受威胁植物1,044种, 占比25% (1,044/4,174); 保育中国特有植物2,599种, 占我国特有植物的14% (2,599/18,157), 特有物种主要参考《中国生物多样性红色名录: 高等植物卷(2020)》、德国的世界植物数据库(World Plants, https://www.worldplants.de, 访问日期2023-03-20)、《广东高等植物红色名录》(王瑞江, 2022)等多源数据整理而得。

图3

图3   广东省植物园对国家重点保护野生植物活植物收集的分析。植物园的缩写见附录2。(a)维恩点图红点表示1个植物园独有, 黄蓝绿点依次表示2、3、4个植物园共有, 黑点表示5个及以上植物园共有国家重点保护野生植物物种数量; (b)网络图展示12个机构各自拥有(与圆的直径成正比)与两两之间共有(与线的宽度成正比)国家重点保护野生植物物种数量关系; (c)条形图展示12个机构各自总共拥有的国家重点保护野生植物物种数量。

Fig. 3   Analysis of the living collections about the List of National Key Protected Wild Plants (version 2021, LNKPWP) among the sampled 12 botanical gardens of Guangdong Province. The abbreviation of garden see Appendix 2. (a) Venn diagram showing the species number of shared and uniquely living collections on LNKPWP among the sampled 12 botanical gardens; (b) Network diagram showing the species total number of each of the 12 institutions (proportional to the diameter of the circle) and the species number of shared by each pair (proportional to the width of the line) on LNKPWP; (c) Bar chart showing the total number of species of LNKPWP owned by each of the 12 institutions.


在省级尺度上, 至少迁地保育了414种广东本土受威胁维管植物, 占广东省受威胁植物的比例为64% (414/643); 保育广东省分布的国家重点保护野生维管植物133种, 占比83% (133/161); 保存广东省野生兰科植物161种(占比69%, 161/234)、广东省特有植物114种(占35%, 114/323) (王瑞江, 2022), 为我国履行《生物多样性公约》承担了重要责任。

进一步分析结果(图3)表明, 广东省植物园均在不同程度上致力于保护性收集, 促进了国家重点保护野生植物在多个植物园的收集保存。例如, 华南国家植物园与其他植物园对国家重点保护野生植物形成了1个核心收集园区和多个异地收集园区构成的“1+X”收集保藏模式。但从受威胁植物遗传多样性保护角度看, 还有相当数量的国家重点保护野生植物仅迁地保存于1个植物园, 尚未实施“1+X”异地收集保藏策略。将仅保育于1个植物园的物种称为独有贡献(图3a红点对应的物种数)。按照独有贡献的物种数量由多到少依次为仙湖植物园(74)、华南国家植物园(67)、深圳兰科中心(54)、东莞植物园(8)、惠州植物园(4)、中山树木园(1)、广东树木公园(1)、佛山植物园(1)、神州木兰园(1)、湛江南亚热带植物园(1)、华南农业大学树木园(0)、广东药科大学药用植物园(0)。迁地保存5个及以上植物园的国家重点保护野生植物仅有100种(图3a黑点对应的物种), 占16% (100/625)。

2.4 资源植物的迁地保育现状

广东省植物园迁地保育的资源植物具有丰富的用途类别多样性, 包括药用(3,832种)、食用(1,069)、观赏/绿化(695)、工业原料(431)、木材/建筑(502)、纤维(361)、油料(351)、饲料(315)、农药(111)、祭祀/文化(86)和染料/色素(76)及其他(203)。在国家尺度, 目前共迁地保育了4,262种中国资源植物, 占所收集的中国本土野生维管植物总数的47% (4,262/9,109)。

进一步统计表明, 在省级层面广东省植物园迁地保育了广东本土野生资源维管植物2,275种, 占广东省资源维管植物的72% (2,275/3,173)。广东省本土资源维管植物迁地栽培统计显示, 不同类别资源植物收集完整性不同, 收集比例从高到低依次为木材/建筑(88.97%)、观赏绿化(87.41%)、油料(86.06%)、农药(84.42%)、祭祀/文化(87.93%)、工业原料(82.58%)、染料/色素(80.36%)、食用(80.15%)、纤维(76.45%)、药用(72.07%)、饲料(69.48%)。总体上看, 广东本土资源植物收集的比例不低, 但目前并未在植物园建设中形成典型的专类植物收集园区, 这可能与此前植物园战略规划和引种保育实践缺乏规范性和系统性等问题有关。

参考《广东中药志》进行统计分析, 发现广东省植物园收集本土中药资源662种, 占本土中药的93% (662/714), 而广东本土中药资源活植物收集空缺物种(附录4)大多为草本植物, 具有短命、难发现、难鉴定、难跟踪等特点。在整理附录4时发现: 有些物种虽然是重要的资源植物但并没有纳入植物园活植物管理, 如可药用或用作饲料的大猪屎豆(Crotalaria assamica)、逸生于植物园的野生紫苏(Perilla frutescens var. purpurascens)及药食同源的粉葛(Pueraria montana var. thomsonii)等; 也有些物种虽然在野外常见或较常见, 如咸虾花(Cyanthillium patulum)、土丁桂(Evolvulus alsinoides)、石荠苎(Mosla scabra)等(附录4), 但在植物园活植物管理中空缺, 可能与这些植物的生活型、繁殖特性有关, 也可能与专类植物的收集与管理有关, 未来应重视这类重要种质的收集与规范管理。

3 讨论

3.1 完善区域迁地保护网络体系建设

广东省植物园分布不平衡, 与世界植物园(Mounce et al, 2017)和中国植物园(黄宏文, 2018b; Zhao et al, 2022; Ye et al, 2023)分布格局类似。本研究发现, 广东省植物园在粤北海拔较高区域存在分布空白, 整个中亚热带缺乏植物园布局。另一方面, 广东省拥有漫长的海岸线和众多岛屿, 其异质性产生了大量的栖息地, 生存着异常多样的植物类群。然而, 广东省缺乏岛屿、海岸线等位于地理隔离或重要生物区域布局的植物园。尽管社会经济因素, 例如国内生产总值和大城市人口, 是影响植物园的地理分布和植物园物种丰富度的主要因素(Golding et al, 2010), 但活植物收集数据中的生物地理空白仍然必须填补, 以提供协调的植物迁地保护所需的强大的网络基础设施(Mounce et al, 2017)。构建覆盖不同自然地理、气候、区系和植被区域的以植物园为依托的迁地保护网络体系, 才能更有效地发挥植物园对植物多样性保护的功能(王利松等, 2023)。因此, 在我国开启国家植物园体系以及华南国家植物园规划建设时, 建议在广东省自然保护区和植物园等迁地保护机构(图1)现状基础上, 统筹迁地保护体系的地理区域布局, 建立以华南国家植物园为核心、区域性植物园为骨干、特殊环境/重要资源特色植物迁地收集机构为站点的广东省迁地保护网络体系, 建立中亚热带、北-南亚热带、南-南亚热带迁地保育机构, 辐射粤港澳及周边省区植物园、树木园、国家森林公园和保护地, 健全活立木基因库、栖息地保护站、微型保护地和准就地保护机构组成引种基地体系和迁地收集栽培体系。

3.2 构建国家活植物收集综合保藏体系

广东省植物园至少迁地保育中国已知本土维管植物物种的22%, 略高于广东省本土维管植物占全国本土维管植物的比例(约17%) (王瑞江, 2022)。广东省植物园迁地保育广东本土野生维管植物科的95%、属的80%、物种的58%。目前, 世界植物园收集保育全球已知维管植物科的93%, 有胚植物属的59%、物种的30% (Mounce et al, 2017), 中国植物园保存我国本土植物科的97.5%、属的78.03%、物种的41.63% (任海等, 2022)。可见, 广东省植物园对广东本土野生维管植物多样性的保护高于全国和全球植物迁地保护的整体水平, 对广东省本土甚至全国植物多样性保护发挥了积极作用。

对重要类群的综合评估一方面有助于推进生物多样性整体评估(Cires et al, 2013), 另一方面有助于确定活植物收集的优先次序(Scott et al, 1991; Chua et al, 2022)、制定特定物种的保护策略(Griffith et al, 2021)和指导实际保护项目(Vázquez-García et al, 2021)。基于广东省植物园保育的优势科属研究结果, 建议持续加强重点类群的研究性收集, 扩大具有物种数量及占比优势的科级和属级分类群收集规模, 优先构建木兰科、姜科、竹亚科等迁地收集网络, 建设世界一流活植物收集园区; 重点收集兰科、水龙骨科、铁角蕨科等世界分布类群和棕榈科、樟科、桫椤科和凤尾蕨科、球兰属、山茶属(Camellia)、苏铁属等热带分布类群迁地收集网络, 建设国内一流活植物收集园区; 着力收集其他迁地保育重点类群的物种代表性和分类系统代表性, 开展重点区域植物区系编目、活植物收集专著研究、生殖物候特征观测和谱系地理与进化生物学研究。

据统计, 全球约有20%-40% (Brummitt et al, 2015; Nic Lughadha et al, 2020)、中国约有15%-20% (覃海宁和赵莉娜, 2017)、广东约有10%-18% (王瑞江, 2022)的植物物种正遭受灭绝威胁。全世界只有10%的植物园对珍稀濒危植物进行迁地保育(Mounce et al, 2017; Gross, 2018)。本研究表明, 广东省迁地保育了64% (414种)的广东本土受威胁维管植物, 明显高于全国(45%, Zhao et al, 2022)、欧洲(42%, Sharrock & Jones, 2011)及全球整体(41%, Mounce et al, 2017)水平, 但与全球植物保护战略GSPC (Global Strategy For Plant Conservation)目标8约定的迁地收集本土受威胁植物的至少75%的目标仍然有一定距离。

相关研究表明, 地理上广泛、随机和分散的采样(Hoban & Schlarbaum, 2014; Hoban & Strand, 2015), 维护多个个体(Griffith et al, 2008)多年(Griffith et al, 2015)多个异地收集园区(Walsh, 2015(①Walsh S (2015) Floral Biology, Breeding System, Pollination Ecology, and ex situ Genetic Diversity of the Endangered Hawaiian Species, Brighamia insignis A. Gray (Campanulaceae). MS thesis, University of Hawaii, Mānoa.))活植物收集保存, 将多个迁地收集资源联网汇集形成元收集并共享数据(Griffith et al, 2020)可以促进迁地保护工作规范化、体系化、科学化, 从而更有效地保护野生植物多样性。针对保护性收集多样性代表性不足的问题, 未来广东省植物园及其迁地保护体系应全面提升受威胁植物等保护性收集物种的覆盖率, 例如对广东省分布的国家重点保护植物迁地保育空缺物种(附录5)进行迁地保育全覆盖。

建议各专类或行业植物园加强针对性目标物种收集。拟高粱(Sorghum propinquum)及大豆属(Glycine)的野大豆(G. soja)、短绒野大豆(G. tomentella)、烟豆(G. tabacina)属于农业部管理的国家二级重点保护野生植物(附录5), 其中短绒野大豆及烟豆生于沿海及附近岛屿干旱坡地、平地或荒坡草地上, 因此建议湛江南亚热带植物园给予关注并迁地保育。石杉亚科植物普遍含有石杉碱甲(HupA), 是重要的药用植物; 石斛属(Dendrobium)植物是珍稀的中国传统中药。因此未来广东药科大学药用植物园或广州中医药大学药用植物园应迁地保育具有药用价值且目前空缺的广东省分布的国家重点保护野生植物, 如华南马尾杉(Phlegmariurus austrosinicus)、华重楼(Paris polyphylla var. chinensis)、单莛草石斛(D. porphyrochilum)、短萼黄连(Coptis chinensis var. brevisepala)等。

佛山植物园对山茶科活植物收集具有优势, 建议其优先加强对秃房茶(Camellia gymnogyna)、毛叶茶(C. ptilophylla)及白毛茶(C. sinensis var. pubilimba)的迁地保育。红豆属(Ormosia)植物木材坚韧、纹理美观、材质优良, 具有极高的经济价值和开发利用潜力, 建议广东树木园和中山树木园加强对厚荚红豆(O. elliptica)、紫花红豆(O. purpureiflora)的收集保育。猕猴桃属(Actinidia)植物分布于珠江以北, 建议惠州植物园以及将来粤北地区新建的植物园或迁地保育基地加强对金花猕猴桃(A. chrysantha)和条叶猕猴桃(A. fortunatii)的保育。作为种质资源收集中心, 建议深圳兰科中心加强对兰科空缺物种丹霞兰(Danxiaorchis singchiana)、广东兜兰(Paphiopedilum guangdongense)的保育。而对生境依赖高的水生植物高雄茨藻(Najas browniana)、华南飞瀑草(Cladopus austrosinensis)、川苔草(C. chinensis)、飞瀑草(C. nymanii)则建议联合就地保护机构, 开展特殊物种保护专项行动, 实施“一种一策”保护策略。

在此基础上, 针对遗传代表性不足问题, 对仅在少数植物园中有保存的物种, 采用关键保护物种(含广东极小种群和特有植物)自上而下确定一个核心收集园区和多个异地收集园区的“1+X”收集保藏模式, 增加具有迁地保护优势的珍稀濒危植物和国家重点保护植物野生居群来源和迁地保育异地收集备份, 增加受威胁植物保护性收集保存量和居群代表性与遗传代表性, 提高国家和广东省重点保护野生植物和珍稀濒危植物保护效率。

相比于受威胁植物而言, 资源植物在物种保护优先级的评估中较容易被忽视(Brehm et al, 2010; Engels & Thormann, 2020), 在活植物收集中缺乏对这些物种有针对性的覆盖。这意味着也缺少物种繁殖所需的相关研究, 以支持农业和恢复活动(Breman et al, 2021)。植物园将面临前所未有的机会, 重新发挥其作为引种中心的作用, 并成为评估新种质的主要参与者, 包括观赏植物和其他经济上重要的植物(Heywood, 2011)。在农林草药植物种质资源收集方面, 广东省植物园迁地保育的中国本土资源植物占所收集的中国本土维管植物总数的47%, 同时迁地保育了72%的广东本土资源植物, 明显超过中国本土资源植物占中国植物区系的比例(28%) (Zhuang et al, 2021), 为开展农林草药等优良植物品种的选育、扩繁、储备和推广示范提供了基础。结合当前社会发展需求, 本文提供了广东省本土中药活植物收集空缺物种清单(附录5), 以促进未来药用植物针对性收集。未来建议将初具规模的植物资源进行种质遗传价值和育种价值评价, 凝练提升为支持农林草药产业转型升级的核心种质收集。适时适地推出并积极推进药用植物、芳香植物、园林植物以及其他经济作物资源开发利用(Heywood, 2011), 重点支持生态修复(Hardwick et al, 2011)、城市植物多样性保护与可持续性利用(Hu et al, 2017)、高碳汇能力植物选育与栽培技术(Muñoz-Vallés et al, 2013), 提升城市生态建设和产业服务水平。

综上, 由于主要植物园缺乏实施“异地收集政策”、重要保护性物种未在多园备份种质和开展“异园”适应性比较研究及活植物清查与管理不严格不细致不规范等原因, 广东省植物园迁地保育工作仍存在诸多不足, 未来在国家活植物收集综合保藏体系构建时, 应增加重点类群研究性收集, 优先加强受威胁植物保护性收集, 兼顾核心种质收集。

3.3 建立关键物种“苗圃栽培-人工群落-异地种植”实验体系

随着我国生物多样性保护进入了由数量发展到质量发展的新阶段, 在全球气候变化、环境污染、生物入侵、生态系统退化背景下, 单一的保护方式或单一的保护区域都会面临局限性, 就地保护和迁地保护的整合是必然趋势(黄宏文, 2018a; 任海等, 2022)。对保护性收集的关键物种, 要从就地保护和迁地保护的整合保护出发, 努力实现“一种一策”整合保护策略(黄宏文和廖景平, 2022)。对于实施迁地保护确实有困难的目标物种, 如本研究发现的系统发育空缺的寄生植物、腐生植物、洞穴植物、水(湿)生植物等种类, 应加强其在就地保护系统中的清查、管理和保护, 探索生活史、环境壁垒、稀缺性、特有性及经济价值(Mounce et al, 2017), 为就地保护提供技术、规程和科学指导。对于确实需要迁地保护的目标物种, 包括国家重点保护野生植物、受威胁植物、极小种群和特有植物等, 在本研究建立的数据库基础上结合野生种源数据评估迁地收集的地理和生态覆盖范围, 以开发具有代表性的收集(Linsky et al, 2023)。在引种前应开展生境及其生态生物学特性等方面充分的野外调查(Lebeda et al, 2019)、建立关键物种“苗圃栽培-人工群落-异地种植”实验体系, 开展苗圃栽培和专类园区人工群落营造, 研究栽培技术、繁殖技术和综合管理园艺技术(Griffith et al, 2021; Cannon et al, 2023), 系统实施野外回归和栖息地恢复与持续监测(Godefroid et al, 2011), 增强保护成效。对于全科、全属被列入国家重点保护野生植物的类群, 应实施整合研究, 加深对隐种、自然杂交种、新种等的认知和鉴定, 及时发现、及时评估和排除、精准实施“一种一策”保护策略。实施整合保护研究计划(Harris et al, 2009), 促进植物多样性保护、科学研究和可持续利用。

附录 Supplementary Material

附录1 广东省植物园概况

Appendix 1 Overview of botanical gardens of Guangdong Province

附录2 广东省植物园活植物迁地保育状况

Appendix 2 Ex situ conservation of living collections in botanical gardens of Guangdong Province

附录3 广东本土植物科级类群活植物收集空缺分析

Appendix 3 The gap analysis in the living collections of the native plant family in Guangdong Province

附录4 广东本土中药资源活植物收集空缺物种名录

Appendix 4 List of vacant species in living collections of Chinese medicine resources native to Guangdong Province

附录5 广东省分布的国家重点保护植物迁地保育空缺物种名录

Appendix 5 List of vacant species in ex situ conservation of national key protected plants distributed in Guangdong Province

致谢

感谢为本研究提供活植物名录的12家迁地保护机构, 分别是东莞植物园、佛山植物园、广东树木公园、广东药科大学药用植物园、华南农业大学树木园、华南植物园、惠州植物园、全国兰科植物种质资源保护中心、深圳市仙湖植物园、神州木兰园、湛江南亚热带植物园、中山树木园。感谢中国科学院华南植物园王瑞江研究员在广东省本土植物数据电子化上提供帮助。感谢聂丽云、林灿佳、木楠等在数据可视化上提供帮助。感谢彭彩霞、董书鹏、徐一大、沈佳豪、张代贵、张玲玲和傅筱琳提供植物照片!

参考文献

APG Angiosperm Phylogeny Group (2016)

An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV

Botanical Journal of the Linnean Society, 181, 1-20.

DOI:10.1111/boj.2016.181.issue-1      URL     [本文引用: 1]

Brehm JM, Maxted N, Martins-Loução MA, Ford-Lloyd BV (2010)

New approaches for establishing conservation priorities for socio-economically important plant species

Biodiversity and Conservation, 19, 2715-2740.

DOI:10.1007/s10531-010-9871-4      URL     [本文引用: 1]

Breman E, Ballesteros D, Castillo-Lorenzo E, Cockel C, Dickie J, Faruk A, O’Donnell K, Offord CA, Pironon S, Sharrock S, Ulian T (2021)

Plant diversity conservation challenges and prospects: The perspective of botanic gardens and the millennium seed bank

Plants, 10, 2371.

DOI:10.3390/plants10112371      URL     [本文引用: 2]

There is a pressing need to conserve plant diversity to prevent extinctions and to enable sustainable use of plant material by current and future generations. Here, we review the contribution that living collections and seed banks based in botanic gardens around the world make to wild plant conservation and to tackling global challenges. We focus in particular on the work of Botanic Gardens Conservation International and the Millennium Seed Bank of the Royal Botanic Gardens, Kew, with its associated global Partnership. The advantages and limitations of conservation of plant diversity as both living material and seed collections are reviewed, and the need for additional research and conservation measures, such as cryopreservation, to enable the long-term conservation of ‘exceptional species’ is discussed. We highlight the importance of networks and sharing access to data and plant material. The skill sets found within botanic gardens and seed banks complement each other and enable the development of integrated conservation (linking in situ and ex situ efforts). Using a number of case studies we demonstrate how botanic gardens and seed banks support integrated conservation and research for agriculture and food security, restoration and reforestation, as well as supporting local livelihoods.

Brummitt NA, Bachman SP, Griffiths-Lee J, Lutz M, Moat JF, Farjon A, Donaldson JS, Hilton-Taylor C, Meagher TR, Albuquerque S, Aletrari E, Andrews AK, Atchison G, Baloch E, Barlozzini B, Brunazzi A, Carretero J, Celesti M, Chadburn H, Cianfoni E, Cockel C, Coldwell V, Concetti B, Contu S, Crook V, Dyson P, Gardiner L, Ghanim N, Greene H, Groom A, Harker R, Hopkins D, Khela S, Lakeman-Fraser P, Lindon H, Lockwood H, Loftus C, Lombrici D, Lopez-Poveda L, Lyon J, Malcolm-Tompkins P, McGregor K, Moreno L, Murray L, Nazar K, Power E, Tuijtelaars MQ, Salter R, Segrott R, Thacker H, Thomas LJ, Tingvoll S, Watkinson G, Wojtaszekova K, Nic Lughadha EM (2015)

Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants

PLoS ONE, 10, e0135152.

[本文引用: 1]

Cannon CH, Dhyani A, Chen J, Rivers M (2023)

The Global Tree Assessment provides a multifaceted view on the future of tree diversity conservation

Plants, People, Planet, 5, 461-465.

DOI:10.1002/ppp3.v5.4      URL     [本文引用: 1]

Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020)

TBtools: An integrative toolkit developed for interactive analyses of big biological data

Molecular Plant, 13, 1194-1202.

DOI:S1674-2052(20)30187-8      PMID:32585190      [本文引用: 1]

The rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface. The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization. A wide variety of graphs can be prepared in TBtools using a new plotting engine ("JIGplot") developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature. TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 1.6 or newer. It is freely available to non-commercial users at https://github.com/CJ-Chen/TBtools/releases.Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved.

Chen J (2022)

Some thoughts about China’s national botanical garden system construction

Biodiversity Science, 30, 22016. (in Chinese)

DOI:10.17520/biods.2022016      [本文引用: 1]

[陈进 (2022)

关于我国国家植物园体系建设的一点思考

生物多样性, 30, 22016.]

DOI:10.17520/biods.2022016      [本文引用: 1]

Chen LZ (2014) Floristics and Vegetation Geography of China. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[陈灵芝 (2014) 中国植物区系与植被地理. 科学出版社, 北京.]

[本文引用: 1]

Chen T, Chang HT (1994)

The floristic geography of Nanling Mountain Range, China. I. Floristic composition and characteristics

Journal of Tropical and Subtropical Botany, 2, 10-23. (in Chinese with English abstract)

[本文引用: 1]

[陈涛, 张宏达 (1994)

南岭植物区系地理学研究. I. 植物区系的组成和特点

热带亚热带植物学报, 2, 10-23.]

[本文引用: 1]

Christenhusz MJM, Fay MF, Chase MW (2017) Plants of the World:An Illustrated Encyclopedia of Vascular Plants. University of Chicago Press, Chicago.

[本文引用: 1]

Chua LSL, Sang J, Pereira JT, Khoo E, Maycock CR (2022)

Current state of knowledge on the extinction risk of Malaysian tree species: Proximate needs to mitigate loss

Plants, People, Planet, 5, 483-495.

DOI:10.1002/ppp3.v5.4      URL     [本文引用: 1]

Cires E, De Smet Y, Cuesta C, Goetghebeur P, Sharrock S, Gibbs D, Oldfield S, Kramer A, Samain MS (2013)

Gap analyses to support ex situ conservation of genetic diversity in Magnolia, a flagship group

Biodiversity and Conservation, 22, 567-590.

DOI:10.1007/s10531-013-0450-3      URL     [本文引用: 1]

Corlett RT (2020)

Safeguarding our future by protecting biodiversity

Plant Diversity, 42, 221-228.

DOI:10.1016/j.pld.2020.04.002      [本文引用: 2]

The Anthropocene is marked by twin crises: climate change and biodiversity loss. Climate change has tended to dominate the headlines, reflecting, in part, the greater complexity of the biodiversity crisis. Biodiversity itself is a difficult concept. Land plants dominate the global biomass and terrestrial arthropods probably dominate in terms of numbers of species, but most of the Tree of Life consists of single-celled eukaryotes, bacteria, and archaea. Wild plants provide a huge variety of products and services to people, ranging from those that are species-specific, such as food, medicine, and genetic resources, to many which are partly interchangeable, such as timber and forage for domestic animals, and others which depend on the whole community, but not on individual species, such as regulation of water supply and carbon sequestration. The use of information from remote sensing has encouraged a simplified view of the values of nature's contributions to people, but this does not match the way most people value nature. We can currently estimate the proportion of species threatened by human impacts only for a few well-assessed groups, for which it ranges from 14% (birds) to 63% (cycads). Less than 8% of land plants have been assessed, but it has been estimated that 30-44% are threatened, although there are still few (0.2%) well-documented extinctions. Priorities for improving protection of biodiversity include: improving the inventory, with surveys focused on geographical areas and taxonomic groups which are under-collected; expanding the protected area system and its representativeness; controlling overexploitation; managing invasive species; conserving threatened species ex situ; restoring degraded ecosystems; and controlling climate change. The Convention on Biological Diversity (CBD) COP15 and the United Nations Framework Convention on Climate Change (UNFCCC) COP26 meetings, both postponed to 2021, will provide an opportunity to address both crises, but success will require high ambition from all participants.

Crane PR, Ge S, Hong DY, Huang HW, Jiao GL, Knapp S, Kress WJ, Mooney H, Raven PH, Wen J, Wu WH, Yang HM, Zhu WH, Zhu YX, Shenzhen Declaration Drafting Committee (2019)

The Shenzhen Declaration on Plant Sciences—Uniting plant sciences and society to build a green, sustainable Earth

Plants, People, Planet, 1, 59-61.

DOI:10.1002/ppp3.v1.1      URL     [本文引用: 1]

Editorial Committee of Guangdong Traditional Chinese Medicine (1994) Guangdong Traditional Chinese Medicine (Vol. I). Guangdong Science and Technology Press, Guangzhou. (in Chinese)

[本文引用: 1]

[广东中药志编辑委员会 (1994) 广东中药志(第一卷). 广东科技出版社, 广州.]

[本文引用: 1]

Editorial Committee of Guangdong Traditional Chinese Medicine (1996) Guangdong Traditional Chinese Medicine (Vol. II). Guangdong Science and Technology Press, Guangzhou. (in Chinese)

[本文引用: 1]

[广东中药志编辑委员会 (1996) 广东中药志(第二卷). 广东科技出版社, 广州.]

[本文引用: 1]

Editorial Committee of Guangdong Yearbook (2021) Guangdong Yearbook 2021. Guangdong Yearbook Press, Guangzhou. (in Chinese)

[本文引用: 1]

[广东年鉴编纂委员会 (2021) 广东年鉴2021. 广东年鉴社, 广州.]

[本文引用: 1]

Engels JMM, Thormann I (2020)

Main challenges and actions needed to improve conservation and sustainable use of our crop wild relatives

Plants, 9, 968.

DOI:10.3390/plants9080968      URL     [本文引用: 1]

Crop wild relatives (CWR, plural CWRs) are those wild species that are regarded as the ancestors of our cultivated crops. It was only at the end of the last century that they were accorded a high priority for their conservation and, thus, for many genebanks, they are a new and somewhat unknown set of plant genetic resources for food and agriculture. After defining and characterizing CWR and their general threat status, providing an assessment of biological peculiarities of CWR with respect to conservation management, illustrating the need for prioritization and addressing the importance of data and information, we made a detailed assessment of specific aspects of CWRs of direct relevance for their conservation and use. This assessment was complemented by an overview of the current status of CWRs conservation and use, including facts and figures on the in situ conservation, on the ex situ conservation in genebanks and botanic gardens, as well as of the advantages of a combination of in situ and ex situ conservation, the so-called complementary conservation approach. In addition, a brief assessment of the situation with respect to the use of CWRs was made. From these assessments we derived the needs for action in order to achieve a more effective and efficient conservation and use, specifically with respect to the documentation of CWRs, their in situ and ex situ, as well as their complementarity conservation, and how synergies between these components can be obtained. The review was concluded with suggestions on how use can be strengthened, as well as the conservation system at large at the local, national, and regional/international level. Finally, based on the foregoing assessments, a number of recommendations were elaborated on how CWRs can be better conserved and used in order to exploit their potential benefits more effectively.

Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, London.

[本文引用: 1]

Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon D, Magnanon S, Valentin B, Bjureke K, Koopman R, Vicens M, Virevaire M, Vanderborght T (2011)

How successful are plant species reintroductions?

Biological Conservation, 144, 672-682.

DOI:10.1016/j.biocon.2010.10.003      URL     [本文引用: 1]

Golding J, Güsewell S, Kreft H, Kuzevanov VY, Lehvävirta S, Parmentier I, Pautasso M (2010)

Species-richness patterns of the living collections of the world’s botanic gardens: A matter of socio-economics

Annals of Botany, 105, 689-696.

DOI:10.1093/aob/mcq043      PMID:20237117      [本文引用: 1]

The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity-area and diversity-age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown.Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling.The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness.Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.

Griffith MP, Calonje M, Meerow AW, Tut F, Kramer AT, Hird A, Magellan TM, Husby CE (2015)

Can a botanic garden cycad collection capture the genetic diversity in a wild population?

International Journal of Plant Sciences, 176, 1-10.

DOI:10.1086/678466      URL     [本文引用: 1]

Griffith MP, Clase T, Toribio P, Piñeyro YE, Jimenez F, Gratacos X, Sanchez V, Meerow A, Meyer A, Kramer A, Fant J, Havens K, Magellan TM, Dosmann M, Hoban S (2020)

Can a botanic garden metacollection better conserve wild plant diversity? A case study comparing pooled collections with an ideal sampling model

International Journal of Plant Sciences, 181, 485-496.

DOI:10.1086/707729      URL     [本文引用: 1]

Griffith MP, Meyer A, Grinage A (2021)

Global ex situ conservation of palms: Living treasures for research and education

Frontiers in Forests and Global Change, 4, 711414.

DOI:10.3389/ffgc.2021.711414      URL     [本文引用: 2]

Under the old taxon Principes, palms were once the Princes of the Kingdom Plantae. First on Engler’s list, they occupy a cherished place to botanists, and remain treasured centerpieces of many gardens. In turn, botanic gardens have put forward a decades-long effort to conserve these widely admired plants, keeping a number of palm species from extinction. Living palm collections also have critical value for comparative ecological studies. In this paper we highlight successful ex situ conservation programs for palms, review how the promising new field of collections genetics can guide ex situ conservation of palms, conduct a family-wide gap analysis for living collections in the Arecaceae, and provide an in-depth case study of ex situ conservation of the genus Sabal. These analyses highlight ways in which gardens can advance palm conservation following four recommendations: collect, cultivate, communicate, and collaborate.

Griffith MP, Noblick LR, Dowe JL, Husby CE, Calonje MA (2008)

Cyclone tolerance in new world Arecaceae: Biogeographic variation and abiotic natural selection

Annals of Botany, 102, 591-598.

DOI:10.1093/aob/mcn132      PMID:18669575      [本文引用: 1]

Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection.New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts.Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality.Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.

Gross M (2018)

Can botanic gardens save all plants?

Current Biology, 28, R1075-R1078.

DOI:10.1016/j.cub.2018.09.010      URL     [本文引用: 1]

Guangdong Institute of Botany (1976) Vegetation of Guangdong. Science Press, Beijing. (in Chinese)

[本文引用: 2]

[广东省植物研究所 (1976) 广东植被. 科学出版社, 北京.]

[本文引用: 2]

Hardwick KA, Fiedler P, Lee LC, Pavlik B, Hobbs RJ, Aronson J, Bidartondo M, Black E, Coates DJ, Daws MI, Dixon K, Elliott S, Ewing K, Gann GD, Gibbons D, Gratzfeld J, Hamilton MA, Hardman D, Harris JA, Holmes PM, Jones M, Mabberley D, Mackenzie A, Magdalena C, Marrs R, Milliken W, Mills AJ, Lughadha EMN, Ramsay MM, Smith P, Taylor N, Trivedi C, Way MJ, Whaley OQ, Hopper SD (2011)

The role of botanic gardens in the science and practice of ecological restoration

Conservation Biology, 25, 265-275.

DOI:10.1111/j.1523-1739.2010.01632.x      PMID:21309850      [本文引用: 1]

Many of the skills and resources associated with botanic gardens and arboreta, including plant taxonomy, horticulture, and seed bank management, are fundamental to ecological restoration efforts, yet few of the world's botanic gardens are involved in the science or practice of restoration. Thus, we examined the potential role of botanic gardens in these emerging fields. We believe a reorientation of certain existing institutional strengths, such as plant-based research and knowledge transfer, would enable many more botanic gardens worldwide to provide effective science-based support to restoration efforts. We recommend botanic gardens widen research to include ecosystems as well as species, increase involvement in practical restoration projects and training practitioners, and serve as information hubs for data archiving and exchange.© 2011, Board of Trustees of the Royal Botanic Gardens, Kew Conservation Biology ©2011 Society for Conservation Biology.

Harris S, Shaw J, Crane N (2009)

Planning the integration of ex situ plant conservation in Tasmania

Cunninghamia, 11, 123-130.

[本文引用: 1]

Heywood VH (2011)

The role of botanic gardens as resource and introduction centres in the face of global change

Biodiversity and Conservation, 20, 221-239.

DOI:10.1007/s10531-010-9781-5      URL     [本文引用: 3]

Heywood VH (2017)

The future of plant conservation and the role of botanic gardens

Plant Diversity, 39, 309-313.

DOI:10.1016/j.pld.2017.12.002      [本文引用: 2]

Hoban S, Schlarbaum S (2014)

Optimal sampling of plant populations for ex situ conservation of genetic biodiversity, considering realistic population structure

Biological Conservation, 177, 90-99.

DOI:10.1016/j.biocon.2014.06.014      URL     [本文引用: 1]

Hoban S, Strand A (2015)

Ex situ conservation seed collections should consider spatial design and species’ reproductive biology

Biological Conservation, 187, 182-191.

DOI:10.1016/j.biocon.2015.04.023      URL     [本文引用: 1]

Hu Y, Vincent G, Chen X (2017)

How can botanical gardens support sustainable urban development? A case study of Shanghai Chenshan Botanical Garden

Annals of the Missouri Botanical Garden, 102, 303-308.

DOI:10.3417/D-16-00003A      URL     [本文引用: 1]

Huang HW (2018a) The Principle and Practice of ex situ Plant Conservation. Science Press, Beijing. (in Chinese)

[本文引用: 2]

[黄宏文 (2018a) 植物迁地保育原理与实践. 科学出版社, 北京.]

[本文引用: 2]

Huang HW (2018b) Chinese Botanical Gardens. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 2]

[黄宏文 (2018b) 中国植物园. 中国林业出版社, 北京.]

[本文引用: 2]

Huang HW, Liao JP (2022)

On China’s National Botanical Gardens: Building a comprehensive system of ex situ conservation of national botanical gardens with task oriented disciplines

Biodiversity Science, 30, 22220. (in Chinese with English abstract)

DOI:10.17520/biods.2022220      URL     [本文引用: 2]

[黄宏文, 廖景平 (2022)

论我国国家植物园建设: 以任务带学科构建国家植物园迁地保护综合体系

生物多样性, 30, 22220.]

DOI:10.17520/biods.2022220      [本文引用: 2]

植物园诞生的原初是&#x0201c;皇家&#x0201d;或&#x0201c;国家&#x0201d;意志的产物, 植物园的概念从公元前2,800年我国的&#x0201c;神农本草园&#x0201d;起源, 至今已历经沧桑巨变, 而西方文艺复兴后演替出了现代植物园。科研、保护、教育与示范四大功能始终是植物园的主线。植物园作为专门从事野生植物收集、科学研究、引种驯化和保护利用的专业研究机构, 始终肩负着国家的重要使命。本文系统综述了植物园的起源与演变, 并对世界各国的国家植物园与国家植物园体系进行了系统梳理和分析。在对我国植物园历史与发展概况总结的基础上, 论述了我国国家植物园体系建设的定位与目标、区域布局、科学研究、人才队伍、基础设施等五个方面的思考, 以任务带学科构建我国国家植物园迁地保护综合体系。

Huang HW, Liao JP, Zhang Z, Zhan QQ (2017)

Ex situ flora of China

Plant Diversity, 39, 357-364.

DOI:10.1016/j.pld.2017.12.001      URL     [本文引用: 1]

Huang HW, Sun H, Zhou ZK (2020)

Sharing earth with all life

Plant Diversity, 42, 209-210.

DOI:10.1016/j.pld.2020.08.002      [本文引用: 1]

Huang HW, Zhang Z (2012)

Current status and prospects of ex situ cultivation and conservation of plants in China

Biodiversity Science, 20, 559-571. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2012.13124      URL     [本文引用: 1]

[黄宏文, 张征 (2012)

中国植物引种栽培及迁地保护的现状与展望

生物多样性, 20, 559-571.]

DOI:10.3724/SP.J.1003.2012.13124      [本文引用: 1]

本文在概要总结我国植物引种驯化和迁地保育的历史基础上, 全面综述了中国植物园迁地保育植物的现状和特点、中国农作物种质资源保护现状、野生植物种子库的进展。我国植物园迁地栽培植物约396个科、3,633个属、23,340个种; 我国农作物资源保存数量达到41.2万份, 涉及作物种及近缘种1,890个; 我国野生生物种质资源库收集植物种子5.4万份、7,271种植物。文章同时阐述了我国植物迁地保护存在的问题并对相关领域的未来发展进行了展望: (1)启动《中国迁地栽培植物志》编研计划; (2)部署迁地保护与就地保护的整合研究; (3)加强我国特有植物类群的迁地保育原理和方法研究; (4)促进基于迁地保育濒危植物的野外回归: (5)拓展重要植物资源的评价及发掘利用。

Jin Y, Qian H (2022)

V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants

Plant Diversity, 44, 335-339.

DOI:10.1016/j.pld.2022.05.005      [本文引用: 1]

An earlier version of V.PhyloMaker has been broadly used to generate phylogenetic trees of vascular plants for botanical, biogeographical and ecological studies. Here, we update and enlarge this package, which is now called 'V.PhyloMaker2'. With V.PhyloMaker2, one can generate a phylogenetic tree for vascular plants based on one of three different botanical nomenclature systems. V.PhyloMaker2 can generate phylogenies for very large species lists (the largest species list that we tested included 365,198 species). V.PhyloMaker2 generates phylogenies at a fast speed. We provide an example (including a sample species list and an R script to run it) in this paper to show how to use V.PhyloMaker2 to generate phylogenetic trees.

Lebeda A, Křístková E, Kitner M, Majeský L, Doležalová I, Khoury CK, Widrlechner MP, Hu J, Carver D, Achicanoy HA, Sosa CC (2019)

Research gaps and challenges in the conservation and use of North American wild lettuce germplasm

Crop Science, 59, 2337.

DOI:10.2135/cropsci2019.05.0350      [本文引用: 1]

The North American crop wild relatives (CWR) of lettuce (Lactuca L.) represent an underexplored pool of genetic diversity of potential value to breeding programs. The 10 species belong to three different groups: a native clade including at least six allotetraploid species [L. biennis (Moench) Fernald, L. canadensis L., L. floridana (L.) Gaertn., L. graminifolia Michx., L. hirsuta Muhl. ex Nutt., and L. ludoviciana (Nutt.) Riddell], a diploid clade with one species [L. tatarica (L.) C. A. Mey. subsp. pulchella (Pursh) Stebbins], and a clade related to the cultivated taxon (L. sativa L.) with three non-native species (L. saligna L., L. serriola L., and L. virosa L.). In this review, we examine the role of herbarium and genebank holdings in taxonomic and other foundational studies, as well as for germplasm exploration and use. We compile the state of knowledge on the ranges of lettuce CWR in North America, modeling the potential distributions of the species and assessing their ex situ and (for native species) in situ conservation status. We categorize seven of the species as high priority for further conservation and three as medium priority, with none currently considered low priority or sufficiently conserved. Further, we review morphological, phenological, genetic diversity, and pest and disease information with regard to North American species. We conclude by outlining the critical gaps and describing a way forward for addressing challenges in the conservation and use of North American wild lettuce germplasm.

Li BY, Zhu YP, Liu WW, Li S, Fu MD, Ren YH, Cai X, Li JS (2021)

Pilot areas for national park system in China: Progress, problems and recommendations

Biodiversity Science, 29, 283-289. (in Chinese with English abstract)

DOI:10.17520/biods.2020258      [本文引用: 1]

Background: The establishment of national park system (NPS) is an important content of ecological civilization of China, and is an important measure to realize modernization of governance system and governance capacity in the field of natural and ecological protection. Aiming to obtain practical experience for reform of the NPS, central government of China launched pilot construction of the NPS in 2015. Progress: For assessing efficiency of pilot reforms in the past five years, we carried out in-depth investigation and research in 10 national parks (NPs). The result showed that: pilot reform of the NPS was reliably and orderly promoted and accumulated a batch of replicable and propagable experience, especially on top design of the NPS, establishment of management mechanism, law and regulations construction, ecological environment protection, strengthening foundation of protection management. However, there was also relative lack of laws, regulations and standards. Management system reform of the NPS did not reach the designated position. It was also lack of monitoring system of ecological environment. Financial support was still not mature, contradictions between natural protection and society development were still obvious. Perspective:This paper provides relational countermeasure and suggestion for law system construction, deepening the reform of management system, improving the ecological environment supervision mechanism, building diversified funds safeguard mechanism, and promoting to build, to manage and to share the NPs. This paper also provides reference and basis to formally build a batch of NPs, and to preliminary establish the NPS in 2021.

[李博炎, 朱彦鹏, 刘伟玮, 李爽, 付梦娣, 任月恒, 蔡譞, 李俊生 (2021)

中国国家公园体制试点进展、问题及对策建议

生物多样性, 29, 283-289.]

[本文引用: 1]

Li DZ, Chen ZD, Wang H, Lu AM (2018) A Dictionary of the Families and Genera of Chinese Vascular Plants. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[李德铢, 陈之端, 王红, 路安民 (2018) 中国维管植物科属词典. 科学出版社, 北京.]

[本文引用: 1]

Li XW (1996)

Floristic statistics and analyses of seed plants from China

Acta Botanica Yunnanica, 18, 363-384. (in Chinese with English abstract)

[本文引用: 1]

[李锡文 (1996)

中国种子植物区系统计分析

云南植物研究, 18, 363-384.]

[本文引用: 1]

Lin QW, Xiao C, Ma JS (2022)

A dataset on catalogue of alien plants in China

Biodiversity Science, 30, 22127. (in Chinese with English abstract)

DOI:10.17520/biods.2022127      [本文引用: 1]

<p id="p00010">It is an important basis for the research on the prevention and early warning mechanism of alien invasive plants in China to figure out the types of alien plants in China, where they come from, how to enter China, what kind of groups of these alien plants are, as well as their biological and ecological characteristics. The information of alien plants recorded in <i>Flora Reipublicae Popularis Sinicae</i>, <i>Flora of China</i> and their records in the Chinese province flora is very limited due to various reasons. At present, there is no any available database including the complete information of alien plants in China. By integrating materials related to alien plants in recent years, and textual research on the origin, then added the habits of alien plants through literature, then using computer network, databases and big data analysis technical means, after information treatment and taxonomic correction, with reconstruction of the classification, this paper finally provided a dataset on catalogue of alien plants in China. There are 14,710 data in this set, with 14,710 taxa of Chinese alien plants belonging to 3,233 genera and 283 families (including 13,401 original species, 332 hybrids, 2 chimeras, 458 subspecies, 503 varieties and 14 forms). Each taxon includes basic information such as taxon, Chinese family name, family name, Chinese genus name, genus name, Chinese name, surname, scientific name, authors, living status, life span, growth habit, native countries or regions, and introduced provinces in China. The data set shows that alien plants have accounted for a considerable proportion in the composition of the Chinese flora (By December 31, 2021, there are 52,177 taxa of vascular plants in China, including 37,464 native taxa and 14,710 alien taxa, the proportion of alien plants is as high as 28.19%). In terms of survival status, cultivated plants account for 91% of all alien plants, escape plants account for 7.36%, naturalized plants account for 6.69% and invasive plants account for 2.66%; The analysis of life forms shows that perennial groups account for the vast majority of alien plants (13,625 species, about 92.6%), and the number of herbs (8,937 species, about 60.8%) is more than that of trees (2,752 species, about 18.7%), shrubs (4,916 species, about 33.4%) as well as the other life forms. Most of the alien plants in China were from North America (4,242 species), Africa (3,707 species), South America (3,645 species), and Asia (3,102 species), but less were from Europe (1,690 species) and Oceania (1,305 species). The top 10 provinces in China with more exotic plants are Taiwan (6,122 species), Beijing (5,244 species), Fujian (3,667 species), Guangdong (3,544 species), Yunnan (3,404 species), Shanghai (2,924 species), Jiangsu (2,183 species), Jiangxi (1,789 species), Zhejiang (1,658 species) and Hubei (973 species). This data set is the first comprehensive and systematic collation of alien plants in China. It can be used as a reference for research related to alien plants, as well as basic data for plant diversity research. It can also be used as a reference dataset for people in agriculture, forestry, prataculture, horticulture, herbal medicine, nature protection and environmental protection, as well as teachers and students in colleges and universities.</p> <table-wrap id="T2"> <label/> <caption xml:lang="en"> <p id="p00020"><strong>Database/Dataset Profile</strong></p></caption> <table> <thead></thead> <tbody> <tr> <td valign="middle" align="left" style="border-top:1px solid #000;border-bottom:1px solid #000;">Title</td> <td valign="middle" align="left" style="border-top:1px solid #000;border-bottom:1px solid #000;">A dataset on catalogue of alien plants in China</td></tr> <tr> <td valign="middle" align="left" style="border-top:1px solid #000;" width="230">Data authors</td> <td valign="middle" align="left" style="border-top:1px solid #000;">Qingwen Lin, Cui Xiao, Jinshuang Ma</td></tr> <tr> <td valign="middle" align="left">Data corresponding author</td> <td valign="middle" align="left">Jinshuang Ma (jinshuangma@gmail.com)</td></tr> <tr> <td valign="middle" align="left">Time range</td> <td valign="middle" align="left">1959-2021</td></tr> <tr> <td valign="middle" align="left">Geographical scope</td> <td valign="middle" align="left">China</td></tr> <tr> <td valign="middle" align="left">Spatial resolution</td> <td valign="middle" align="left">District (province)</td></tr> <tr> <td valign="middle" align="left">File size</td> <td valign="middle" align="left">2.77 MB</td></tr> <tr> <td valign="middle" align="left">Data volume</td> <td valign="middle" align="left">Number of records in 1 file: 14,710</td></tr> <tr> <td valign="middle" align="left">Data format</td> <td valign="middle" align="left">*.xlsx</td></tr> <tr> <td valign="middle" align="left">Data link</td> <td valign="middle" align="left"> <a href="https://www.scidb.cn/s/qaUZNb">https://www.scidb.cn/s/qaUZNb</a> <br> <a href="http://doi.org/10.57760/sciencedb.01711">http://doi.org/10.57760/sciencedb.01711</a> <br> <a href="https://www.biodiversity-science.net/fileup/1005-0094/DATA/2022127.zip">https://www.biodiversity-science.net/fileup/1005-0094/DATA/2022127.zip</a></td></tr> <tr> <td valign="middle" align="left" style="border-bottom:1px solid #000;">Database/Dataset composition</td> <td valign="middle" align="left" style="border-bottom:1px solid #000;">The dataset consists of 1 data file containing 1 sheet with 14,710 items (rows) and 14 fields (columns) as following: taxon, Chinese family name, family name, Chinese genus name, genus name, Chinese name, surname, scientific name, authors, living status, life span, growth habit, native countries or regions, and introduced provinces in China.</td></tr></tbody></table></table-wrap>

[林秦文, 肖翠, 马金双 (2022)

中国外来植物数据集

生物多样性, 30, 22127.]

DOI:10.17520/biods.2022127      [本文引用: 1]

搞清楚中国外来植物种类有哪些, 从哪里来, 如何进入中国, 属于什么性质的类群, 它们的生物学特征和生态学特性如何等问题, 是中国外来入侵植物预防和预警机制研究的重要基础。《中国植物志》、Flora of China、各省级植物志书等记载的外来植物信息由于种种原因非常有限, 且目前我国尚没有完整体现中国外来植物信息的数据库。本文通过整合近几年外来植物相关的资料, 并通过文献考证增补外来植物原产地、习性等信息, 利用计算机网络、数据库及大数据分析技术手段, 经信息化处理和分类学校正, 进行分类体系重建, 最终确定中国外来植物的物种名录数据集。该数据集共有数据14,710条, 记载中国外来植物283科3,233属14,710个类群(含13,401原种332杂交种2嵌合体458亚种503变种14变型)。每个类群包括类别、中文科名、科名、中文属名、属名、中文名、别名、学名、命名人、生存状态、生存时间、生活型、原产国家或地区和中国引入省份等基础信息。数据集显示, 外来植物已在中国的植物种类构成中占据了相当大的比例(高达28.19%, 中国境内有维管植物52,177个类群, 其中本土37,464, 外来14,710, 上述数字包含种下等级, 统计截至2021年12月31日); 就生存状态而言, 栽培植物占所有外来植物的比例高达91%, 逃逸植物占7.36%, 归化植物占6.69%, 入侵植物占2.66%; 对于生活型的分析显示, 多年生类群占据了外来植物的绝大多数(13,625种, 约占总数的92.6%), 草本植物(8,937种, 约占总数的60.8%)相较于乔木(2,752种, 约占总数的18.7%)、灌木(4,916种, 约占总数的33.4%)及其他生活型数量要更多; 中国的外来植物大多来自北美洲(4,242种)、非洲(3,707种)、南美洲(3,645种)、亚洲(3,102种), 欧洲(1,690种)和大洋洲(1,305种)相对较少; 而中国具有外来植物最多的前10个省份分别为台湾(6,122种)、北京(5,244种)、福建(3,667种)、广东(3,544种)、云南(3,404种)、上海(2,924种)、江苏(2,183种)、江西(1,789种)、浙江(1,658种)和湖北(973种)。本数据集是第一次对中国外来植物进行全面系统整理, 可供从事外来植物相关研究工作参考, 也可作为植物多样性研究的基础资料, 还可作为农业、林业、草业、园林、草药及自然保护和环境保护人士及高等院校师生的参考数据。 数据库(集)基本信息简介 数据库(集)名称 中国外来植物数据集 作者 林秦文, 肖翠, 马金双 通讯作者 马金双(jinshuangma@gmail.com) 时间范围 1959-2021年 地理区域 中国 空间分辨率 省级 文件大小 2.77 MB 数据量 记录条数: 14,710 数据格式 *.xlsx 数据链接 https://www.scidb.cn/s/qaUZNb http://doi.org/10.57760/sciencedb.01711 https://www.biodiversity-science.net/fileup/1005-0094/DATA/2022127.zip 数据库(集)组成 共包括1个数据文件1个数据表, 共有14,710个记录(行)条14个字段(列)的数据。14个字段分别为: 类别、中文科名、科名、中文属名、属名、中文名、别名、学名、命名人、生存状态、生存时间、生活型、原产国家或地区、中国引入省份。

Linsky J, Coffey EED, Beech E, Beech E, Rivers M, Cicuzza D, Oldfield S, Crowley D (2023)

Assessing Magnoliaceae through time: Major global efforts to track extinction risk status and ex situ conservation

Plants, People, Planet, 5, 496-501.

DOI:10.1002/ppp3.v5.4      URL     [本文引用: 1]

Liu YH (2004) Magnolias of Chinese. Beijing Science and Technology Press, Beijing. (in Chinese and in English)

[本文引用: 1]

[刘玉壶 (2004) 中国木兰. 北京科学技术出版社, 北京.]

[本文引用: 1]

Ma JS (2022)

Why should Beijing be the first choice for the establishment of the National Botanical Garden?

Biodiversity Science, 30, 22013. (in Chinese)

DOI:10.17520/biods.2022013      [本文引用: 1]

[马金双 (2022)

国家植物园设立为何首选北京?

生物多样性, 30, 22013.]

DOI:10.17520/biods.2022013      [本文引用: 1]

Mounce R, Smith P, Brockington S (2017)

Ex situ conservation of plant diversity in the world’s botanic gardens

Nature Plants, 3, 795-802.

DOI:10.1038/s41477-017-0019-3      PMID:28947807      [本文引用: 9]

Botanic gardens conserve plant diversity ex situ and can prevent extinction through integrated conservation action. Here we quantify how that diversity is conserved in ex situ collections across the world's botanic gardens. We reveal that botanic gardens manage at least 105,634 species, equating to 30% of all plant species diversity, and conserve over 41% of known threatened species. However, we also reveal that botanic gardens are disproportionately temperate, with 93% of species held in the Northern Hemisphere. Consequently, an estimated 76% of species absent from living collections are tropical in origin. Furthermore, phylogenetic bias ensures that over 50% of vascular genera, but barely 5% of non-vascular genera, are conserved ex situ. While botanic gardens are discernibly responding to the threat of species extinction, just 10% of network capacity is devoted to threatened species. We conclude that botanic gardens play a fundamental role in plant conservation, but identify actions to enhance future conservation of biodiversity.

Muñoz-Vallés S, Cambrollé J, Figueroa-Luque E, Luque T, Niell FX, Figueroa ME (2013)

An approach to the evaluation and management of natural carbon sinks: From plant species to urban green systems

Urban Forestry & Urban Greening, 12, 450-453.

[本文引用: 1]

Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon KL, Brewer RFA, Gâteblé G, Gonçalves SC, Govaerts R, Hollingsworth PM, Krisai-Greilhuber I, Lirio EJ, Moore PGP, Negrão R, Onana JM, Rajaovelona LR, Razanajatovo H, Reich PB, Richards SL, Rivers MC, Cooper A, Iganci J, Lewis GP, Smidt EC, Antonelli A, Mueller GM, Walker BE (2020)

Extinction risk and threats to plants and fungi

Plants, People, Planet, 2, 389-408.

DOI:10.1002/ppp3.v2.5      URL     [本文引用: 1]

Obura D, Agrawal A, DeClerck F, Donaldson J, Dziba L, Emery MR, Friedman K, Fromentin JM, Garibaldi LA, Mulongoy J, Carolina NF, Reidl PM, Roe D, Timoshyna A (2023)

Prioritizing sustainable use in the Kunming-Montreal global biodiversity framework

PLOS Sustainability and Transformation, 2, e0000041.

[本文引用: 1]

Obura DO, Katerere Y, Mayet M, Kaelo D, Msweli S, Mather K, Harris J, Louis M, Kramer R, Teferi T, Samoilys M, Lewis L, Bennie A, Kumah F, Isaacs M, Nantongo P (2021)

Integrate biodiversity targets from local to global levels

Science, 373, 746-748.

DOI:10.1126/science.abh2234      PMID:34385386      [本文引用: 1]

Pautasso M, Parmentier I (2007)

Are the living collections of the world’s botanical gardens following species-richness patterns observed in natural ecosystems?

Botanica Helvetica, 117, 15-28.

DOI:10.1007/s00035-007-0786-y      URL     [本文引用: 1]

Qin HN (2020) List of Seed Plant Diversity in China and Its Conservation and Utilization. Hebei Science and Technology Press, Shijiazhuang. (in Chinese)

[本文引用: 2]

[覃海宁 (2020) 中国种子植物多样性名录与保护利用. 河北科学技术出版社, 石家庄.]

[本文引用: 2]

Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai YJ, Liu B, Lin QW, Xue NX (2017)

Threatened Species List of China’s Higher Plants

Biodiversity Science, 25, 696-744. (in Chinese and in English)

DOI:10.17520/biods.2017144      URL     [本文引用: 1]

[覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 (2017)

中国高等植物受威胁物种名录

生物多样性, 25, 696-744.]

DOI:10.17520/biods.2017144      [本文引用: 1]

Qin HN, Zhao LN (2017)

Evaluating the threat status of higher plants in China

Biodiversity Science, 25, 689-695. (in Chinese with English abstract)

DOI:10.17520/biods.2017146      [本文引用: 1]

[覃海宁, 赵莉娜 (2017)

中国高等植物濒危状况评估

生物多样性, 25, 689-695.]

DOI:10.17520/biods.2017146      [本文引用: 1]

Ren H, Wen XY, Liao JP, Zheng XC, Yang M, Zhou J (2022)

The view on functional changes of botanical gardens and the establishment of China’s national botanical garden system

Biodiversity Science, 30, 22113. (in Chinese with English abstract)

DOI:10.17520/biods.2022113      URL     [本文引用: 3]

[任海, 文香英, 廖景平, 郑祥慈, 杨明, 周桔 (2022)

试论植物园功能变迁与中国国家植物园体系建设

生物多样性, 30, 22113.]

DOI:10.17520/biods.2022113      [本文引用: 3]

植物资源是自然生态系统的基本组成部分, 是经济社会可持续发展的重要物质来源, 植物多样性是关系到国家生态安全和生物安全的战略资源。就地保护和迁地保护是植物多样性保护的两种主要方法, 构建以国家公园为主体的自然保护地体系是就地保护的主要形式, 构建以国家植物园为引领的植物园体系是迁地保护的主要形式, 二者相辅相成, 共同形成我国较为完整的植物多样性保护体系。通过建设国家植物园体系对我国植物多样性进行迁地保护, 同时开展科学研究、园林展示、科普教育和资源开发利用, 对深入推进生态文明建设和高质量发展具有重要意义。本文回顾了植物园的功能变迁、全球和中国植物园分布与数量以及植物迁地保护现状,讨论了植物园与植物迁地保护的关系, 在此基础上, 提出了我国国家植物园的定义及设立标准, 进而讨论了建设国家植物园体系的意义、挑战、统筹迁地保护和就地保护等问题, 最后提出了我国国家植物园体系的建设目标、管理体制、空间布局和认证等方面的建议, 以期为我国的国家植物园体系建设提供参考。

Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards TC Jr, Ulliman J, Wright RG (1993)

Gap analysis: A geographic approach to protection of biological diversity

Wildlife Monographs, 123, 1-41.

[本文引用: 1]

Sharrock S, Jones M (2011)

Saving Europe’s threatened flora: Progress towards GSPC Target 8 in Europe

Biodiversity and Conservation, 20, 325-333.

DOI:10.1007/s10531-010-9912-z      URL     [本文引用: 2]

Steffen W, Grinevald J, Crutzen P, McNeill J (2011)

The Anthropocene: Conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical

Physical and Engineering Sciences, 369, 842-867.

[本文引用: 1]

Tortell PD (2020)

Earth 2020:Science, society, and sustainability in the anthropocene

Proceedings of the National Academy of Sciences, USA, 117, 8683-8691.

[本文引用: 1]

Vázquez-García JA, Muñiz-Castro MA, Dahua-Machoa A, Osorio-Muñoz EA, Hernández-Vera G, Ortega-Peña AS, Romo-Campos RL, Jacobo-Pereira C, Álvarez de Román N, Shalisko V (2021) How to save endangered magnolias? From population biology to conservation action:The case of allopatric radiation in western Mexico. In: Endangered Plants (ed. Kumar S), pp.13-56. IntechOpen, London.

[本文引用: 1]

Wang LS, Zhan QQ, Liao JP, Huang HW (2023)

Vascular plant diversity of National Key Protected Wild Plants, threatened species, and endemic species ex situ conserved in botanic gardens of China

Biodiversity Science, 31, 22495. (in Chinese with English abstract)

DOI:10.17520/biods.2022495      URL     [本文引用: 2]

[王利松, 湛青青, 廖景平, 黄宏文 (2023)

我国迁地保护的国家重点保护、受威胁和特有维管植物多样性

生物多样性, 31, 22495.]

DOI:10.17520/biods.2022495      [本文引用: 2]

启动实施以国家公园和国家植物园体系为主导的就地和迁地保护相结合的生物多样性保护大战略, 是我国作为世界生物多样性大国之一的科学使命和责任担当。本文以国家重点保护、受威胁和中国特有维管植物为对象, 系统梳理了这3类植物在我国植物园的迁地保护概况, 对这些植物的生活型、物种组成和系统发育多样性进行了比较分析, 以期为当下国家植物园体系建设提供科学参考和依据。结果表明, 我国植物园保存的此3类植物共计7,141种, 分属265科1,271属, 分别占我国维管植物科、属、种总数的76%、42%和23%。在7,141种植物中, 国家重点保护植物743种, 受威胁植物2,095种, 中国特有植物5,957种, 分别占我国国家重点保护、受威胁和特有植物总数的72%、59%和37%。这些植物包括乔木2,555种、灌木1,025种、草本3,117种、攀缘类419种和水生类25种。3类植物在各植物园的物种组成共有比例较低, 系统发育多样性存在显著差异。

Wang RJ (2022) The Provincial Red List of Higher Plants in Guangdong. Henan Science and Technology Press, Zhengzhou. (in Chinese)

[本文引用: 11]

[王瑞江 (2022) 广东高等植物红色名录. 河南科学技术出版社, 郑州.]

[本文引用: 11]

Wang W, Li JS (2021)

In-situ conservation of biodiversity in China: Advances and prospects

Biodiversity Science, 29, 133-149. (in Chinese with English abstract)

DOI:10.17520/biods.2020070      URL     [本文引用: 1]

[王伟, 李俊生 (2021)

中国生物多样性就地保护成效与展望

生物多样性, 29, 133-149.]

[本文引用: 1]

Wu ZY (1980) Vegetation of China. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[吴征镒 (1980) 中国植被. 科学出版社, 北京.]

[本文引用: 1]

Wu ZY, Zhou ZK, Sun H, Li DZ, Peng H (2006) The Areal-Types of Seed Plants and Their Origin and Differentiation. Yunnan Science & Technology Press, Kunming. (in Chinese)

[本文引用: 2]

[吴征镒, 周浙昆, 孙航, 李德铢, 彭华 (2006) 种子植物分布区类型及其起源和分化. 云南科技出版社, 昆明.]

[本文引用: 2]

Xi HH, Wang YQ, Pan YZ, Xu T, Zhan QQ, Liu J, Feng XY, Gong X (2022)

Resources and protection of Cycas plants in China

Biodiversity Science, 30, 21495. (in Chinese with English abstract)

DOI:10.17520/biods.2021495      URL     [本文引用: 1]

[席辉辉, 王祎晴, 潘跃芝, 许恬, 湛青青, 刘健, 冯秀彦, 龚洵 (2022)

中国苏铁属植物资源和保护

生物多样性, 30, 21495.]

DOI:10.17520/biods.2021495      [本文引用: 1]

苏铁类植物含2科10属, 是现存种子植物最原始的类群之一, 具有重要的科学研究和保护价值。苏铁属(Cycas)是唯一在中国有自然分布的苏铁类植物, 约20种, 多数种类为中国特有。中国的苏铁属植物主要分布于西南地区和东南沿海, 大部分种类为狭域分布的类群, 其生存繁衍受到了严重的威胁, 均被列为国家一级重点保护野生植物。基于文献资料收集整理和野外调查, 本文对中国苏铁属植物的研究和保护进行了阶段性总结。介绍了中国苏铁属植物分类研究、地理分布; 阐述了中国苏铁植物生存面临的主要威胁及相应的保护措施, 提出了保护方案的制定应遵循遗传学特征等科学依据。文中总结了我国苏铁植物保护科研工作中存在的5个主要问题: (1)苏铁植物基础科学问题有待进一步研究, (2)苏铁植物生境破坏较为严重, (3)人为盗采贩卖依然猖獗而苏铁植物园林园艺育种事业却举步不前, (4)苏铁自身生物学特性导致繁殖困难, (5)迁地保护难以保证苏铁种质&#x0201c;纯洁性&#x0201d;等, 同时针对这些问题提出相应建议, 以期为我国苏铁属植物的研究、保护以及可持续利用工作提供参考。

Yan Y, Tang FL, Tian YC, Jin K (2021)

On implementation path of the strictest conservation policies in national park management

Biodiversity Science, 29, 123-128. (in Chinese with English abstract)

DOI:10.17520/biods.2020073      URL     [本文引用: 1]

[闫颜, 唐芳林, 田勇臣, 金崑 (2021)

国家公园最严格保护的实现路径

生物多样性, 29, 123-128.]

[本文引用: 1]

Ye JF, Shan ZJ, Peng DX, Sun M, Niu YT, Liu Y, Zhang Q, Yang Y, Lin QW, Chen J, Zhu RB, Wang YW, Chen ZD (2023)

Identifying gaps in the ex situ conservation of native plant diversity in China

Biological Conservation, 282, 110044.

DOI:10.1016/j.biocon.2023.110044      URL     [本文引用: 2]

Zhang LL, Liu ZY, Wang RJ (2020)

The conservation status of orchids in Guangdong Province

Biodiversity Science, 28, 787-795. (in Chinese with English abstract)

DOI:10.17520/biods.2019400      URL     [本文引用: 1]

[张玲玲, 刘子玥, 王瑞江 (2020)

广东兰科植物多样性保育现状

生物多样性, 28, 787-795.]

DOI:10.17520/biods.2019400      [本文引用: 1]

为了使广东省的兰科植物及其遗传多样性得到有效的保育, 保存我国重要野生植物资源, 在2017–2019年间, 采用样线和样地相结合的调查手段、专家快速评估和野外调查相结合的评估技术以及Wilcoxon符号秩检验和Friedman检验的统计方法, 对广东省自然分布的兰科植物进行了全面的调查和濒危等级评估, 并对其在广东省自然保护区中的就地保育情况和全国植物园中的迁地保育情况进行了综合分析。结果表明, 广东省分布有兰科植物80属235种, 其中广东特有种20种; 广东兰科植物受威胁物种有186种, 其中极危11种、濒危114种、易危61种; 就地保育的兰科植物有111种, 迁地保育的兰科植物有156种, 就地和迁地共同保育的兰科植物有96种, 保育的有效程度较低; 另外, 就地、迁地、就地和迁地共同保育的兰科植物之间没有体现出明显的差异, 保育工作缺乏选择性和针对性。基于此, 我们建议广东兰科植物的保育工作应重视基础数据的收集和持续的野外监测、提高保育物种的数量、优化迁地保育物种的选择性和针对性、完善迁地保育和就地保育之间的协同性, 同时也应重视立法和公众教育, 并构建广东兰科植物保育的网络系统。

Zhao X, Chen H, Wu JY, Ren H, Wei JH, Ye PC, Si Q (2022)

Ex situ conservation of threatened higher plants in Chinese botanical gardens

Global Ecology and Conservation, 38, e02206.

DOI:10.1016/j.gecco.2022.e02206      URL     [本文引用: 4]

Zhao ZC, Yang R (2021)

The concept of national park authenticity and integrity in China and its evaluation framework

Biodiversity Science, 29, 1271-1278. (in Chinese with English abstract)

DOI:10.17520/biods.2021287      [本文引用: 1]

<p id="p00010"><strong>Aims</strong> The primary purpose of national park conservation and management is to effectively protect the authenticity and integrity of ecosystems, as well as natural and cultural resources of national importance. In this study, we aim to propose the concept of authenticity and integrity for national park management in China and establish a framework for authenticity and integrity evaluation based on the closed loop of value identification, value authenticity, integrity assessment, authenticity and integrity conservation, and the management strategy of monitoring and feedback. <br><strong> Methods</strong> The primary research method is a review of previous literature on ecosystem integrity, ecosystem authenticity, and conservation management strategies of World Heritage sites, combining them with: practical experience; proposing concepts; systematically analyzing the connotations of the proposed definitions of authenticity and integrity; constructing an evaluation index system; proposing logical relationships among the indicators; and proposing conservation management recommendations based on the concepts and evaluation framework. <br><strong> Results</strong> In this paper, we propose the authenticity and integrity of China's national parks. National park authenticity means that the ecosystems within a national park and the natural and cultural elements that constitute or are closely associated with national park values are maintained in their original state, with emphasis on &#x0201c;unimpaired&#x0201d;. National park integrity refers to the ability of national parks to maintain the structure, functions, and processes of ecosystems as well as the values and characteristics of natural areas with sufficient area and constituent elements, emphasizing &#x0201c;no deficiency&#x0201d;. The significance of the concept of management-oriented national park authenticity and integrity is reflected in three aspects: (1) the distinction between the concepts of authenticity and integrity is helpful for managers to clarify the goals of national park management, (2) using the requirements of authenticity and integrity to comprehensively cover the value system is conducive to the formation of a complete governance and management path of national parks, and (3) specifying the evaluation indexes of the authenticity and integrity of national parks is conducive to judging the effectiveness of national park management more effectively. We propose a framework for evaluating the authenticity and integrity of national parks. To evaluate the authenticity of national parks in five aspects: naturalness, intensity of climate change, authenticity of traditional culture and its carriers, degree of human interference, and authenticity of the harmonious relationship between human beings and nature. The integrity of national parks is evaluated in five dimensions: ecosystem composition integrity, ecosystem structural integrity, ecosystem functional integrity, landscape composition integrity, and cultural landscape integrity. We propose suggestions for the conservation and management of the authenticity and integrity of China's national parks, and those are presented in terms of reshaping objectives, updating concepts and enhancing technologies. The issues of authenticity and integrity of national parks have not yet been discussed in depth, and research on the setting of evaluation indexes, the interrelationship among evaluation indicators, and specific suggestions for conservation and management are yet to be further developed. <br><strong> Conclusion</strong> This paper proposes a management-oriented concept of authenticity and integrity of Chinese national parks and a framework for authenticity and integrity evaluation. This provides a theoretical basis for establishing a complete management closure loop for Chinese national park management practices. The significance of the concept of authenticity and integrity, the index system of evaluation, and the management suggestions based on these are discussed throughout the paper.</p>

[赵智聪, 杨锐 (2021)

中国国家公园原真性与完整性概念及其评价框架

生物多样性, 29, 1271-1278.]

DOI:10.17520/biods.2021287      [本文引用: 1]

国家公园保护管理的首要目的是有效保护国家重要自然生态系统原真性和完整性。我们提出了面向管理的中国国家公园原真性与完整性概念, 国家公园原真性是指国家公园内生态系统及构成国家公园价值或与国家公园价值紧密联系的自然与文化要素保持在原生状态, 强调&#x0201c;不受损&#x0201d;; 国家公园完整性是指国家公园具有足够面积和充分的组成要素, 以维持生态系统的结构、功能与过程, 维持自然区域的价值与特征, 强调&#x0201c;不缺失&#x0201d;。我们还提出了国家公园原真性和完整性评价框架, 从自然度、气候变化强度、传统文化及其载体的真实性、人类干扰程度、人与自然和谐关系的原真性5个方面评价国家公园原真性; 从生态系统组成完整性、生态系统结构完整性、生态系统功能完整性、景观组成要素完整性和文化景观的完整性5个层面评价国家公园完整性。此外, 我们还提出了国家公园原真性与完整性保护的建议, 包括重塑保护管理目标、更新保护管理理念与提升保护管理技术3个方面。国家公园原真性与完整性的讨论尚未成熟, 对评价指标设定、指标间的相互关系、保护管理技术等的研究均尚待深入。

Zhou J, Yang M, Wen XY, Li N, Ren H (2021)

Strengthen ex situ conservation of plants and promote protection and utilization of plant resources

Bulletin of Chinese Academy of Sciences, 36, 417-424. (in Chinese with English abstract)

[本文引用: 1]

[周桔, 杨明, 文香英, 李楠, 任海 (2021)

加强植物迁地保护, 促进植物资源保护和利用

中国科学院院刊, 36, 417-424.]

[本文引用: 1]

Zhuang HF, Wang C, Wang YN, Jin T, Huang R, Lin ZH, Wang YH (2021)

Native useful vascular plants of China: A checklist and use patterns

Plant Diversity, 43, 134-141.

DOI:10.1016/j.pld.2020.09.003      [本文引用: 2]

Of all types of interactions between humans and plants, the utilization of plants by people is the most direct and influential. China has a long history of using native plants and a large body of recorded knowledge on uses. Here, we present an inventory of plant uses in China based on an extensive survey of the literature. Twelve categories of usage are recognized (medicinal, edible, etc.), these categories being chosen according to an integration of various current standards. A total of 50,521 use-citations were recorded, covering 10,808 species and infraspecies, representing 28% of the Chinese flora. Additional information is included in the dataset on taxonomy and endangerment status. Analysis of the data reveals that the eight plant families with the greatest numbers of species used in China, namely Asteraceae, Fabaceae, Rosaceae, Ranunculaceae, Poaceae, Lamiaceae, Orchidaceae, and Liliaceae, are also the top eight most species-rich Chinese plant families. However, there are some families that are overrepresented or under-representation in certain use categories, compared with their relative abundance in the total flora. There are indications that rare and endangered species are being subject to some degree of over-exploitation. A disproportionately high number of used species are Chinese endemics (3552 species, representing over 33% of used species). A total of 20% of used species have been classified as threatened nationally or globally, according to at least one of the various threat assessments that have been made for the Chinese flora. This comprehensive inventory of the useful plants of China, with relevant ethnobotanical information included, provides a baseline for further studies of plant resources. It will be useful in follow-up research. The scientific dataset it contains will be useful for the protection and sustainable utilization of plant resources in China.

Zou P, Ning ZL, Tian XY, Liao JP (2022) A brief discussion on national living collections. In: China Botanical Garden (Issue 25) (ed. The Chinese Association of Botanical Gardens), pp. 194-199. China Forestry Publishing House, Beijing. (in Chinese with English abstract)

[本文引用: 1]

[邹璞, 宁祖林, 田学义, 廖景平 (2022) 刍议国家活植物收集. 见: 中国植物园(第二十五期) (中国植物学会植物园分会编辑委员会编),194-199 中国林业出版社, 北京.]

[本文引用: 1]

/