生物多样性, 2023, 31(5): 22528 doi: 10.17520/biods.2022528

动物多样性

中华蜜蜂和意大利蜜蜂秋冬期传粉植物多样性比较

吴帆,, 刘深云, 江虎强, 王茜, 陈开威, 李红亮,*

中国计量大学生命科学学院, 浙江省生物计量及检疫检验重点实验室, 杭州 310018

Pollination difference between Apis cerana cerana and Apis mellifera ligustica during the late autumn and winter

Fan Wu,, Shenyun Liu, Huqiang Jiang, Qian Wang, Kaiwei Chen, Hongliang Li,*

Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018

通讯作者: * E-mail:hlli@cjlu.edu.cn

编委: 朱朝东

责任编辑: 李会丽

收稿日期: 2022-09-15   接受日期: 2022-12-8  

基金资助: 科技部基础资源调查专项(2018FY100405)
国家自然科学基金(3217030483)
国家自然科学基金(332000331)
浙江省自然科学基金(LQ21C030007)

Corresponding authors: * E-mail:hlli@cjlu.edu.cn

Received: 2022-09-15   Accepted: 2022-12-8  

摘要

中华蜜蜂(中蜂, Apis cerana cerana)和意大利蜜蜂(意蜂, Apis mellifera ligustica)的传粉对维持植物生态系统的稳定性和提高农作物的产量和品质具有重要意义, 而两者传粉行为却有不同。本文旨在比较秋冬期低温情况下中蜂和意蜂本地传粉植物多样性。在秋冬期, 观察和统计杭州下沙高教园区内中蜂和意蜂传粉过程中采集花粉的蜜蜂数量, 收集采集蜂携粉足内的花粉团后, 分别通过光学显微镜和扫描电镜获得的花粉形态特征初步鉴定花粉种类, 然后利用核酮糖-1,5-双磷酸羧化酶(ribulose 1,5-bisphosphate carboxylase, rbcl)基因引物扩增相应植物DNA条形码序列进一步明确花粉种类。最后综合分析秋冬期, 中蜂和意蜂采集花粉的差异。研究结果显示: 中蜂和意蜂在秋冬期低温下均可传粉, 但中蜂对低温的适应能力较强, 在上午8:30-9:30其传粉活动频率显著比意蜂高(P < 0.05)。对于不同开花植物, 中蜂和意蜂大多都可以传粉, 但中蜂偏向于采集葎草(Humulus scandens)、月季(Rosa chinensis)、枇杷(Eriobotrya laoshanica)和中华常春藤(Hedera nepalensis var. sinensis)等本土低温开花植物的花粉, 而意蜂采集厚皮香(Ternstroemia gymnanthera)、甘菊(Chrysanthemum boreale)和小百日菊(Zinnia baageana)等花粉较多。在秋冬期低温条件下, 中蜂和意蜂都可为多种植物传粉, 但中蜂对本土开花植物的传粉植物要比意蜂更具有偏好性。中蜂和意蜂在秋冬期传粉多样性和差异调查将有利于进一步完善蜜蜂访花规律和偏好, 为该地区生态保护提供理论依据。

关键词: 中华蜜蜂; 意大利蜜蜂; 蜂花粉; 扫描电子显微镜; DNA条形码

Abstract

Aims: The pollination behaviors of Apis cerana cerana (Acc) and Apis mellifera ligustica (Aml) have a significant meaning in maintaining ecosystem stability and improving crop yield and quality. However, their pollination behaviors are different. The aim of this study is to analyze the differences of pollinating habit and plant diversity between the two species under low temperature during the late autumn and winter periods.
Methods: We observed the pollination process of Acc and Aml, and collected the pollen in Xiasha Higher Education Campus of Hangzhou City during the late autumn and winter periods. The pollen morphology was analyzed by ordinary and scanning electron microscope, and further determined based on the gene ribulose 1,5-bisphosphate carboxylase (rbcl) amplified and DNA barcode. Finally, the diversity of pollinating plants was compared according to the pollen species during the late autumn and winter.
Results: Both Acc and Aml can pollinate the local plants during the late autumn and winter periods, but Acc had better adaptability and pollination frequency in the morning from 8:30 to 9:30 (P < 0.05). For different plants, Acc and Aml can pollinate many kinds of plant. Acc tended to collect pollen of Humulus scandens, Rosa chinensis, Eriobotrya laoshanica, and Hedera nepalensis var. sinensis, while Aml was partial to collect pollen of Ternstroemia gymnanthera, Chrysanthemum boreale, and Zinnia baageana.
Conclusions: In general, Acc and Aml can pollinate many kinds of plant during autumn and winter, and Acc have more extensive plant source. The investigation of pollination diversity and differences between Acc and Aml during the late autumn and winter periods will be helpful to study the pollination rules and preferences of honeybees, and provide theoretical for ecological protection in Hangzhou City.

Keywords: Apis cerana cerana; Apis mellifera ligustica; bee pollen; scanning electron microscope; DNA barcode

PDF (4546KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴帆, 刘深云, 江虎强, 王茜, 陈开威, 李红亮 (2023) 中华蜜蜂和意大利蜜蜂秋冬期传粉植物多样性比较. 生物多样性, 31, 22528. doi:10.17520/biods.2022528.

Fan Wu, Shenyun Liu, Huqiang Jiang, Qian Wang, Kaiwei Chen, Hongliang Li (2023) Pollination difference between Apis cerana cerana and Apis mellifera ligustica during the late autumn and winter. Biodiversity Science, 31, 22528. doi:10.17520/biods.2022528.

在自然界中, “植物-传粉者”的关系是陆地生态系统中最重要的交互关系, 这驱动了植物和它们的传粉者进化上的多样性(Pincebourde et al, 2017)。研究发现, 有80%以上的开花植物需要动物为它们传粉, 这对维持生态平衡和提高农作物产量及品质具有重要意义(Klein et al, 2007)。作为重要的传粉昆虫之一, 蜜蜂因其独特的形态结构和生物学特性, 在传粉方面有显著优势, 所以它在保护生物多样性和维持生态系统稳定性方面发挥着举足轻重的作用(Bruckman & Campbell, 2014)。意大利蜜蜂(意蜂, Apis mellifera ligustica)是世界范围内分布最广、人工养殖规模最大和利用最多的蜜蜂品种, 具有重要的经济价值和社会效应(Liu et al, 2013; Abrol et al, 2019)。中华蜜蜂(中蜂, Apis cerana cerana)是我国的本土蜜蜂, 在长期进化过程中形成了适应山区环境的特性, 具有利用零星蜜源、采蜜期长、抗螨抗病能力强等优点, 比较适合山区的定点养殖(曾志将, 1989)。意蜂由于其选育时间较长, 形成了对大宗蜜源采集(蜜粉)量高、蜂王浆产量性能好等优势。

由于各自的特点, 中蜂和意蜂在生产实践中应用不同, 授粉效果也有差异, 主要有以下几点。(1)环境温度和时间影响传粉效果。在同一地理环境下, 中蜂因其自身适应性强, 具有较低的活动温度起点, 一般在7-9℃就能出巢访花, 而意蜂一般在13℃以上(敖塘堰等, 2021)。在同一天中, 中蜂和意蜂在温度适宜的条件下(春季12:00-14:00时)访花积极性最高, 且意蜂明显高于中蜂(敖塘堰等, 2021)。(2)传粉区域范围不同。中蜂和意蜂的采集习性存在差异, 在近山区蜜源分散, 昼夜温差大的条件下, 中蜂活动性能强; 而在平原蜜源集中区, 昼夜温差小, 意蜂活动频繁(曾志将, 1989; 郭媛等, 2020)。当然, 这可能与不同地区地理环境也有关系。(3)蜜蜂携粉量不同。前人研究表明, 昆虫携粉量与个体大小有关, 意蜂比中蜂个体大, 单次访花携粉量多于中蜂(罗长维等, 2019; 敖塘堰等, 2021)。(4)中蜂和意蜂对不同植物的授粉效果存在差异。在对猕猴桃(Actinidia chinensis)和百香果访花行为和授粉调查中, 中蜂和意蜂都可以为两者授粉, 但中蜂授粉效果较意蜂好(黄仁才等, 2018)。在蜜蜂对蓝莓和西瓜授粉研究中, 研究者观察到意蜂对蓝莓和西瓜授粉时长和效率高于中蜂(苏晓玲等, 2017; 赵东绪等, 2019)。因此, 植物的种类、分布范围、不同的温度和气候条件等都会影响中蜂和意蜂传粉行为和授粉能力。此外, 引入西方蜜蜂后对我国部分地区的中蜂生存也有一定影响, 导致中蜂数量和采集区域减少(杨冠煌, 2005; 任晓晓等, 2021)。所以, 深入研究二者传粉植物多样性的规律十分必要。

当前, 传粉昆虫植物源鉴定的方法主要有野外观察法、蜂蜜孢粉学技术、DNA条形码及宏条形码技术等。相对于前两种方法, DNA条形码技术在传粉昆虫植物源鉴定中已有广泛应用, 不仅灵敏度高, 而且省时省力(黄敦元等, 2020)。但是, 对昆虫授粉的研究主要在春、夏季(此为大多数开花植物的花期), 而对秋冬期低温条件下的授粉研究较少, 这主要是因为低温开花的植物有限, 而且只有一部分昆虫在冬季传粉, 大部分传粉昆虫便需要冬眠而不再活动(胡宗文等, 2016)。蜜蜂具有一定的耐低温能力, 对于秋冬低温开花的植物也能够传粉, 且它们的传粉生态位明显高于其他昆虫(胡宗文等, 2016; 敖塘堰等, 2021)。前期研究发现, 中蜂在冬季可以为城市园林的植物授粉(陈发军等, 2016)。但是, 对中蜂和意蜂在秋冬期传粉特性及季节差异性还不清楚, 包括传粉植物种类、采集时间和携粉能力等。本文通过观察中蜂和意蜂传粉过程, 收集花粉后通过普通光学显微镜和扫描电镜初步分析花粉形态, 然后利用rbcl基因引物扩增相应植物DNA条形码序列来确定中蜂和意蜂传粉的植物种类和数量。中蜂和意蜂传粉多样性和差异调查将有利于研究两者的访花规律和偏好, 为不同地区生态保护和秋冬期选择不同蜜蜂进行作物传粉提供理论依据。

1 材料与方法

蜜蜂饲养于杭州下沙高教园区的中国计量大学(30.32° N, 120.36° E)校园内, 中蜂和意蜂使用的蜂箱是标准的木制朗氏蜂箱。中蜂和意蜂各选取3群, 实验前调整蜂群结构使其群势相当, 具体为: 各群约有5脾工蜂, 2脾卵和幼虫(日龄略有差异), 2脾封盖子, 1脾蜂蜜, 1脾花粉。所有蜂群的蜂王育成不足1年且均具有较强产卵能力。实验观察和采集时间为2020年10月中旬至12月上旬的秋冬期, 然后进行样品收集和数据分析。

1.1 植物花粉样本采集

每周在学校及周边地区收集开花植物花粉, 采集一定量开花植物的花朵和花粉, 置于-20℃低温环境下保存。同时, 拍摄植物照片, 后期用于查找和比对《中国高等植物图鉴》(中国科学院植物研究所, 1972)。然后, 所有植物花粉利用尼康YS100光学显微镜(Nikon, Japan)和日立TM-1000电子显微镜(Hitachi, Japan)观察和拍照, 用于查询《中国木本植物花粉电镜扫描图志》(李天庆等, 2011)。剩下不能确定的花粉样本通过伯乐S1000 PCR扩增仪(Bio-Rad, USA)扩增相应基因并利用BLAST分析确定(一致性(identity) > 99%, E-value值为0时视为鉴定到物种水平)。

1.2 蜂花粉样本收集

2020年10月中旬至12月上旬每周任选1天, 上午8:30-9:30、中午11:30-12:30和下午15:30-16:30各观察1次, 观察蜜蜂出房采集情况, 同时收集蜂花粉(每次每群中蜂和意蜂各收集花粉6粒)。12月上旬(图1), 气温骤降, 观察到少量中蜂和意蜂进出, 部分蜜蜂携带少量花粉, 但没有收集到对应的蜂花粉(温度变化数据来源于 https://lishi.tianqi.com/)。具体为: 在蜂箱门口抓取后足携带花粉团的蜜蜂, 用镊子轻轻将花粉取下(操作时尽量慢, 保证花粉完整), 记录蜜蜂携带的花粉数量、花粉形态及颜色, 然后用游标卡尺测量花粉团直径大小(同一截面垂直方向测量2次取均值)。最后转移到离心管中, 置于-20℃冰箱中保存备用。

图1

图1   秋冬观察期温度变化趋势图

Fig. 1   The trend chart of temperature change during late autumn and winter observation period


1.3 花粉的光学显微镜和电子显微镜观察

利用光学显微镜, 初步将中蜂和意蜂携带的蜂花粉与人工采集的植物花粉进行比对, 辨别两种蜜蜂采集的蜂花粉形态结构和种类。取蜂花粉团样本碾碎, 在光学显微镜下观察, 初步鉴定蜂花粉的颜色、形态和大小等, 并估算不同种类的花粉在蜂花粉中的占比, 做好记录。另取蜂花粉样本, 在4℃时用4%、pH值为6.8的戊二醛固定12 h, 然后用70%乙醇清洗后置于烘箱中40℃条件下烘干, 碾碎后粘于样品台, 并置于电子显微镜下观察花粉精细结构(张国云等, 2016)。最后, 将蜜蜂花粉电镜图与数据库中植物花粉电镜图进行对比分析, 确定花粉植物源种类。

1.4 DNA提取与基因扩增

每日同一时间段收集的中蜂和意蜂蜂花粉各取出一半混样(约9-12粒花粉), 用生工生物工程股份有限公司(生工)的Ezup柱式植物基因组DNA抽提试剂盒提取DNA, 即将蜂花粉在液氮中充分研磨, 加入适量预热Buffer PBC和β-巯基乙醇, 振荡混匀后65℃水浴25 min; 加入等体积氯仿混匀, 12,000 rpm离心5 min, 取上清液; 依次加入等体积Buffer BD和无水乙醇, 混匀后转移至吸附柱, 10,000 rpm离心1 min; 然后依次用LPW Solution和LWash Solution清洗吸附柱; 最后用预热去离子水洗脱。具体操作步骤见说明书。选取核酮糖-1,5-双磷酸羧化酶(ribulose 1,5-bisphosphate carboxylase, rbcl)和叶绿体trnH-psbA特殊核酸序列的引物(Kress & Erickson, 2007; 宁淑萍等, 2008; 任保青和陈之端, 2010), 引物序列见表1, 以上述蜂花粉DNA为模板进行PCR扩增。PCR反应采用3步法扩增程序: 变性、退火和延伸, 各自温度和时间为: 94℃预变性3 min; 94℃ 20 s, 50 ℃ (根据引物设定) 20 s; 72℃ 40 s, 35个循环; 最后72℃延伸10 min。将扩增后的序列进行琼脂糖凝胶电泳, 回收PCR产物送至生工进行测序。将所得序列通过NCBI网站进行Nucleotide BLAST, 一致性超过99%视为鉴定到物种水平。

表1   引物序列

Table 1  List of the primer sequence

引物 Primer序列 Sequence (5' to 3')
TPtrnH-FCGCGCATGGTGGATTCACAAATC
TPpsbA-RGTTATGCATGAACGTAATGCTC
rbcl-1FATGTCACCACAAACAGAAAC
rbcl-724RTCGCATGTACCTGCAGTAGC

新窗口打开| 下载CSV


2 结果

2.1 开花植物的花粉、中蜂和意蜂蜂花粉的收集

本实验观察和收集中蜂和意蜂蜂花粉15 d。统计携带花粉团回巢蜜蜂数量如下(图2), 在8:30-9:30, 中蜂携粉蜂为23 ± 7只/min, 意蜂携粉蜂为10 ± 5只/min; 在11:30-12:30, 中蜂携粉蜂为53 ± 11只/min, 意蜂携粉蜂为64 ± 16只/min; 在15:30-16:30, 中蜂携粉蜂为28 ± 9只/min, 意蜂携粉蜂为25 ± 6只/min。此外, 早、中、晚蜜蜂携带花粉粒径有差别, 早、晚花粉团粒径均值偏小, 但是差异不显著; 中蜂和意蜂花粉团平均粒径分别为2.12 mm和2.09 mm, 中蜂花粉团较意蜂花粉团大, 但差异不显著。

图2

图2   秋冬期不同时间段中蜂和意蜂采集花粉蜜蜂的数量

Fig. 2   The number of Apis cerana cerana (Acc) and Apis mellifera ligustica (Aml) foragers in different time point during late autumn and winter. * P < 0.05.


2.2 光学显微镜的观察结果

从光镜观察图像可以初步确定同一天两种蜜蜂采集的蜂花粉形状、颜色、大小等存在不同程度的差异, 且同一花粉团里有不同的花粉颗粒。但是, 通过普通光镜不能准确判别具体的植物源。部分花粉的光镜图片如图3所示(物镜为10 ×, 目镜为4 ×)。

图3

图3   部分采集花粉光镜结构图

Fig. 3   The partial pictures of bee pollens under an optical microscope


2.3 电子显微镜的观察结果

通过电子显微镜观察所有采集的两种蜂花粉, 将拍摄的蜂花粉电镜照片与《中国木本植物花粉电镜扫描图志》及样地植物花粉电镜图进行对比(图4), 根据花粉形状、大小以及花粉壁的结构和纹饰, 可初步辨认出部分植物的花粉(标尺为10 µm), 如:月季(Rosa chinensis)、大花百日菊(Zinnia grandi- flora)、山茶花(Camellia japonica)、枇杷(Eriobotrya laoshanica)、四季海棠(Begonia semperflorens)和菊花(Chrysanthemum mutellinum)等。但是, 仍有部分中蜂和意蜂采集的花粉不能判断植物源。实验中收集的蜂花粉后续均通过DNA条形码进一步验证。

图4

图4   部分蜂花粉样品电镜扫描结果图

Fig. 4   The partial pictures of bee pollens under an electron microscope


2.4 DNA条形码技术鉴定蜂花粉植物源

利用Ezup柱式植物基因组DNA抽提试剂盒提取不同蜂花粉基因组DNA, NanoDrop 2000测定浓度, 所有提取浓度均在320 ng/µL以上, A260/A280在1.80-1.96之间。分别用TPtrnH-F、TPpsbA-R和rbcl-1F、rbcl-724R作为正反引物进行PCR扩增预实验。结果显示, 引物rbcl-1F和rbcl-724R可以很好地扩增出目的条带, 目的片段大小在750 bp左右, 而TPtrnH-F和TPpsbA-R在不同样本中稳定性较差, 只有少部分样品可以扩增出序列, 选用rbcl-1F和rbcl-724R进行实验。扩增片段电泳结果如图5所示, 电泳后切胶回收并送至上海生工测序。

图5

图5   中华蜜蜂(A)和意大利蜜蜂(B)蜂花粉基因扩增电泳图

Fig. 5   Gene amplification results of Apis cerana cerana (A) and Apis mellifera ligustica (B) bee pollens


2.5 测序结果

获得rbcl基因测序结果后, 通过NCBI软件进行BLAST, 根据序列一致性(> 99%)及E-value值分析确定蜂花粉对应的植物物种。结合显微观察结果, 统计结果见表2

表2   中蜂(Acc)和意蜂(Aml)在秋冬期采集蜂花粉种类

Table 2  The pollen species collected by Apis cerana cerana (Acc) and Apis mellifera ligustica (Aml) during late autumn and winter

序号
Code
采样日期
Collecting date
蜂种
Species
蜂花粉植物品种
Plant species of bee pollen
110.13中蜂 Acc葎草、加拿大一枝黄花 Humulus scandens, Solidago canadensis
210.13意蜂 Aml葎草、加拿大一枝黄花 H. scandens, S. canadensis
310.20中蜂 Acc葎草、加拿大一枝黄花、银边吉祥草 H. scandens, S. canadensis, Reineckea carnea
410.20意蜂 Aml葎草、加拿大一枝黄花、银边吉祥草 H. scandens, S. canadensis, R. carnea
510.27中蜂 Acc葎草、加拿大一枝黄花、银边吉祥草、菊花、月季 H. scandens, S. canadensis, R. carnea, Chrysanthemum mutellinum, Rosa chinensis
610.27意蜂 Aml加拿大一枝黄花、银边吉祥草 S. canadensis, R. carnea
711.1中蜂 Acc葎草、加拿大一枝黄花、银边吉祥草、菊花、月季、茶梅 H. scandens, S. canadensis, Reineckea carnea, C. mutellinum, Rosa chinensis, Camellia sasanqua
811.1意蜂 Aml葎草、银边吉祥草、甘菊 H. scandens, R. carnea, Chrysanthemum boreale
911.3中蜂 Acc葎草、银边吉祥草、月季、茶梅、大花百日菊 H. scandens, Reineckea carnea, Rosa chinensis, C. sasanqua, Zinnia grandiflora
1011.3意蜂 Aml银边吉祥草、菊花、茶梅、大花百日菊、葎草、银边吉祥草 R. carnea, C. mutellinum, C. sasanqua, Z. grandiflora, H. scandens, C. sasanqua
1111.8中蜂 Acc大花百日菊、菊花、四季海棠、中华常春藤 Z. grandiflora, C. mutellinum, Begonia semperflorens, Hedera nepalensis var. sinensis
1211.8意蜂 Aml葎草、银边吉祥草、甘菊、茶梅、菊花、四季海棠H. scandens, R. carnea, C. boreale, C. sasanqua, C. mutellinum, B. semperflorens
1311.10中蜂 Acc葎草、银边吉祥草、茶梅、四季海棠、小百日菊 H. scandens, R. carnea, C. sasanqua, B. semperflorens, Zinnia baageana
1411.10意蜂 Aml葎草、小百日菊、茶梅、四季海棠 H. scandens, Z. baageana, C. sasanqua, B. semperflorens
1511.12中蜂 Acc葎草、银边吉祥草、茶梅 H. scandens, R. carnea, C. sasanqua
1611.12意蜂 Aml银边吉祥草、厚皮香、茶梅 R. carnea, Ternstroemia gymnanthera, C. sasanqua
1711.17中蜂 Acc葎草、银边吉祥草、小百日菊、枇杷、山茶花 H. scandens, R. carnea, Z. baageana, Eriobotrya laoshanica, Camellia japonica
1811.17意蜂 Aml银边吉祥草、山茶花、厚皮香、小百日菊、茶梅 R. carnea, Camellia japonica, T. gymnanthera, Z. baageana, C. sasanqua
1911.19中蜂 Acc银边吉祥草、枇杷、山茶花、八角金盘、三角梅 R. carnea, E. laoshanica, Camellia japonica, Fatsia japonica, Bougainvillea spectabilis
2011.19意蜂 Aml银边吉祥草、枇杷、小百日菊 R. carnea, E. laoshanica, Z. baageana
2111.29中蜂 Acc银边吉祥草、枇杷、八角金盘、三角梅、山茶花 R. carnea, E. laoshanica, Fatsia japonica, Bougainvillea spectabilis, Camellia japonica
2211.29意蜂 Aml山茶花、八角金盘、枇杷 C. japonica, F. japonica, E. laoshanica
2312.3中蜂 Acc枇杷、八角金盘、山茶花 E. laoshanica, F. japonica, C. japonica
2412.3意蜂 Aml山茶花、八角金盘、三角梅 C. japonica, F. japonica, B. spectabilis

新窗口打开| 下载CSV


2.6 中蜂和意蜂采集花粉结果

根据蜂花粉电镜观察和DNA条形码测序结果, 对照收集的植物花粉, 可以发现蜜蜂采集到的花粉与记录的植物花期基本同步(表2)。对于葎草(Humulus scandens)、加拿大一枝黄花(Solidago- canadensis)、银边吉祥草(Reineckea carnea)和茶梅(Camellia sasanqua)等, 中蜂和意蜂均表现出较强的采集行为, 采集这些植物花粉的频率较高。对于其他一些植物, 中蜂和意蜂则出现了不同偏好。其中, 中蜂对菊花(Chrysanthemum mutellinum)、大花百日菊(Zinnia grandiflora)、枇杷(Eriobotrya laoshanica)、山茶花(Camellia japonica)的采集要高于意蜂, 且月季(Rosa chinensis)和中华常春藤(Hedera nepalensis var. sinensis)只观察到中蜂的采集; 意蜂对甘菊(Chrysanthemum boreale)、厚皮香(Ternstroemia gymnanthera)、小百日菊(Zinnia baageana)的采集要高于中蜂, 且甘菊和厚皮香只观察到意蜂的采集。需要注意的是, 这些数据只反映观察期内中蜂和意蜂采集对应花粉天数的比例, 并未反映中蜂和意蜂对不同花粉的采集量。

3 讨论

蜜蜂是世界范围内最重要的授粉昆虫, 其传粉在维持植物生态平衡和提高农作物产量品质方面有重要意义(Garibaldi et al, 2016)。在全球范围内, 蜜蜂饲养数量有所增加, 但对蜜蜂授粉服务的需求还是相对不足。中蜂和意蜂在我国大部分地区都有饲养和分布, 在传粉服务中二者均能表现出较大的应用空间。由于中蜂和意蜂各自独特的形态结构和生物学特性, 它们对不同植物的传粉能力和效果有一定的差异(杨甫等, 2010; 敖塘堰等, 2021)。已有调查发现, 中蜂和意蜂可以在冬季为部分植物传粉(胡宗文等, 2016)。中蜂是我国本土蜂种, 相较于意蜂, 它不仅耐低温, 而且对本土自然生境的开花植物具有更好的适应性(杨冠煌, 2005)。然而, 二者在秋冬期时低温开花植物的传粉情况是否有差异目前仍不清楚。本文比较了中蜂和意蜂在秋冬期低温下传粉行为和特点, 将有利于研究两者的传粉规律和偏好, 为不同地区生态保护和冬季选择不同蜜蜂进行作物传粉提供理论依据。

相对于意蜂, 中蜂在低温下采集花粉的频率更高。在生态系统中, 温度是重要的生态因子之一, 直接影响传粉昆虫的活动。蜜蜂的传粉效率较其他昆虫高(祁海萍等, 2018), 而其飞行活动直接受到气温影响, 一般中蜂在7℃就可以出房采集, 而意蜂临界飞行温度在13℃左右(朱建华等, 2010; 敖塘堰等, 2021)。本实验研究发现, 在同样的温度条件下, 低温时(上午8:30-9:30和下午15:30-16:30)中蜂出房蜂数量高于意蜂, 上午8:30-9:30差异达到显著水平, 较高温度时(11:30-12:30)意蜂出房蜂数量高于中蜂。前人研究发现, 蜜蜂体内可能存在“葡萄糖-甘油-多种氨基酸”的抗寒生理调控系统, 在低温环境下, 中蜂依赖葡萄糖代谢的程度高于意蜂, 这可能是两种蜜蜂对低温适应性不同的原因(徐凯等, 2018)。此外, 低温还能影响中蜂和意蜂采集花粉团的大小。一般认为蜜蜂花粉团大小与蜜蜂个体有关, 意蜂比中蜂大, 自然状态下意蜂的花粉团要比中蜂大(罗长维等, 2019; 敖塘堰等, 2021)。然而本研究却发现低温时中蜂携粉足内的蜂花粉团却略大于意蜂, 这可能是由于中蜂更适应较低的环境温度, 从而延长了其采集花粉的时间, 也有可能中蜂在秋冬期传粉效率更高, 具体机制还有待进一步研究。

中蜂和意蜂传粉都具有广谱性, 可以为多种开花植物传粉, 但对不同植物的采集能力和采集偏好性方面存在差异。研究发现, 中蜂和意蜂对不同植物花粉的采集或传粉习性具有明显差异。在夏季高温时, 意蜂对单花访问时间比中蜂长, 访花频率高于意蜂, 说明意大利蜜蜂在西瓜传粉上更具优势(苏晓玲等, 2017)。在蓝莓授粉研究中同样发现意蜂较中蜂在花朵的采集时间长, 采集间隔时间短, 而中蜂较意蜂寻找花朵的时间长(赵东绪等, 2019)。但是, 在百香果的授粉研究中发现中蜂授粉的坐果率则要优于意蜂, 特别是不良气候时差异更显著(黄仁才等, 2018)。中蜂和意蜂这种差异不仅和自身的特点有关, 与植物源也有一定关系。本文作者团队在此前研究发现, 在春季对于同花期的植物源, 中蜂对花朵形态较大且易采集的蔷薇科植物具有一定的选择性和偏好性(吴帆等, 2020)。当前, 季节变化对中蜂和意蜂传粉影响还未见报道。本次实验中, 我们观察了杭州下沙高教园区内秋冬期中蜂和意蜂传粉特点, 发现观察地点存在的花粉植物源, 中蜂和意蜂基本都有采集, 可能是由于秋冬期开花植物较少, 蜜蜂没有更多可供选择的开花植物, 这与在城市园林中观察的中蜂访花行为基本一致(陈发军等, 2016)。此外, 本次观察地点的不同花粉植物源之间有一定距离, 不利于蜜蜂往返采集, 这可能是同一花粉团中花粉种类少的原因之一。不过整体上来讲, 中蜂对于某些本土低温开花的植物(如葎草、月季、枇杷和中华常春藤等)确实具有比意蜂更强的偏好性(图6), 这可能是由于中蜂长期适应本土开花植物, 从而产生协同进化的结果。

图6

图6   秋冬期中蜂和意蜂采集花粉植物源的比例分析

Fig. 6   The proportion analysis of pollen sources collected by Apis cerana cerana (Acc) and Apis mellifera ligustica (Aml) during late autumn and winter


综上所述, 在秋冬期低温下中蜂对本土开花植物的传粉的植物较意蜂具有偏好性, 能为更多低温显花植物传粉。中蜂和意蜂传粉多样性和差异调查将有利于研究蜜蜂的访花规律和偏好, 为该地区生态保护和在冬季选择蜜蜂进行植物传粉提供理论依据。

参考文献

Abrol DP, Gorka AK, Ansari MJ, Al-Ghamdi A, Al-Kahtani S (2019)

Impact of insect pollinators on yield and fruit quality of strawberry

Saudi Journal of Biological Sciences, 26, 524-530.

DOI:10.1016/j.sjbs.2017.08.003      PMID:30899167      [本文引用: 1]

Investigations were conducted to determine the insect pollinators visiting strawberry blossoms and their impact on fruit production. Various pollinators observed during the blooming period of strawberry were viz.,,. soil nesting solitary bees such as and, butterflies, houseflies, syrphid flies and some beetles. The percentage of fruit set was much higher in open pollinated plants than control. There was 11.20 per cent malformed fruit in open pollinated plots as compared to 17.44 per cent in controlled one. Further the fruits obtained from the open pollinated plants were of good quality and large as compared to the controlled plants. Growers are recommended to take advantage of the several pollinators, either the honey bee or the native pollinators (Syrphidae and native bees). The importance of diversifying pollination sources, avoiding the dependence on a single specific group is stressed. This study also suggests measures which envisage the conservation, establishment and increase of native pollinators' populations in the typical agro-ecosystem of region

Ao TY, Xiong L, Ma ZG (2021)

Review on the characteristics and differences of visiting behavior between honeybee Apis cerana and Apis mellifera

Journal of Bee, 41(3), 1-4. (in Chinese with English abstract)

[本文引用: 7]

[敖塘堰, 熊亮, 马振刚 (2021)

中华蜜蜂与意大利蜜蜂访花行为特点与区别

蜜蜂杂志, 41(3), 1-4.]

[本文引用: 7]

Bruckman D, Campbell DR (2014)

Floral neighborhood influences pollinator assemblages and effective pollination in a native plant

Oecologia, 176, 465-476.

DOI:10.1007/s00442-014-3023-6      PMID:25047026      [本文引用: 1]

Pollinators represent an important intermediary by which different plant species can influence each other's reproductive fitness. Floral neighbors can modify the quantity of pollinator visits to a focal species but may also influence the composition of visitor assemblages that plants receive leading to potential changes in the average effectiveness of floral visits. We explored how the heterospecific floral neighborhood (abundance of native and non-native heterospecific plants within 2 m × 2 m) affects pollinator visitation and composition of pollinator assemblages for a native plant, Phacelia parryi. The relative effectiveness of different insect visitors was also assessed to interpret the potential effects on plant fitness of shifts in pollinator assemblage composition. Although the common non-native Brassica nigra did not have a significant effect on overall pollinator visitation rate to P. parryi, the proportion of flower visits that were made by native pollinators increased with increasing abundance of heterospecific plant species in the floral neighborhood other than B. nigra. Furthermore, native pollinators deposited twice as many P. parryi pollen grains per visit as did the nonnative Apis mellifera, and visits by native bees also resulted in more seeds than visits by A. mellifera. These results indicate that the floral neighborhood can influence the composition of pollinator assemblages that visit a native plant and that changes in local flower communities have the potential to affect plant reproductive success through shifts in these assemblages towards less effective pollinators.

Chen FJ, Yang QQ, Long L, Hu HM, Duan B, Chen WN (2016)

Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter

Chinese Journal of Applied Ecology, 27, 275-281. (in Chinese with English abstract)

[本文引用: 2]

[陈发军, 杨青青, 龙黎, 胡红梅, 段彬, 陈文年 (2016)

城市园林生境冬季中华蜜蜂的活动规律和采集行为

应用生态学报, 27, 275-281.]

[本文引用: 2]

蜜蜂等传粉昆虫是生物多样性的重要组成部分,关系植物繁殖和农业生产.为探讨城市园林在土著蜂种中华蜜蜂保护中的作用,对川南地区冬季中华蜜蜂的活动格局、访花行为和蜜粉源植物等进行观测.结果表明: 工蜂在冬季适宜天气积极外出采集,活动持续时间长,出巢、回巢和未带粉采集蜂数量在14:00&mdash;15:00最多,呈双峰格局,而采粉蜂数量在11:00达到峰值,呈单峰格局,时间对蜜蜂活跃程度影响显著;蜂群对花蜜和花粉采集投入存在差异,只有近20%的采集蜂携带花粉;温湿度对蜜蜂活动具有一定影响;不同日期蜂群活动格局大体相似,但个别时段体现出差异.冬季园林生境中开花植物较少,但多种类群皆为可采集的蜜粉资源,中华蜜蜂通过调节其行为策略可实现有效采集;山茶等主要园林植物花上蜜蜂的拜访表现出较强规律性.可通过科学的园林管理增加冬季蜜粉资源,以利于营造中华蜜蜂的适宜生境和维持野外种群.

Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, Ngo HT, Azzu N, Sáez A, Åström J, An JD, Blochtein B, Buchori D, García FJC, Oliveira da Silva F, Devkota K, de Fátima Ribeiro M, Freitas L, Gaglianone MC, Goss M, Irshad M, Kasina M, Filho AJSP, Kiill LHP, Kwapong P, Parra GN, Pires C, Pires V, Rawal RS, Rizali A, Saraiva AM, Veldtman R, Viana BF, Witter S, Zhang H (2016)

Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms

Science, 351, 388-391.

DOI:10.1126/science.aac7287      PMID:26798016      [本文引用: 1]

Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes. Copyright © 2016, American Association for the Advancement of Science.

Guo Y, Wu WQ, Zhang XF, Zhang YY, Song HL (2020)

Investigation on pollinators and flower-visiting behavior of dominant pollinators of pear trees in different eco-regions

Chinese Agricultural Science Bulletin, 36(6), 127-131. (in Chinese with English abstract)

DOI:10.11924/j.issn.1000-6850.casb20190900643      [本文引用: 1]

<p id="C3">To explore the dominant pollinators of pear trees, we investigated the wild pollinators of pear trees in the plain and mountainous areas in Shanxi, and analyzed the species, quantity and flower-visiting behavior of the wild pollinators. The results showed that there were 4 orders, 15 families and 22 species in the two different eco-regions. The species and quantities of pollinators in the mountainous areas were more abundant than those in plain areas. <i>Apis cerana cerana, Anthophora plumipes</i> and <i>Andrena thoracica</i> were the dominant pollinators. All the three bee species visited upper middle flowers of the trunk frequently, the proportion of the upper flowers, middle flowers and lower flowers visited by <i>Apis cerana cerana</i> was 36.9%, 51.1%, 12.0%, respectively; by <i>Anthophora plumipes</i> was 46.5%, 38.0%, 15.5%, respectively, and by <i>Andrena thoracica</i> was 41.2%, 37.6%, 21.2%, respectively. The visiting frequency of <i>Apis cerana cerana</i> and <i>Anthophora plumipes</i> was (11.95&plusmn;0.87) flowers/min and (12.52&plusmn;2.16) flowers/min, respectively, which was significantly higher than (6.64&plusmn;0.56) flowers/min of <i>Andrena thoracica</i>, so <i>Apis cerana cerana</i> was the ideal pollinators for pear trees. The research provides a theoretical basis for clarifying the current situation of pear tree pollinators in Shanxi and establishing a database of wild pollinators and pear tree pollination bees.</p>

[郭媛, 武文卿, 张旭凤, 张云毅, 宋怀磊 (2020)

不同生态区梨树传粉昆虫调查及其优势传粉昆虫访花行为研究

中国农学通报, 36(6), 127-131.]

DOI:10.11924/j.issn.1000-6850.casb20190900643      [本文引用: 1]

为探究梨优势传粉昆虫,在对山西省平川区和近山区的梨树野生传粉昆虫调查的基础上,分析野生传粉昆虫的种类、数量及其访花行为。结果表明,2个调查样地访花昆虫共有4目15科22种。近山区传粉昆虫的种类和数量较平川区丰富。近山区优势传粉昆虫为中华蜜蜂、毛附黑条蜂、黄胸地蜂。3个蜂种均喜欢访问树干中上部花朵;中华蜜蜂访问上部花、中部花、下部花的比例分别为36.9%、51.1%、12.0%;毛附黑条蜂访问上部花、中部花、下部花的比例分别为46.5%、38.0%、15.5%;黄胸地蜂访问上部花、中部花、下部花的比例分别为41.2%、37.6%、21.2%。中华蜜蜂[(11.95&plusmn;0.87)朵/min]和毛附黑条蜂[(12.52&plusmn;2.16)朵/min]的传粉频率显著高于黄胸地蜂[(6.64&plusmn;0.56)朵/min],中华蜜蜂是梨传粉的理想昆虫。研究可为明确山西省梨树野生传粉昆虫现状、建立野生传粉昆虫数据库及梨授粉用蜂提供理论依据。

Hu ZW, Zhang XW, Yang J, Wang YH, Huang XQ, Xun LJ, Miao CH (2016)

An investigation of pollinators and niche analysis in Xiangyun Basin during winter

Chinese Journal of Ecology, 35, 3353-3359. (in Chinese with English abstract)

[本文引用: 3]

[胡宗文, 张学文, 杨娟, 王艳辉, 黄新球, 荀利杰, 苗春辉 (2016)

祥云坝区冬季访花昆虫调查及生态位分析

生态学杂志, 35, 3353-3359.]

[本文引用: 3]

为了揭示祥云坝区冬季的访花昆虫种类及生态位,于2015年12月&mdash;2016年1月进行野外观察访问显花植物油菜、芥蓝、蚕豆的昆虫。每隔一周记录一天中间隔30 min内的访花昆虫种类、头数、访问次数以及停留时间,利用生态位宽度、生态位重叠方法对该坝区访花昆虫的组成及生态位特征进行了研究。结果表明:在冬季该坝区访花昆虫分为膜翅目和双翅目两大类,中蜂、意蜂、家蝇、长尾管蚜蝇是优势授粉者;一天中昆虫的访问高峰期存在差异,在11:00&mdash;15:30内访花昆虫种类繁多;不同昆虫的停留时间存在差异(F<sub>2,862</sub>=13.43,P&lt;0.01),家蝇最长(32.81&plusmn;2.56 s),意蜂最短(9.91&plusmn;0.40 s),昆虫停留在油菜上最长(16.50&plusmn;0.82 s),蚕豆最短(10.31&plusmn;1.14 s);冬季访花昆虫的生态位宽度也不一样,意蜂最高(Bi=0.8345,Ba=0.3074);种内的生态位重叠值大而种间较小,即中蜂与意蜂重叠值为0.8451,中蜂与家蝇为0.0928。上述结果表明,访花昆虫高峰期出现时间段不同能够减少对冬季有限食物资源取食的竞争。蜂类因在授粉上有较高的生态位宽度而成为当地植物授粉的优势昆虫,但在生态位上有较高的重叠表明蜂类之间又存在较大的竞争压力,这在一定程度上也解释了近年来在引入外来西方蜜蜂后中国蜜蜂土著种逐渐减少的现象。

Huang DY, Huang SC, Li HY, Dou FY, Kou RM, Li Y, Luo AC (2020)

Identification methods of nectar or pollen plants for pollinators

Journal of Chongqing Normal University (Natural Science), 37(3), 1-8. (in Chinese with English abstract)

[本文引用: 1]

[黄敦元, 黄思程, 李红英, 窦飞越, 寇若玫, 李月, 罗安才 (2020)

传粉昆虫蜜(粉)源植物的鉴定方法探讨

重庆师范大学学报(自然科学版), 37(3), 1-8.]

[本文引用: 1]

Huang RC, Gao JL, Wu CB, Han WS, Zhao DX (2018)

Pollination effect of Apis cerana cerana and Apis mellifera ligustica on passion fruit

Tropical Agricultural Engineering, 42(3), 7-10. (in Chinese with English abstract)

[本文引用: 2]

[黄仁才, 高景林, 吴朝波, 韩文素, 赵冬香 (2018)

中华蜜蜂和意大利蜜蜂为设施百香果授粉效果观察

热带农业工程, 42(3), 7-10.]

[本文引用: 2]

Institute of Botany, Chinese Academy of Sciences (1972) Atlas of Higher Plants in China. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[中国科学院植物研究所 (1972) 中国高等植物图鉴. 科学出版社, 北京.]

[本文引用: 1]

Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303-313.

[本文引用: 1]

Kress WJ, Erickson DL (2007)

A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region

PLoS ONE, 2, e508.

DOI:10.1371/journal.pone.0000508      PMID:17551588      [本文引用: 1]

A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level.Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species.A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.

Li TQ, Cao HJ, Kang MS, Zhang ZX, Zhao N, Zhang H (2011) Pollen Flora of China Woody Plants by SEM. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[李天庆, 曹慧娟, 康木生, 张志翔, 赵楠, 张晖 (2011) 中国木本植物花粉电镜扫描图志. 科学出版社, 北京.]

[本文引用: 1]

Liu YJ, Zhao TR, Zhang XW, Liang C, Zhao FY (2013)

Melittopalynology and trophic niche analysis of Apis cerana and Apis mellifera in Yunnan Province of southwest China

Sociobiology, 60, 289-294.

[本文引用: 1]

Luo CW, Chen Y, Zhang T (2019)

Pollination efficiency of the major pollinators of Paeonia ostia ‘Feng Dan’

Journal of Nanjing Forestry University (Natural Sciences Edition), 43(4), 148-154. (in Chinese with English abstract)

[本文引用: 2]

[罗长维, 陈友, 张涛 (2019)

油用牡丹‘凤丹’主要传粉昆虫的传粉行为比较

南京林业大学学报(自然科学版), 43(4), 148-154.]

[本文引用: 2]

Ning SP, Yan HF, Hao G, Ge XJ (2008)

Current advances of DNA barcoding study in plants

Biodiversity Science, 16, 417-425. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2008.08215      [本文引用: 1]

DNA barcoding has become one of hotspots of biodiversity research in the last five years. It is a method of rapid and accurate species identification and recognition using a short, standardized DNA region. DNA barcoding is now well established for animals, using a portion of the mitochondrial cytochrome c oxidase subunit 1 (COI or <em>cox1</em>) as the standard universal barcode. However, in plants, progress has been hampered by slow substitution rates in mitochondrial DNA. A number of different chloroplast regions have been proposed. There has been considerable debate, but little consensus regarding region choice for DNA barcod-ing land plants. Direct comparative assessment of different barcoding regions is now a priority to enable a standard barcoding solution to be agreed in plants. The proposed chloroplast barcoding regions mainly in-clude five coding (<em>rpoB, rpoC1, matK, rbcL</em>, UPA) and three non-coding (<em>trnH-psbA, atpF-atpH, psbK-psbI</em>) regions. In addition, nrITS is also suggested as a potential plant barcode. Limited by the universality and re-solvability of single barcoding region, five combinations of these regions are proposed. In this review, the advance of these barcoding regions, both their universality of primers and resolving power are reviewed. The advantages, standards, workflow and existent dispute of DNA barcoding are summarized.

[宁淑萍, 颜海飞, 郝刚, 葛学军 (2008)

植物DNA条形码研究进展

生物多样性, 16, 417-425.]

DOI:10.3724/SP.J.1003.2008.08215      [本文引用: 1]

DNA条形码(DNA barcoding)已成为近5年来国际上生物多样性研究的热点, 即通过使用短的标准DNA片段, 对物种进行快速、准确的识别和鉴定。该技术在动物研究中已得到广泛的应用, 所采用的标准片段是线粒体COI基因中约650 bp长的一段。然而在植物中DNA条形码的研究进展相对缓慢, 目前尚处于对所提议的各片段比较和评价阶段, 还未获得一致的标准片段。由于植物中线粒体基因组进化速率较慢, 因此条形码片段主要在叶绿体基因组上进行选择, 被提议的编码基因片段主要有rpoB, rpoC1, matK, rbcL, UPA, 非编码区片段有trnH-psbA, atpF-atpH, psbK-psbI, 此外还有核基因ITS。已有的研究表明以上任何一个单片段都不足以区分所有植物物种, 因而不同的研究组相继提出了不同的片段组合方案, 目前被广泛讨论的组合主要有5种。本文综述了DNA条形码序列的优点、标准、工作流程、分析方法和存在的争议, 重点论述了植物条形码研究中被提议的各序列片段和组合的研究现状。

Pincebourde S, van Baaren J, Rasmann S, Rasmont P, Rodet G, Martinet B, Calatayud PA (2017) Plant-insect interactions in a changing world. In: Advances in Botanical Research: Insect-plant Interactions in A Crop Protection Perspective (eds Sauvion N, Thiery D, Calatayud PA), pp. 289-332. Elsevier, Amsterdam.

[本文引用: 1]

Qi HP, Guo Y, Song HL, Qi L (2018)

On the importance and feasibility of bee pollination

Shanxi Science and Technology, 33(6), 34-36, 48. (in Chinese with English abstract)

[本文引用: 1]

[祁海萍, 郭媛, 宋怀磊, 祁蕾 (2018)

论蜜蜂授粉在农业生产中的重要性及可行性

山西科技, 33(6), 34-36, 48.]

[本文引用: 1]

Ren BQ, Chen ZD (2010)

DNA Barcoding Plant Life

Chinese Bulletin of Botany, 45, 1-12. (in Chinese with English abstract)

[本文引用: 1]

[任保青, 陈之端 (2010)

植物DNA条形码技术

植物学报, 45, 1-12.]

DOI:10.3969/j.issn.1674-3466.2010.01.001      [本文引用: 1]

DNA条形码技术是利用标准的、具有足够变异的、易扩增且相对较短的DNA片段在物种内的特异性和种间的多样性而创建的一种新的生物身份识别系统, 从而实现对物种的快速自动鉴定。尽管这一技术在理论上和具体应用上仍存在很多争论, 但DNA条形码概念自2003年由加拿大分类学家Paul Hebert首次提出后就在世界范围内受到了广泛关注。在植物类群中条形码的研究和应用尚处于探索阶段, 稍落后于对动物类群的研究, 这主要表现在: (1) DNA条形码的选择及其评价仍没有统一的标准; (2) 对类群较全面的形态分类学修订和植物DNA条形码研究的结合十分缺乏; (3) 以往研究在取样上尺度较大, 而对具体类群的研究较少, 一个科或一个属只用有限的种类作为代表, 同一种内的取样个体数量也不足, 这样虽然表面上看来利用选定的DNA条形码可以较容易地把代表物种区分开, 但实际上目前建议的植物DNA条形码(例如由生命条形码咨询委员会植物工作组最近提出的rbcL和matK)由于其分子进化速率较慢, 在种级水平上, 特别是对于那些经历了适应辐射或快速进化的属来说, 分辨率较低。而DNA条形码的应用主要集中在属内物种水平的鉴别, 因此只有针对具体类群进行探索研究, 发现进化速率较快、分辨率高且通用性好的条形码, 才可能为建立完整的条形码数据库起到积极有效的作用。

Ren XX, Meng BD, Zhao WZ, Gong XY, Chen XL, Huang YQ, Zhou DY, Dong K (2021)

Effect of the colony densities of Apis mellifera on the foraging behavior of Apis cerana

Journal of Yunnan Agricultural University (Natural Science), 36, 82-90. (in Chinese with English abstract)

[本文引用: 1]

[任晓晓, 孟柏达, 赵文正, 龚雪阳, 陈新兰, 黄永权, 周丹银, 董坤 (2021)

西方蜜蜂的放蜂密度对东方蜜蜂采集行为的影响

云南农业大学学报(自然科学), 36, 82-90.]

[本文引用: 1]

Su XL, Hua QY, Chen YF, Jiang XS, Xi WJ, Zhao DX, Bie ZL (2017)

Behavior of Apis cerana cerana and Apis mellifera ligustica as pollinator for long-season cultivated watermelon in tunnel greenhouse under summer high temperature condition

Journal of Environmental Entomology, 39, 104-110. (in Chinese with English abstract)

[本文引用: 2]

[苏晓玲, 华启云, 陈伊凡, 蒋侠森, 席伟军, 赵东绪, 别之龙 (2017)

中华蜜蜂和意大利蜜蜂夏季高温下为长季节栽培设施西瓜授粉行为观察

环境昆虫学报, 39, 104-110.]

[本文引用: 2]

Wu F, Zhang L, Zhou J, Chang Y, Lang YH, Shen YP, Wang L, Li HL (2020)

Study on Apis cerana cerana pollination diversity based on bee pollen and DNA barcode

Journal of China University of Metrology, 31, 507-513. (in Chinese with English abstract)

[本文引用: 1]

[吴帆, 张莉, 周晶, 常悦, 郎一涵, 沈叶萍, 王靓, 李红亮 (2020)

基于花粉形态及DNA条形码的中华蜜蜂传粉多样性研究

中国计量大学学报, 31, 507-513.]

[本文引用: 1]

Xu K, Niu QS, Liu YL, Chen DH, Du YL, Guo LN, Zhao HT, Jiang YS (2018)

Effects of temperature on major physiological indicators of cold tolerance in Apis cerana cerana and Apis mellifera ligustica

Chinese Journal of Applied Entomology, 55, 889-895. (in Chinese with English abstract)

[本文引用: 1]

[徐凯, 牛庆生, 刘玉玲, 陈东海, 杜亚丽, 郭丽娜, 赵慧婷, 姜玉锁 (2018)

温度对中华蜜蜂和意大利蜜蜂个体主要抗寒生理指标的影响

应用昆虫学报, 55, 889-895.]

[本文引用: 1]

Yang F, Wang FH, Xu XL (2010)

Behavior of Bombus lucorum, Apis cerana cerana and Apis mellifera ligustica as pollinator for strawberry grown in greenhouse

Journal of Anhui Agricultural Sciences, 38, 10711-10713. (in Chinese with English abstract)

[本文引用: 1]

[杨甫, 王凤鹤, 徐希莲 (2010)

明亮熊蜂、中华蜜蜂和意大利蜜蜂为温室草莓授粉的行为观察

安徽农业科学, 38, 10711-10713.]

[本文引用: 1]

Yang GH (2005)

Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact

Acta Entomologica Sinica, 48, 401-406. (in Chinese with English abstract)

[本文引用: 2]

[杨冠煌 (2005)

引入西方蜜蜂对中蜂的危害及生态影响

昆虫学报, 48, 401-406.]

[本文引用: 2]

Zeng ZJ (1989)

Analysis on the factors affecting the distribution of honeybee species

Apicultural Science and Technology, (3), 27-28. (in Chinese with English abstract)

[本文引用: 2]

[曾志将 (1989)

浅析影响蜜蜂品种分布的因素

养蜂科技, (3), 27-28.]

[本文引用: 2]

Zhang GY, Zhang WT, Yao JN, Pei GL (2016)

Characterization of several pinus species pollens via different treatments by SEM

Journal of Chinese Electron Microscopy Society, 35, 49-52. (in Chinese with English abstract)

[本文引用: 1]

[张国云, 张雯婷, 姚娟妮, 裴国亮 (2016)

不同处理条件下几种松树花粉的扫描电镜观察

电子显微学报, 35, 49-52.]

[本文引用: 1]

Zhao DX, Su XL, Hua QY, Tou LJ, Chen DX (2019)

The comparative studies of pollination behaviors between Apis cerana and Apis mellifera in blueberry

Journal of Environmental Entomology, 41, 187-192. (in Chinese with English abstract)

[本文引用: 2]

[赵东绪, 苏晓玲, 华启云, 钭凌娟, 陈东晓 (2019)

意大利蜜蜂和中华蜜蜂为蓝莓授粉的行为比较研究

环境昆虫学报, 41, 187-192.]

[本文引用: 2]

Zhu JH, Xu N, Wang ZY, Li HL, Lu GF, Li DB, Li GW, Huang FZ, Peng HX (2010)

Study on the species of pollination insects of longan and the relationship between their pollination activity and temperature

Chinese Journal of Tropical Crops, 31, 646-650. (in Chinese with English abstract)

[本文引用: 1]

[朱建华, 徐宁, 王助引, 李鸿莉, 陆贵锋, 李冬波, 黎光旺, 黄凤珠, 彭宏祥 (2010)

龙眼传粉昆虫种类及其传粉活动与温度的关系

热带作物学报, 31, 646-650.]

[本文引用: 1]

/