生物多样性, 2023, 31(4): 22585 doi: 10.17520/biods.2022585

研究报告:微生物多样性

固沙灌木林地土壤微生物群落特征对土壤多功能性的影响

肖媛媛,1, 冯薇1,2, 乔艳桂1, 张宇清,1,2,*, 秦树高1,2

1.北京林业大学水土保持学院, 宁夏盐池毛乌素沙地生态系统国家定位观测研究站, 北京 100083

2.北京林业大学水土保持国家林业和草原局重点实验室, 北京 100083

Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands

Yuanyuan Xiao,1, Wei Feng1,2, Yangui Qiao1, Yuqing Zhang,1,2,*, Shugao Qin1,2

1. Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083

2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083

通讯作者: *E-mail:zhangyqbjfu@gmail.com

编委: 张丽梅

责任编辑: 李会丽

收稿日期: 2022-10-18   接受日期: 2022-12-8  

基金资助: 国家自然科学基金(U22A20504)
国家自然科学基金(32071844)
国家自然科学基金(32001373)
中央高校基本科研业务费专项资金(PTYX202222)
中央高校基本科研业务费专项资金(PTYX202223)

Corresponding authors: *E-mail:zhangyqbjfu@gmail.com

Received: 2022-10-18   Accepted: 2022-12-8  

摘要

过去30年, 毛乌素沙地采取飞播、禁牧等一系列生态恢复措施进行荒漠化治理, 在改善区域生态环境方面取得了显著成效; 然而, 植被恢复后, 土壤多功能性的变化情况仍不明晰, 尤其是土壤微生物对土壤多功能性的影响缺乏深入认识。本文以毛乌素沙地同期建植的黑沙蒿(Artemisia ordosica)、北沙柳(Salix psammophila)和柠条锦鸡儿(Caragana korshinskii) 3种固沙灌木林地土壤为研究对象, 使用高通量测序技术测定了土壤微生物群落结构, 采用平均值法量化了林地土壤多功能性并分析二者关系。研究结果显示: (1) 3种固沙灌木林地土壤有机碳、全氮、全磷、微生物量碳、微生物量氮存在显著差异(黑沙蒿林地 > 北沙柳林地 > 柠条锦鸡儿林地), 黑沙蒿和北沙柳林地土壤蔗糖酶、碱性磷酸酶、土壤多功能性无显著差异, 但高于柠条锦鸡儿林地; (2) 黑沙蒿林地土壤微生物Chao 1指数、物种数、Shannon指数显著高于柠条锦鸡儿林地, 柠条锦鸡儿林地土壤净种间亲缘关系指数显著低于其他两类林地, 3种林地土壤微生物Shannon指数、系统发育多样性、网络拓扑性质(节点、边、边密度)及柠条锦鸡儿林地土壤净种间亲缘关系指数均与土壤多功能性呈正相关; (3)微生物参数对土壤多功能性的解释度从高到低依次为网络拓扑性质(24.46%)、物种多样性(19.72%)、谱系多样性(5.92%), 土壤微生物多样性通过促进网络结构间接地对土壤多功能性产生正向影响。研究结果表明, 不同灌木林地对土壤微生物参数和土壤多功能性影响不同, 土壤微生物多样性通过正向调控微生物种间关系影响土壤生态系统功能。结果有助于从土壤微生物视角, 理解以不同固沙灌木为优势种组成的植被群落对土壤功能的影响, 并可为荒漠化防治植物种的选择提供理论依据。

关键词: 固沙灌木; 共现网络; 毛乌素沙地; 土壤多功能性; 微生物谱系多样性; 微生物物种多样性

Abstract

Aims: Over the past 30 years, a range of ecological restoration measures such as aerial seeding and grazing prohibition have been conducted for desertification control in the Mu Us Desert, and significant vegetation greenness have been achieved in improving the regional ecological environment; however, the changes in soil multifunctionality after vegetation restoration are still unclear, in particular the influence of soil microorganisms on soil multifunctionality.

Methods: In this study, soils of shrublands established at the same time in the Mu Us Desert, and dominated by Artemisia ordosica, Salix psammophila, Caragana korshinskii, respecitively, were investigated. Soil microbial community structure was determined using high-throughput sequencing, and soil multifunctionality was calculated by the Z-score method.

Results: There were significant differences in soil organic carbon content, total nitrogen content, total phosphorus content, microbial biomass carbon content, and microbial biomass nitrogen content among three shrub soils (A. ordosica shrubland > S. psammophila shrubland > C. korshinskii shrubland). Soil invertase activity, alkaline phosphatase activity, and multifunctionality were significantly higher in A. ordosica and S. psammophila shrubland than that in C. korshinskii shrubland. Soil microbial Chao 1 index, observed species number and Shannon index in A. ordosica shrubland was significantly higher than that in C. korshinskii shrubland. The net relatedness index of soil microbes in C. korshinskii shrubland was significantly lower than that in the other two types of lands. Shannon index, Faith’s phylogenetic diversity and network topology properties (nodes, edges, linkage density) in the three shrublands and the net relatedness index in C. korshinskii shrubland were positively correlated with soil multifunctionality. Soil microbial network topological properties, species diversity, and phylogenetic diversity explained 24.46%, 19.72%, and 5.92% of the variation in soil multifunctionality, respectively. Structural equation modeling showed that soil microbial diversity increased soil multifunctionality indirectly by promoting network structure.

Conclusion: The results indicate that different shrub soils have different effects on soil microorganisms and multifunctionality, and soil microbial diversity influence soil ecosystem functions mainly through positive regulation of microbial interspecific relationships. The results of the study help to understand the effects of different vegetation restoration measures on soil functions from the perspective of soil microorganisms, and can provide a theoretical basis for the selection of plant species for desertification control.

Keywords: sand-fixation shrubs; co-occurrence network; Mu Us Desert; soil multifunctionality; microbial phylogenetic diversity; microbial species diversity

PDF (6056KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高 (2023) 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响. 生物多样性, 31, 22585. doi:10.17520/biods.2022585.

Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin (2023) Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands. Biodiversity Science, 31, 22585. doi:10.17520/biods.2022585.

土壤多功能性(soil multifunctionality, MF)是土壤生态系统能够同时提供和维持多个生态系统功能和服务的能力(Manning et al, 2018), 其与生物多样性的关系是当前研究的热点(Zheng et al, 2019; 黄小波等, 2021)。土壤微生物数量占整个地球生物多样性的1/4 (Wagg et al, 2019), 在养分循环、有机物分解和促进植物生长等生态系统功能方面发挥着十分重要的作用。微生物不仅在物种多样性层面影响生态系统过程和能量流动(Bardgett & van der Putten, 2014), 而且其谱系多样性和类群间复杂的相互作用也影响着生态系统功能(Srivastava et al, 2012; Le Bagousse-Pinguet et al, 2019; Wagg et al, 2019)。因此, 为了全面揭示土壤微生物与土壤多功能性的关系, 除了关注物种数量外, 尚需进一步考虑微生物间谱系发育和种间相互作用与多功能性的关系。

在森林、农田、草地等生态系统类型中, 土壤微生物多样性与土壤多功能性显著正相关、负相关和无显著相关均存在(Wagg et al, 2014; Delgado- Baquerizo et al, 2016, 2017a, b; Canarini et al, 2021)。造成上述结果的原因可能是仅考虑了物种多样性与生态系统功能的关系, 而忽视了谱系发育和微生物间相互作用在生态系统中的作用。谱系多样性从亲缘关系和进化的角度考虑了不同物种的差异(Srivastava et al, 2012; Zhang et al, 2019)。微生物间相互作用是生态系统实现能量流动、物质循环和信息传递的基础。已有研究表明, 微生物间相互作用可能比物种多样性对土壤功能的贡献更大(Ma et al, 2016)。网络结构作为微生物种间互作的载体, 常用来表征微生物群落复杂性(Barberán et al, 2012; Vries & Wallenstein, 2017; Delgado‐Baquerizo et al, 2020a)和维持生态系统稳定的能力(Wagg et al, 2019; Guseva et al, 2022), 只有网络结构具有稳定的结构才能保证生态系统能量流动和物质循环等功能的正常运转。

植被群落的谱系结构已被证明是生态系统功能的一个重要预测因素(Cadotte et al, 2012)。多数研究结果认为, 物种丰富的植物群落形成的网络结构具有较高的复杂性, 可以反映群落生产力的差异(陈禹舟等, 2015; 徐炜等, 2016a)。微生物类群间生态位分化、进化及生物协同、竞争和拮抗等一系列直接或间接的生态作用, 共同影响着生态系统多种功能和能量流动(Li et al, 2021), 然而, 微生物谱系多样性和网络结构对土壤多功能性的影响仍然不甚清晰(蔡艳等, 2019; Liu et al, 2021; Saghaï et al, 2022), 制约着对生态恢复效果的全面认识。因此, 本研究结合微生物物种多样性、谱系多样性及共现网络, 分析微生物多样性和共现网络与土壤多功能性的关系, 以期深化对二者关系的认识。

全球旱区面积约占据陆地总面积的45% (Berdugo et al, 2020)。据预测, 到21世纪末, 旱区面积将增加23% (Huang et al, 2016), 在旱区进行荒漠化治理已成为我国乃至全球的重要任务之一。毛乌素沙地是我国四大沙地之一, 经过多年治理, 生态条件得到显著改善, 固沙植物以黑沙蒿(Artemisia ordosica)、北沙柳(Salix psammophila)、柠条锦鸡儿(Caragana korshinskii)、蒙古羊柴(Corethrodendron fruticosum var. mongolicum)和细枝羊柴(C. scoparium)为优势种的群落为主, 群落面积约占毛乌素沙地总面积的80%以上, 在维持当地生态系统稳定中起着重要作用(孙迎涛等, 2022; 袁小琴等, 2022)。本研究以毛乌素沙地黑沙蒿、北沙柳、柠条锦鸡儿林地土壤为研究对象, 利用高通量测序、土壤微生物共现网络构建等方法, 分析了不同固沙灌木林地土壤性质和微生物群落结构特征, 主要尝试回答以下问题: (1)不同固沙灌木林地土壤多功能性是否存在差异? (2)不同固沙灌木林地土壤微生物多样性和网络拓扑性质的差异及其与土壤多功能性有何关系? (3)微生物物种多样性、谱系多样性、网络拓扑性质对土壤多功能性的相对贡献如何? 研究结果有助于了解毛乌素沙地不同灌木林地土壤微生物对生态系统功能的影响, 加深微生物对荒漠生态系统生态功能调控机制的认识, 为沙区生态恢复和重建提供科学依据。

1 材料与方法

1.1 研究区概况

研究区位于毛乌素沙地西南缘的宁夏盐池毛乌素沙地生态系统国家定位观测站(106°30°‒ 107°41° E, 37°04°‒38°10° N)。站区平均海拔1,530 m, 处于我国干旱与半干旱区、干草原与荒漠草原的过渡地带, 属于典型中温带大陆性季风气候, 年均气温8.1℃, 年均降水量284.8 mm。站区在荒漠化防治措施开展之前以流动沙丘为主, 自20世纪80年代起开始治理, 采取飞播、人工种植和自然封育等措施恢复植被, 沙丘逐渐固定, 植被开始正向演替(Liu et al, 2020)。目前站区内土壤类型以风沙土为主, 植被以沙生、旱生植物为主, 主要灌木优势种包括黑沙蒿、北沙柳、柠条锦鸡儿、蒙古羊柴等, 主要伴生草本有赖草(Leymus secalinus)、狗尾草(Setaria viridis)、阿尔泰狗娃花(Aster altaicu)等, 植被盖度在30%-70%之间(姜晓燕等, 2022)。

1.2 样地布设及样品采集

2016年8月, 在研究区内分别选取同期种植的黑沙蒿、北沙柳、柠条锦鸡儿样地, 大小为100 m × 100 m, 样地基本信息详见表1。在各样地中随机选取20 m × 20 m的小样地3个, 各小样地间距不小于20 m。为使数据均匀准确, 在每个小样地中, 随机选取5株(丛)灌木, 使用直径为2.5 cm的灭菌土钻, 分别钻取灌丛下和灌丛间0-10 cm土壤。采样前, 去除表层植物枯落物, 将每个样地采集的土样分别按灌丛下和灌丛间的分类混合为2份土样(共约1,000 g), 每个样地共获得6份土样, 共采集土壤样品18份, 样地位置和采样点示意图见图1。将采集的土壤样品过2 mm筛, 去除根系和枯落物, 所得土样分为3份保存: 一份常温保存, 风干后用于理化性质和酶活性测定; 一份存于4℃冰箱中, 用于微生物量测定; 一份储存于‒20℃冰箱中, 用于高通量测序。

表1   研究样地灌木基本情况表

Table 1  Basic information of the sampled shrublands in the study sites

样地
Sampling site
黑沙蒿林地
Artemisia ordosica shrubland
北沙柳林地
Salix psammophila shrubland
柠条锦鸡儿林地
Caragana korshinskii shrubland
植被盖度
Vegetation coverage (%)
586562
优势种
Dominant species
黑沙蒿 A. ordosica北沙柳 S. psammophila柠条锦鸡儿 C. korshinskii
灌木平均高度
Mean shrub height (m)
0.612.602.99
平均冠幅
Mean shrub canopy area (m2)
0.856.416.19
主要伴生植物
Main associated
herbaceous plants
赖草、狗尾草、地梢瓜、阿尔泰狗娃花、中华苦荬菜 Leymus secalinus, Setaria viridis, Cynanchum thesioides, Aster altaicus, Ixeris chinensis中华苦荬菜、兴安胡枝子、拂子
Ixeris chinensis, Lespedeza davurica, Calamagrostis epigeios
软毛虫实拂子茅、猪毛菜、狗尾草 Corispermum puberulum, Calamagrostis epigeios, Kali collinum, Setaria viridis

新窗口打开| 下载CSV


图1

图1   土壤样品采集点布设图。a: 黑沙蒿林地取样小样方; b: 北沙柳林地取样小样方; c: 柠条锦鸡儿林地取样小样方。

Fig. 1   Distribution of soil sampling sites. a, Sampling plot in Artemisia ordosica shrublands; b, Sampling plot in Salix psammophila shrublands; c, Sampling plot in Caragana korshinskii shrublands.


1.3 土壤理化性质、微生物酶活性及生物量测定

土壤有机碳(soil organic carbon, SOC)含量采用重铬酸钾氧化法测定, 全氮(total nitrogen, TN)含量采用全自动凯氏半微量定氮仪(FOSS2200)测定, 全磷(total phosphorus, TP)含量采用钼锑抗比色法测定, 蔗糖酶活性(invertase activity)使用3,5-二硝基水杨酸比色法测定, 脲酶活性(urease activity)通过苯酚钠-次氯酸钠比色法测定, 碱性磷酸酶活性(alkaline phosphatase activity)用磷酸苯二钠比色法测定, 上述指标均使用风干土进行测定。

土壤微生物量碳(microbial carbon, MBC)和微生物量氮(microbial nitrogen, MBN)的测定使用4℃条件下保存的土样, 通过氯仿熏蒸浸提法测定。

1.4 土壤多功能性指数计算

根据以往相关研究, 本研究选取了8个关键生态系统功能指标来表征土壤多功能性, 包括TN、TP、SOC、MBC、MBN、蔗糖酶、脲酶、碱性磷酸酶。这些指标与碳、氮、磷元素储存及循环密切相关, 可以很好反映生态系统养分固存和利用、土壤肥力以及生物地球化学循环等多个功能(Delgado- Baquerizo et al, 2016; Hu et al, 2021)。对上述8个指标分别进行Z-score标准化(见公式1), 然后通过R程序包“multifunc”进行计算(Le Bagousse-Pinguet et al, 2019; Yan et al, 2020; Qiu et al, 2021)。Z-score标准化计算公式如下:

$Z-score~=\frac{F-MeanF}{SDF}$

式中: F表示实际测量值, MeanF代表平均测量值, SDF代表标准差。

此外, 为了比较不同计算方法间的差异, 同时使用多阈值法计算了土壤多功能性。具体方法为, 通过R程序包“multifunc”中“getFuncsMaxed”函数, 将上述8个指标转化为每个指标最大值的百分比, 以达到5%-99%间某一阈值的功能表示土壤多功能性(Byrnes et al, 2014; 徐炜等, 2016b; Delgado- Baquerizo et al, 2020b)。计算发现, 多阈值法与标准化法的结果高度共线(P < 0.01), 因此, 本文使用标准化法计算土壤多功能性。

1.5 高通量测序及生物信息分析

使用存储在‒20℃条件下的土壤样品, 从每个样品中取3份0.25 g土壤, 按照 MO-BIO PowerSoil© DNA Isolation Kit试剂盒说明书提取土壤样品的DNA。在0.8%琼脂糖凝胶上分离和识别DNA提取物, 并检测其浓度和纯度。使用正向引物341F (5'- CCTACGGGNGGCWGCAG-3')和反向引物805R (5'-GACTACHVGGGTATCTAATCC-3')对16S的V3-V4区域进行扩增(Sun et al, 2017), 并通过上海生工生物工程股份有限公司在Illumina MiSeq测序平台对扩增产物进行高通量测序。

测序得到的原始数据(raw data)存在一定比例的低质量数据, 为保证后续分析具有可靠性, 使用QIIME软件和UCHIME算法过滤掉低质量序列数据和去除嵌合体序列(Edgar et al, 2011), 得到有效数据(clean data), 在97%序列相似性的阈值下划分操作分类单元(operational taxonomic units, OTUs)。利用RDP Classifier (Version 11.5)获取细菌的物种注释信息。为减少样本间不同测序深度的影响, 将OTU丰度数据抽平到最小的样本序列深度27,432, 用于后续微生物多样性和网络分析。

1.6 微生物多样性分析及共现网络构建

利用R软件中“vegan”程序包分别计算每个样品的Chao 1指数、Shannon指数和物种数(observed species number)。使用mafft软件对齐OTUs, 通过FastTree软件构建系统发育树。根据系统发育树, 通过R程序包“ape”和“picante”计算Faith’s系统发育多样性指数(Faith’s phylogenetic diversity index, PD) (Faith, 1992)、净种间亲缘关系指数(net relatedness index, NRI)和净最近种间亲缘关系指数(net nearest taxa index, NTI) (Webb, 2000)。NRINTI指数计算过程中零模型的置换次数均为999次, 详见下式:

$NRI=-1\times \frac{MPDs-MPDmds}{SD\left( MNTDmds \right)}$
$NTI=-1\times \frac{MNTDs-MNTDmds}{SD\left( MNTDmds \right)}$

式中, MPDsMNTDs分别表示平均谱系距离观测值和最近相邻谱系距离平均观测值, MPDmdsMNTDmds分别表示系统发育树上物种随机模拟999次(1,000次迭代)所产生的999个随机群落的谱系距离和最近相邻谱系距离的平均值, SD为标准差。

构建网络时使用在门水平相对丰度大于0.015%和所有样地物种出现频率大于5的OTUs。通过R软件中“psych”包计算OTU两两间Spearman秩相关系数(r), 保留|r| > 0.65且P < 0.01 (FDR矫正)的节点和边, 利用“igraph”软件包构建共现网络、Gephi 0.9.2软件实现网络可视化。使用“igraph”包中“subgraph”函数从上述所构建的综合网络中提取每个取样点的子网络(sub-network), 每个子网络由每个取样点所包含的OTUs以及OTUs间的关系构成(Zhang et al, 2018; Wagg et al, 2019; Qiu et al, 2021)。获取各网络节点(nodes)和边(links), 网络节点大小代表不同微生物门类相对丰度, 边代表物种间的相互作用。由于边密度(linkage density)、平均密度(average density)、模块度(modularity)和平均聚类系数(mean clustering coefficients)存在极显著相关性, 因此本研究使用边密度表征网络复杂性(Banerjee et al, 2019; Wagg et al, 2019; Yuan et al, 2021)。

1.7 统计分析

运用单因素方差分析(one-way ANOVA)检验各土壤指标和微生物多样性指数在不同灌木林中的差异, 事后检验采用least significant difference (LSD), 显著性水平设定为P = 0.05。通过皮尔逊相关性分析(Pearson correlation analysis)明确微生物多样性和网络拓扑性质与多功能性之间的相关关系。运用方差分解分析(variance partition analysis, VPA)评估微生物物种多样性(Chao 1指数、Shannon指数、物种数)、微生物谱系多样性(系统发育多样性、净种间亲缘关系指数、净最近种间亲缘关系指数)及网络拓扑结构(节点、边、边密度)对土壤多功能性的影响。通过结构方程模型(structural equation model, SEM)进一步分析微生物物种多样性、谱系多样性及网络拓扑结构与土壤多功能性的直接和间接关系。结构方程模型拟合度符合以下条件时模型可用, 0 ≤ χ2/df ≤ 2且0.05 < P ≤ 1.00; 0.90 ≤ 拟合优度指数(goodness fit index, GFI) ≤ 1.00; 0.90 ≤ 比较拟合指数(comparative fit index, CFI) ≤ 1.00; 0.90 ≤ 规范拟合指数(normed fit index, NFI) ≤ 1.00。统计均由R 4.0.3和IBM SPSS 20.0完成。

2 结果

2.1 不同灌木林地土壤性质及土壤多功能性差异

3种灌木林地土壤中SOC、TN、TP、MBN和MBC存在显著性差异(P < 0.001; 图2), 各含量排序均依次为黑沙蒿、北沙柳、柠条锦鸡儿林地土壤。黑沙蒿林地SOC、TN、TP、MBN含量和MBC含量约为北沙柳林地的1.26-1.53倍, 为柠条锦鸡儿林地的2.53-3.45倍。

图2

图2   不同灌木林地土壤性质和多功能性。不同的字母表示样地间的显著差异(P < 0.05), 数据为平均值 ± 标准误差; Aro: 黑沙蒿林地; Sap: 北沙柳林地; Cam: 柠条锦鸡儿林地。

Fig. 2   Soil properties and multifunctionality in different shrublands. Different lowercase letters indicate significant differences (P < 0.05), data are shown as mean ± SE; Aro, Artemisia ordosica shrubland; Sap, Salix psammophila shrubland; Cam, Caragana korshinskii shrubland.


黑沙蒿和北沙柳林地土壤蔗糖酶、碱性磷酸酶活性无显著差异, 但均显著高于柠条锦鸡儿林地(P < 0.05; 图2)。黑沙蒿、北沙柳、柠条锦鸡儿林地土壤蔗糖酶活性分别为0.14 ± 0.02 mg·g-1·h-1、0.12 ± 0.02 mg·g-1·h-1、0.04 ± 0.01 mg·g-1·h-1, 碱性磷酸酶活性分别为0.021 ± 0.00 mg·g-1·h-1、0.020 ± 0.00 mg·g-1·h-1、0.014 ± 0.00 mg·g-1·h-1。脲酶含量在3种灌木林地间无显著差异(P = 0.254)。

柠条锦鸡儿林地土壤多功能性显著低于黑沙蒿和北沙柳林地土壤, 黑沙蒿、北沙柳、柠条锦鸡儿林地土壤多功能性分别为0.72 ± 0.13、0.32 ± 0.15、‒1.05 ± 0.20。

2.2 不同灌木林地土壤微生物多样性及群落复杂性

各样本稀释曲线在抽平测序深度下均已达到饱和, 不会因样本量不同导致研究结果的差异。样地间差异分析结果显示(图3), 黑沙蒿林地土壤Chao 1指数(53,420.55 ± 4,948.92)、物种数(17,741.33 ± 719.56)和Shannon指数(12.99 ± 0.09)显著高于柠条锦鸡儿林地土壤(P < 0.05), 分别为柠条锦鸡儿林地的0.79倍、0.88倍和1.03倍。柠条锦鸡儿林地土壤微生物净种间亲缘关系指数(2.21 ± 1.08)显著低于其他两类林地土壤(P = 0.006), 分别比黑沙蒿和北沙柳林地降低了46.72%和30.78%。3种灌木林地土壤微生物系统发育多样性指数和净最近种间亲缘关系指数无显著差异(P > 0.05)。

图3

图3   不同灌木林地土壤微生物物种多样性(a)和谱系多样性(b)。不同的字母表示样地间存在显著差异(P < 0.05), 数据为平均值 ± 标准误差。Aro: 黑沙蒿林地; Sap: 北沙柳林地; Cam: 柠条锦鸡儿林地; PD: 系统发育多样性; NRI: 净种间亲缘关系指数; NTI: 净最近种间亲缘关系指数。

Fig. 3   Soil microbial species diversity (a) and phylogenetic diversity (b) in different shrublands. Different lowercase letters indicate significant differences (P < 0.05), data are shown as mean values ± SE. Aro, Artemisia ordosica shrubland; Sap, Salix psammophila shrubland; Cam, Caragana korshinskii shrubland. PD, Faith’s phylogenetic diversity index; NRI, Net relatedness index; NTI, Net nearest taxa index.


网络拓扑性质显示, 黑沙蒿、北沙柳、柠条锦鸡儿林地土壤微生物共现网络复杂性分别为0.793、0.948、0.954。黑沙蒿林地土壤微生物组成主要为变形菌门(38.76%)、放线菌门(21.53%)和酸杆菌门(9.21%)。北沙柳林地土壤微生物主要包括放线菌门(32.41%)、变形菌门(29.29%)和绿弯菌门(9.12%)。柠条锦鸡儿林地土壤微生物主要为放线菌门(29.82%)、变形菌门(28.55%)和拟杆菌门(10.53%)。

3种固沙灌木林地土壤微生物网络节点中, 放线菌门和变形菌门占所有节点的60%以上, 节点间正相关作用均大于50%, 土壤微生物种间关系以合作为主(图4)。

图4

图4   不同灌木林地土壤微生物共现网络及拓扑性质

Fig. 4   Co-occurrence network and topological properties of soil microorganisms in different shrublands


2.3 微生物多样性和网络拓扑性质与土壤多功能性的相关性

Pearson相关性分析显示, 3种灌木林地土壤的系统发育多样性指数、Shannon指数及网络拓扑性质(节点、边、边密度)均与土壤多功能性显著正相关(P < 0.05), 仅有柠条锦鸡儿林地微生物净种间亲缘关系指数与土壤多功能性显著正相关(R2 = 0.68, P = 0.044)。而3种灌木林地土壤微生物Chao 1指数、物种数、净最近种间亲缘关系指数均与土壤多功能性无显著相关关系(图5)。

图5

图5   土壤多功能性与土壤微生物多样性及网络拓扑性质的关系。灰色部分表示95%置信区间。Aro: 黑沙蒿林地; Sap: 北沙柳林地; Cam: 柠条锦鸡儿林地; PD: 系统发育多样性; NRI: 净种间亲缘关系指数; NTI: 净最近种间亲缘关系指数。R2: 决定系数; * P < 0.05; ** P < 0.01。

Fig. 5   Relationship between soil multifunctionality (Z-score) and soil microbial diversity, network topological properties. Grey regions indicate 95% confidence intervals around the regressions; Aro, Artemisia ordosica shrubland; Sap, Salix psammophila shrubland; Cam, Caragana korshinskii shrubland; PD, Faith’s phylogenetic diversity index; NRI, Net relatedness index; NTI, Net nearest taxa index; R2, Coefficient of determination; * P < 0.05; ** P < 0.01.


2.4 微生物多样性和网络拓扑性质对土壤多功能性的影响

方差分解分析显示(图6), 微生物物种多样性、谱系多样性和网络拓扑性质单独作用及其交互作用对土壤多功能性的总贡献率达90.62%。其中微生物物种多样性、谱系多样性和网络拓扑性质分别单独解释了19.72%、5.92%和24.46%的土壤多功能性差异, 物种多样性和网络结构共同解释了1.29%, 谱系多样性和网络结构共同解释了10.13%, 三者共同解释了34.70%; 未解释部分占9.38%。

图6

图6   微生物多样性和网络拓扑性质对土壤多功能性的解释度(方差分解分析)。实心黑色圆圈代表相邻两因子交互作用, 实线长方形代表三因子交互作用; 蓝色虚线代表一类微生物参数对土壤多功能性的解释度; Nodes: 节点; Edges: 边; Linkage density: 边密度; PD: 系统发育多样性指数; NRI: 净种间亲缘关系指数; NTI: 净最近种间亲缘关系指数; Observed species: 物种数; Chao 1: Chao 1指数; Shannon: Shannon指数。

Fig. 6   Percentage explanation of microbial diversity and network topological properties on soil multifunctionality (variance partition analysis). Solid black circles represent adjacent two-factor interactions, and solid rectangles represent three-factor interactions; Blue dashed line represents the percentage of explanation of soil multifunctionality by one category of microbial parameters; Nodes, Number of nodes; Edges, Number of edges; Linkage density, Linkage density; PD, Faith’s phylogenetic diversity index; NRI, Net relatedness index; NTI, Net nearest taxa index; Observed species, Observed species number; Chao 1, Chao 1 index; Shannon, Shannon index.


物种多样性中Shannon指数对土壤多功能性解释度最高, 为18.29%, 谱系多样性中系统发育多样性指数对土壤多功能性的解释度高达22.22%, 网络拓扑性质中边密度对土壤多功能性的解释度高达7.10%。微生物物种多样性、谱系多样性和网络拓扑性质对土壤多功能性的未解释度分别为49.90%、54.85%、29.41%, 结合上述物种多样性、谱系多样性和网络拓扑结构对土壤多功能性的单独解释率, 再次验证微生物网络结构对土壤多功能性的解释度更高。

结构方程模型显示(图7), 微生物物种数、Shannon指数、净亲缘关系指数及节点共同解释了土壤多功能性86%的变化。微生物多样性指标通过正向促进网络结构, 直接或间接影响土壤多功能性。

图7

图7   微生物参数对土壤多功能性影响的结构方程模型(a)和标准化总效应(b)。箭头代表正相关关系, 箭头粗细表示路径系数大小, 箭头上数值为标准化路径系数和相关性程度, R2 代表模型对该变量的解释度; NRI: 净种间亲缘关系指数; GFI: 拟合优度指数; CFI: 比较拟合指数; NFI: 规范拟合指数; * P < 0.05; ** P < 0.01; *** P < 0.001。

Fig. 7   Structural equation modeling (a) and standardized total effect (b) of microbial parameters on soil multifunctionality. Arrows represent positive correlations, the thickness of the arrow indicates the size of the path coefficient, the value on the arrow is the standardized path coefficient and the degree of correlation, and R2 represents the degree of explanation of the model for the variable; NRI, Net relatedness index; GFI, Goodness fit index; CFI, Comparative fit index; NFI, Normed fit index; * P < 0.05; ** P < 0.01; *** P < 0.001.


3 讨论

3.1 不同灌木林地土壤性质及多功能性的差异

研究结果显示, 3种灌木林地土壤中, SOC、TN、TP、蔗糖酶、碱性磷酸酶、MBC含量、MBN含量和土壤多功能性均存在显著差异, 上述指标在黑沙蒿林地中最高, 柠条锦鸡儿林地中最低(图2)。研究结果说明, 以不同灌木种为优势种组成的固沙植被群落, 使土壤功能发生了不同程度的变化, 土壤多功能性与代表土壤功能的养分条件密切相关。已有研究显示, 土壤多功能性受植物和土壤微生物影响, 植物可缓解土壤微生物养分限制并提高微生物丰富度, 从而促进土壤多功能性(Li et al, 2022)。黑沙蒿林地土壤多功能性显著高于柠条锦鸡儿林地, 可能的原因是黑沙蒿对土壤养分的调节能力更强。黑沙蒿能够从茎和叶片中释放化学物质, 影响土壤微生物的代谢, 从而促进了微生物的活性(Yang et al, 2012)。此外, 不同植物对土壤提供的遮蔽作用和枯落物含量不同, 黑沙蒿的遮蔽作用和枯落物积累作用更为明显, 能向土壤提供大量碳源、氮源物质, 致使其土壤湿度高且养分聚集(刘学东等, 2016; Liu et al, 2021), 影响土壤微生物的生长和繁殖, 从而提高酶活性和微生物量(杨越等, 2012; 刘江等, 2021), 使得黑沙蒿林地土壤多功能性最高。综上所述, 不同固沙灌木均改变了土壤养分条件和微生物群落结构, 有利于提高土壤多功能性, 对干旱、半干旱区生态恢复具有重要意义。

3.2 不同灌木林地土壤微生物参数与多功能性的关系

黑沙蒿林地土壤微生物Chao 1指数、物种数、Shannon指数显著高于柠条锦鸡儿林地, 柠条锦鸡儿林地净种间亲缘关系指数显著低于其他林地(图3); 3种灌木林地系统发育多样性、Shannon指数均与土壤多功能性显著正相关, 仅有柠条锦鸡儿林地净种间亲缘关系指数与土壤多功能性显著正相关(图5)。上述结果表明, 微生物多样性对于促进土壤功能具有重要作用。大量研究也证实, 微生物多样性与土壤多功能性呈正相关关系, 较高的微生物多样性可为不同时空环境条件下土壤功能的维持提供更可靠的保障(Barberán et al, 2012; Wagg et al, 2014; Delgado-Baquerizo et al, 2016)。但也有研究发现, 在青藏高原, 温带人工单种草原土壤微生物系统发育多样性与土壤多功能性呈负相关(Chen et al, 2021), 环境因素是造成结果差异的可能原因之一, 土壤温度、含水量、pH及含盐量等均对微生物谱系多样性及谱系结构有不同程度的影响; 自然生态系统具有空间和时间尺度的环境异质性, 环境因素会同时影响微生物群落和生态系统功能, 进而影响系统发育多样性与土壤多功能性的关系(Siefert et al, 2012; Pérez-Valera et al, 2015)。在本研究区, 出现林地土壤微生物净种间亲缘关系指数显著降低的现象, 说明微生物群落构建过程中环境条件的决定作用减弱而随机性增强, 导致其向系统发育分散的趋势发展, 使得生态位分化, 可容纳多种微生物共存和互作(Webb, 2000; Dini-Andreote et al, 2014), 出现土壤多功能性与系统发育多样性正相关的结果。目前关于微生物谱系发育多样性与生态系统功能的关系仅集中在小尺度范围(褚海燕等, 2020), 在大尺度范围内土壤微生物群落发育规律及其对生态系统功能的影响, 还需进一步分析验证。

3种灌木林地放线菌门和变形菌门相对丰度较高, 此外, 黑沙蒿、北沙柳和柠条锦鸡儿林地丰度较高的类群分别为酸杆菌门、绿弯菌门和拟杆菌门(图4), 网络拓扑性质(节点、边、边密度)均与土壤多功能性显著正相关(图5), 表明微生物类群及其互作在土壤生态系统功能与服务的形成、维持等方面有重要的作用。在全球59个干旱地区的研究发现, 土壤微生物类群是影响土壤功能的原因之一, 微生物群落组成能够调节生态系统多功能性对全球变化的抵抗力(Delgado-Baquerizo et al, 2017)。在受侵蚀样地上, 土壤微生物类群较少且关联较弱, 导致土壤多功能性较低(Qiu et al, 2021)。上述研究共同说明, 土壤生态系统功能过程是通过不同微生物物种间的相互作用、协同驱动的结果, 微生物类群及网络结构对土壤生态系统产生积极影响, 对土壤多功能性有重要意义(Barberán et al, 2012; Banerjee et al, 2018; de Vries et al, 2018)。

3.3 微生物多样性和网络拓扑性质对土壤多功能性的影响

研究结果显示, 微生物网络拓扑性质对土壤多功能性解释度最高, 其次为微生物物种多样性和谱系多样性(图6), 结构方程模型进一步显示, 微生物多样性通过促进网络结构正向影响土壤多功能性(图7), 该结果说明微生物多样性可以提高微生物网络的复杂程度, 使得微生物间的生态联系更紧密, 从而提高土壤多功能性。在荒漠、草地生态系统及青藏高原的研究均揭示了微生物群落内部的相互作用对提高生态系统多功能性的重要性, 并证明土壤微生物群落组成简单化和复杂性降低将会损害生态系统功能, 并随着时间的推移会表现出越来越强的抑制作用(Hu et al, 2021; 徐鹏等, 2022; 张君红等, 2022)。因此, 在生产实践中, 可通过提高微生物多样性和微生物网络复杂性的方法, 进而提高土壤多功能性(Martiny et al, 2013; Wagg et al, 2019; Tang et al, 2022)。

谱系多样性对土壤多功能性解释度低于物种多样性, 在使用植物多样性对地上生态系统功能进行解释时也出现了相似结果(Venail et al, 2015; Liu et al, 2022)。这可能是研究谱系多样性时, 只考虑了系统发育数总支长及进化树末端和对间的进化的平均距离, 没有考虑特定的发育分支。分析谱系多样性和土壤多功能性之间的关系不仅要考虑发育距离, 还需考虑相对丰度较高OTUs的谱系分类, 将微生物分类包括在谱系多样性的度量标准里, 才能更好地解释谱系多样性对土壤多功能性的相对贡献(Severin et al, 2013; Venail & Vives 2013; Lankau et al, 2022)。例如, 在肥沃土壤和荒漠土壤上进行实验发现, 土壤养分差异明显且变形菌门的相对丰度较高时, 系统发育多样性可以用来预测生态系统功能, 但在养分差异不明显且变形菌门丰度与其他微生物门类丰度差异不显著时, 系统发育多样性与生态系统功能无关(Pérez-Valera et al, 2015)。Fierer等(2012)对不同生态系统土壤微生物群落组成及其功能进行了研究, 发现土壤多功能性与土壤细菌分类和系统发育多样性密切相关。由此可见, 微生物分类群的发育也应考虑在谱系多样性与土壤多功能性的关系中。此外, 本研究中净种间亲缘关系指数和净最近种间亲缘关系指数均大于0 (图3), 说明群落中亲缘关系相近的物种易聚集, 出现生态位重叠的现象, 物种开始竞争资源, 使得微生物群落的系统发育多样性降低, 也可能是谱系多样性对土壤多功能性解释度较低的原因(Venail & Vives, 2013; Goberna et al, 2014)。未来在荒漠生态系统中, 应对丰度较高或关键微生物类群分支的谱系发育进行研究, 这也是了解微生物对土壤多功能性影响的重要方向。

荒漠生态系统结构是高度复杂和动态的, 土壤微生物多样性和种间关系对生态系统功能的影响尤为重要。本文为认识荒漠区土壤多功能性的调控因素提供了一个新视角, 然而需注意的是, 微生物物种多样性和谱系多样性通过网络结构调控土壤生态系统功能的具体机制仍需深入探讨。在未来研究中, 土壤多功能性除了考虑养分固存和利用、土壤肥力等土壤功能, 还应将土壤初级生产力和有机质分解等功能包含在内。

4 结论

本研究从土壤微生物角度, 以毛乌素沙地黑沙蒿、北沙柳、柠条锦鸡儿林地土壤为研究对象, 分析不同固沙灌木林地微生物多样性及网络结构对土壤多功能性的影响。研究发现, 黑沙蒿林地土壤养分条件、微生物物种多样性、土壤多功能性最高; 微生物网络拓扑性质比物种多样性和谱系多样性能够更好地解释土壤多功能性的变化, 土壤微生物多样性通过正向调控网络间相互作用而影响土壤生态系统功能。该研究拓展了对毛乌素沙地固沙灌木林地土壤多功能性的认识, 有助于理解土壤微生物对荒漠生态系统功能的调控机制, 可为退化土地恢复和管理提供科学依据。未来在研究土壤微生物特性与生态系统功能关系时, 应将微生物网络结构考虑在内, 深入探究微生物共现网络和生态系统功能间的联系, 从而更好地指导区域生态环境建设。

参考文献

Banerjee S, Schlaeppi K, van der Heijden MGA, (2018)

Keystone taxa as drivers of microbiome structure and functioning

Nature Reviews Microbiology, 16, 567-576.

DOI:10.1038/s41579-018-0024-1      PMID:29789680      [本文引用: 1]

Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.

Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019)

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots

The ISME Journal, 13, 1722-1736.

DOI:10.1038/s41396-019-0383-2      [本文引用: 1]

Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2 = 0.366; P &lt; 0.0001) between agricultural intensification and root fungal network connectivity. The occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH, and mycorrhizal colonization. The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome.

Barberán A, Bates ST, Casamayor EO, Fierer N (2012)

Using network analysis to explore co-occurrence patterns in soil microbial communities

The ISME Journal, 6, 343-351.

DOI:10.1038/ismej.2011.119      [本文引用: 3]

Bardgett RD, van der Putten WH (2014)

Belowground biodiversity and ecosystem functioning

Nature, 515, 505-511.

DOI:10.1038/nature13855      [本文引用: 1]

Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández- Clemente R, Zhao YC, Gaitán JJ, Gross N, Saiz H, Maire V, Lehmann A, Rillig MC, Solé RV, Maestre FT (2020)

Global ecosystem thresholds driven by aridity

Science, 367, 787-790.

DOI:10.1126/science.aay5958      PMID:32054762      [本文引用: 1]

Aridity, which is increasing worldwide because of climate change, affects the structure and functioning of dryland ecosystems. Whether aridification leads to gradual (versus abrupt) and systemic (versus specific) ecosystem changes is largely unknown. We investigated how 20 structural and functional ecosystem attributes respond to aridity in global drylands. Aridification led to systemic and abrupt changes in multiple ecosystem attributes. These changes occurred sequentially in three phases characterized by abrupt decays in plant productivity, soil fertility, and plant cover and richness at aridity values of 0.54, 0.7, and 0.8, respectively. More than 20% of the terrestrial surface will cross one or several of these thresholds by 2100, which calls for immediate actions to minimize the negative impacts of aridification on essential ecosystem services for the more than 2 billion people living in drylands.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy LE (2014)

Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions

Methods in Ecology and Evolution, 5, 111-124.

DOI:10.1111/2041-210X.12143      URL     [本文引用: 1]

Cadotte MW, Dinnage R, Tilman D (2012)

Phylogenetic diversity promotes ecosystem stability

Ecology, 93, S223-S233.

DOI:10.1890/11-0426.1      URL     [本文引用: 1]

Cai Y, GH, He XM, Jiang LM, Wang HF, Teng DX (2019)

Study on the multifunctionality and species diversity of grassland ecosystem under different land-uses

Agricultural Research in the Arid Areas, 37, 200-210. (in Chinese with English abstract)

[本文引用: 1]

[ 蔡艳, 吕光辉, 何学敏, 蒋腊梅, 王恒方, 滕德雄 (2019)

不同利用方式下草地生态系统的多功能性与物种多样性

干旱地区农业研究, 37, 200-210.]

[本文引用: 1]

Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A (2021)

Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community

Nature Communications, 12, 5308.

DOI:10.1038/s41467-021-25675-4      PMID:34489463      [本文引用: 1]

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.© 2021. The Author(s).

Chen KL, Zhou HK, Lu BB, Wu Y, Wang J, Zhao ZW, Li YZ, Wang M, Zhang Y, Chen WJ, Liu GB, Xue S (2021)

Single- species artificial grasslands decrease soil multifunctionality in a temperate steppe on the Qinghai-Tibet Plateau

Agronomy, 11, 2092.

[本文引用: 1]

Chen YZ, Ma KM, Zhang YX, Zhang S, Niu SK (2015)

Network structure of plant diversity of Dongling Mountain, Beijing

Acta Ecologica Sinica, 35, 3702-3709. (in Chinese with English abstract)

[本文引用: 1]

[ 陈禹舟, 马克明, 张育新, 张霜, 牛树奎 (2015)

北京东灵山森林植物多样性的网络结构特征

生态学报, 35, 3702-3709.]

[本文引用: 1]

Chu HY, Feng MM, Liu X, Shi Y, Yang T, Gao GF (2020)

Soil microbial biogeography: Recent advances in China and research frontiers in the world

Acta Pedologica Sinica, 57, 515-529. (in Chinese with English abstract)

[本文引用: 1]

[ 褚海燕, 冯毛毛, 柳旭, 时玉, 杨腾, 高贵锋 (2020)

土壤微生物生物地理学: 国内进展与国际前沿

土壤学报, 57, 515-529.]

[本文引用: 1]

de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018)

Soil bacterial networks are less stable under drought than fungal networks

Nature Communications, 9, 3033.

DOI:10.1038/s41467-018-05516-7      PMID:30072764      [本文引用: 1]

Soil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes. This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances. Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture. Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances.

Delgado-Baquerizo M, Doulcier G, Eldridge DJ, Stouffer DB, Maestre FT, Wang JT, Powell JR, Jeffries TC, Singh BK (2020a)

Increases in aridity lead to drastic shifts in the assembly of dryland complex microbial networks

Land Degradation & Development, 31, 346-355.

[本文引用: 1]

Delgado-Baquerizo M, Eldridge DJ, Ochoa V, Gozalo B, Singh BK, Maestre FT (2017a)

Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe

Ecology Letters, 20, 1295-1305.

DOI:10.1111/ele.2017.20.issue-10      URL     [本文引用: 2]

Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016)

Microbial diversity drives multifunctionality in terrestrial ecosystems

Nature Communications, 7, 10541.

DOI:10.1038/ncomms10541      PMID:26817514      [本文引用: 3]

Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020b)

Multiple elements of soil biodiversity drive ecosystem functions across biomes

Nature Ecology & Evolution, 4, 210-220.

[本文引用: 1]

Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017b)

Microbial richness and composition independently drive soil multifunctionality

Functional Ecology, 31, 2330-2343.

DOI:10.1111/fec.2017.31.issue-12      URL     [本文引用: 1]

Dini-Andreote F, de Cássia Pereira e Silva M, Triadó-Margarit X, Casamayor EO, van Elsas JD, Salles JF (2014)

Dynamics of bacterial community succession in a salt marsh chronosequence: Evidences for temporal niche partitioning

The ISME Journal, 8, 1989-2001.

DOI:10.1038/ismej.2014.54      [本文引用: 1]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011)

UCHIME improves sensitivity and speed of chimera detection

Bioinformatics, 27, 2194-2200.

DOI:10.1093/bioinformatics/btr381      PMID:21700674      [本文引用: 1]

Chimeric DNA sequences often form during polymerase chain reaction amplification, especially when sequencing single regions (e.g. 16S rRNA or fungal Internal Transcribed Spacer) to assess diversity or compare populations. Undetected chimeras may be misinterpreted as novel species, causing inflated estimates of diversity and spurious inferences of differences between populations. Detection and removal of chimeras is therefore of critical importance in such experiments.We describe UCHIME, a new program that detects chimeric sequences with two or more segments. UCHIME either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences. In testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus. UCHIME is >100× faster than Perseus and >1000× faster than ChimeraSlayer.robert@drive5.comSource, binaries and data: http://drive5.com/uchime.Supplementary data are available at Bioinformatics online.

Faith DP (1992)

Conservation evaluation and phylogenetic diversity

Biological Conservation, 61, 1-10.

DOI:10.1016/0006-3207(92)91201-3      URL     [本文引用: 1]

Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012)

Cross-biome metagenomic analyses of soil microbial communities and their functional attributes

Proceedings of the National Academy of Sciences, USA, 109, 21390-21395.

[本文引用: 1]

Goberna M, García C, Verdú M (2014)

A role for biotic filtering in driving phylogenetic clustering in soil bacterial communities

Global Ecology and Biogeography, 23, 1346-1355.

DOI:10.1111/geb.2014.23.issue-12      URL     [本文引用: 1]

Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C (2022)

From diversity to complexity: Microbial networks in soils

Soil Biology and Biochemistry, 169, 108604.

DOI:10.1016/j.soilbio.2022.108604      URL     [本文引用: 1]

Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021)

Aridity-driven shift in biodiversity-soil multifunctionality relationships

Nature Communications, 12, 5350.

DOI:10.1038/s41467-021-25641-0      PMID:34504089      [本文引用: 2]

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.© 2021. The Author(s).

Huang J, Yu H, Guan X, Wang G, Guo R (2016)

Accelerated dryland expansion under climate change

Nature Climate Change, 6, 166-171.

DOI:10.1038/NCLIMATE2837      [本文引用: 1]

Drylands are home to more than 38% of the total global population and are one of the most sensitive areas to climate change and human activities(1,2). Projecting the areal change in drylands is essential for taking early action to prevent the aggravation of global desertification(3,4). However, dryland expansion has been underestimated in the Fifth Coupled Model Intercomparison Project (CMIP5) simulations(5) considering the past 58 years (1948-2005). Here, using historical data to bias-correct CMIP5 projections, we show an increase in dryland expansion rate resulting in the drylands covering half of the global land surface by the end of this century. Dryland area, projected under representative concentration pathways (RCPs) RCP8.5 and RCP4.5, will increase by 23% and 11%, respectively, relative to 1961-1990 baseline, equalling 56% and 50%, respectively, of total land surface. Such an expansion of drylands would lead to reduced carbon sequestration and enhanced regional warming(6,7), resulting in warming trends over the present drylands that are double those over humid regions. The increasing aridity, enhanced warming and rapidly growing human population will exacerbate the risk of land degradation and desertification in the near future in the drylands of developing countries, where 78% of dryland expansion and 50% of the population growth will occur under RCP8.5.

Huang XB, Lang XD, Li SF, Liu WD, Su JR (2021)

Indicator selection and driving factors of ecosystem multifunctionality: Research status and perspectives

Biodiversity Science, 29, 1673-1686. (in Chinese with English abstract)

DOI:10.17520/biods.2021111      [本文引用: 1]

Background & Aims: Global change and other human activities are changing biodiversity around the world at an unprecedented rate, which has led to a sharp decline in global biodiversity and productivity, an increase in pests and diseases, and a weakening of the ability to resist invasion and other ecological problems. Ecologists became more and more interested in the question of whether and how the continuous loss of biodiversity would affect ecosystem functioning in the last 30 years. Therefore, the relationship between biodiversity and ecosystem functioning (BEF) became one of the hot topics of ecological research. For a long time, researchers have focused more on individual ecosystem functions than on the ability of an ecosystem to provide multiple ecosystem functions at the same time, known as ecosystem multifunctionality (EMF). Considering only individual functions could underestimate the impact of biodiversity on overall ecosystem functioning. Therefore, the relationship between biodiversity and ecosystem multifunctionality (BEMF) has become the focus of BEF research field. In order to enrich the understanding of BEMF relationships, this paper focuses on different dimensions of biodiversity and the impact of microbial diversity on EMF, how abiotic factors drive EMF, as well as the selection of functional indicators in the evaluation of EMF. Progresses: In recent years, the research on BEMF relationships has developed rapidly, expanding from aquatic ecosystems to grasslands, forests, drylands and agricultural ecosystems. Spatial scale ranges from regional scale to global scale. The driving mechanisms of BEMF relationship are explored from single dominant driving mechanism to multiple driving mechanisms. There are also new innovations in research methods and new concepts put forward. Prospects: However, there are still some shortcomings. For example, there is no unified standard for the selection of functional indicators in EMF research, insufficient attention to microbial diversity, few studies on the BEMF relationship at the multitrophic level, and debate about the mechanisms driving EMF. In the future, it is necessary to strengthen the research on the criteria for the selection of functional indicators, comprehensively analyze the overall impact of aboveground and belowground biodiversity and abiotic factors on EMF, and strengthen the research and application of ecosystem multiserviceability (EMS).

[ 黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣 (2021)

生态系统多功能性的指标选择与驱动因子: 研究现状与展望

生物多样性, 29, 1673-1686 ]

DOI:10.17520/biods.2021111      [本文引用: 1]

全球变化和人类活动正以空前的速度在世界范围内改变着生物多样性, 这导致了全球生物多样性的锐减以及生产力的下降、病虫害的增加和抗入侵能力的减弱等生态问题。近30年来, 生态学家开始对于生物多样性的持续丧失是否以及如何影响生态系统功能的问题越来越感兴趣, 生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)关系的研究应运而生, 并成为生态学研究的热点之一。但长期以来, 研究者更多地关注单一生态系统功能, 而忽略了生态系统能够同时提供多种生态系统功能的能力, 即生态系统多功能性(ecosystem multifunctionality, EMF)。本文综述了EMF研究中功能指标的选择、生物多样性的不同维度、微生物多样性对EMF的影响以及其他非生物因子对EMF的驱动等进展。因只考虑单一功能可能会低估生物多样性对整体生态系统功能的影响, 故生物多样性与生态系统多功能性(BEMF)关系的研究成为BEF关系研究的重点。近年来, BEMF关系的研究发展较快, 在不同生态系统(包括水生、草地、森林、旱地、农业等)、不同研究尺度(从区域到全球尺度)、BEMF关系的驱动机制(从单一驱动机制到多种驱动机制共同作用)、研究方法(包括新概念以及新的量化方法的提出和应用)等方面均取得了新的进展。但仍有不足之处, 如对于EMF研究中功能指标的选取没有统一的标准、对地下微生物多样性的关注度不够、涉及多营养级水平下的BEMF关系研究较少、驱动EMF的机制仍存在争论等。未来应加强对于功能指标选取的标准研究, 综合分析地上、地下生物多样性以及非生物因子对EMF的整体影响, 加强生态系统多服务性(ecosystem multiserviceability, EMS)方法的研究和应用。

Jiang XY, Gao SJ, Jiang Y, Tian Y, Jia X, Zha TS (2022)

Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland

Biodiversity Science, 30, 21387. (in Chinese with English abstract)

DOI:10.17520/biods.2021387      [本文引用: 1]

<p id="p00005"><strong>Aims:</strong> During the first two decades of the 21st century, China has made remarkable progress in desertification control. The area of desertified and degraded grassland has been decreasing and the amount of vegetation has been increasing. However, it remains unclear how plant diversity varies during vegetation restoration. This knowledge gap hinders a full assessment of the effectiveness of desertification control efforts. Our goal was to quantify species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration (semi-fixed dunes, fixed dunes, fixed dunes covered with biological soil crusts, fixed dunes with abundant herbaceous plants) in the Mu Us sandy grassland.</p> <p id="p00010"><strong>Methods:</strong> We conducted field investigations and leaf trait measurements (leaf thickness, leaf dry matter content, leaf density, and specific leaf area) during the mid-growing season of 2020 in Yanchi, Ningxia. Based on this, we further used one-way ANOVA and Pearson correlation analysis to explore the differences and relationships among diversity indices at different phases of vegetation restoration.</p> <p id="p00015"><strong>Results:</strong> Our results indicated that: (1) Most leaf traits exhibited no significant phylogenetic signal, implying that leaf functional traits were primarily driven by environmental factors. (2) For &#x003b1;-diversity, Shannon-Wiener diversity (<i>H</i>), species richness (<i>S</i>), functional richness (<i>FRic</i>), and phylogenetic diversity (<i>PD</i>) were the lowest in plant communities at the phase of fixed dunes covered with biological soil crusts. Each of these &#x003b1;-diversity parameters were not significantly different among plant communities during the other three restoration phases. Furthermore, these biodiversity indices were positively correlated with each other, suggesting coordinated changes in species diversity, functional diversity, and phylogenetic diversity during vegetation restoration. (3) All &#x003b2;-diversity indices increased with the number of transitions between phases, indicating that species composition, leaf traits, and phylogeny were consistently changing during vegetation restoration. Species composition, leaf traits, and phylogeny all changed dramatically during the transition from semi-fixed to fixed dunes, resulting in a large dissimilarity between communities during the two phases. (4) The phylogenetic structure of plant communities tended to diverge on fixed dunes, fixed dunes covered with biological soil crusts, and fixed dunes with abundant herbaceous plants, indicating that competitive exclusion was the key factor driving community organization. However, the phylogenetic structure of plant communities on semi-fixed dunes did not exhibit any consistent patterns, implying that community organization was affected by the combined effects of habitat filtering and competitive exclusion.</p> <p id="p00020"><strong>Conclusion:</strong> Although plant diversity did not demonstrate a monotonic increasing trend during vegetation restoration in the Mu Us sandy grassland, different indices of diversity varied coordinately. Therefore, species diversity can be regarded as a reasonable proxy of functional and phylogenetic diversity in this system. The results of this study can provide reference for vegetation construction and management whilst implementing desertification controls, as well as provide scientific basis for the ecological conservation and biodiversity protection of the Mu Us sandy grassland.</p>

[ 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山 (2022)

毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性

生物多样性, 30, 21387.]

DOI:10.17520/biods.2021387      [本文引用: 1]

进入21世纪以来, 中国荒漠化恢复取得显著成效, 荒漠化、沙化土地面积持续减少, 植被覆盖度大幅提升, 但关于植被恢复过程中生物多样性如何变化的研究不足, 这制约着对荒漠化恢复成效的全面评估。本文基于群落调查和叶功能性状(叶片厚度、叶片干物质含量、比叶面积和叶片密度)的测定, 分析了毛乌素沙地不同恢复阶段(半固定沙地、固定沙地、结皮覆盖沙地和草本植物覆盖沙地)的植物群落物种多样性、功能多样性和系统发育多样性特征。结果表明: (1)多数叶功能性状的系统发育信号不显著, 表明环境因子对研究区植物功能性状的塑造作用很强。(2)对于&#x003b1;多样性, 结皮覆盖沙地的物种多样性(Shannon-Wiener多样性, H)、物种丰富度(S)、功能丰富度(FRic)及系统发育多样性(PD)指数均显著低于其他恢复阶段, 而其他3个阶段间无显著差异; 这些指数间均显著正相关, 表明物种多样性、功能多样性和系统发育多样性在植被恢复过程中协同变化。(3) &#x003b2;多样性指数随恢复阶段间隔增加而逐渐增大, 表明物种组成、功能属性及系统发育关系随植被恢复持续变化, 且半固定沙地到固定沙地的群落物种组成、功能属性及系统发育关系更替最快, 导致群落间差异最大。(4)固定沙地、结皮覆盖沙地和草本植物覆盖沙地群落系统发育结构均趋向于发散, 表明竞争排斥是群落构建的主要驱动力; 而半固定沙地群落系统发育结构无一致规律, 表明群落构建可能受到生境过滤和竞争排斥的综合作用。研究结果可为植被建设与管理提供参考, 为毛乌素沙地生态保育和生物多样性的保护提供科学依据。

Lankau RA, George I, Miao M (2022)

Crop performance is predicted by soil microbial diversity across phylogenetic scales

Ecosphere, 13, e4029.

[本文引用: 1]

Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019)

Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality

Proceedings of the National Academy of Sciences, USA, 116, 8419-8424.

[本文引用: 2]

Li HD, Wu XW, Xiao ZS (2021)

Assembly, ecosystem functions, and stability in species interaction networks

Chinese Journal of Plant Ecology, 45, 1049-1063.

DOI:10.17521/cjpe.2019.0159      URL     [本文引用: 1]

Li Z, Liu XW, Zhang MH, Xing F (2022)

Plant diversity and fungal richness regulate the changes in soil multifunctionality in a semi-arid grassland

Biology, 11, 870.

DOI:10.3390/biology11060870      URL     [本文引用: 1]

Loss in plant diversity is expected to impact biodiversity and ecosystem functioning (BEF) in terrestrial ecosystems. Soil microbes play essential roles in regulating ecosystem functions. However, the important roles and differences in bacterial and fungal diversity and rare microbial taxa in driving soil multifunctionality based on plant diversity remain poorly understood in grassland ecosystems. Here, we carried out an experiment in six study sites with varied plant diversity levels to evaluate the relationships between soil bacterial and fungal diversity, rare taxa, and soil multifunctionality in a semi-arid grassland. We used Illumina HiSeq sequencing to determine soil bacterial and fungal diversity and evaluated soil functions associated with the nutrient cycle. We found that high diversity plant assemblages had a higher ratio of below-ground biomass to above-ground biomass, soil multifunctionality, and lower microbial carbon limitation than those with low diversity. Moreover, the fungal richness was negatively and significantly associated with microbial carbon limitations. The fungal richness was positively related to soil multifunctionality, but the bacterial richness was not. We also found that the relative abundance of saprotrophs was positively correlated with soil multifunctionality, and the relative abundance of pathogens was negatively correlated with soil multifunctionality. In addition, the rare fungal taxa played a disproportionate role in regulating soil multifunctionality. Structural equation modeling showed that the shift of plant biomass allocation patterns increased plant below-ground biomass in the highly diverse plant plots, which can alleviate soil microbial carbon limitations and enhance the fungal richness, thus promoting soil multifunctionality. Overall, these findings expand our comprehensive understanding of the critical role of soil fungal diversity and rare taxa in regulating soil multifunctionality under global plant diversity loss scenarios.

Liu DJ, Chang PHS, Power SA, Bell JNB, Manning P (2021)

Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems

New Phytologist, 232, 1238-1249.

DOI:10.1111/nph.17667      PMID:34346089      [本文引用: 1]

While it is well established that species composition affects ecosystem function, the way in which species combine to control overall ecosystem functioning is still debated. In experimental mesocosms, we planted three functionally distinct dry-heath species in varying proportions and measured multiple ecosystem properties related to nutrient cycling and carbon storage (hereafter functions). Overall ecosystem functioning was described as the main axes of variation in ecosystem functioning (functional space) and the proportion of ecosystem functions at high levels, e.g. fast carbon and nutrient cycling (cluster-based multifunctionality). The first functional space axis, related to nitrogen availability, was driven by plant species abundance, particularly that of the legume, which strongly affected many individual functions. The second, related to total plant biomass and woodiness, was mostly driven by the abundance of the dwarf shrub. Similarly, cluster-based multifunctionality was related to the initial abundance of all species, but particularly the legume. Interactions between species also affected ecosystem multifunctionality, but these effects were smaller in magnitude. These results indicate that species interactions could play a secondary role to species abundance and identity in driving the overall ecosystem functioning of heathlands, but also that axes of variation in functional space are clearly linked to plant functional composition.This article is protected by copyright. All rights reserved.

Liu J, Yuan Q, Zhang LX, Dai XR, Liu XY, Ding R, Ye LN (2021)

Soil quality assessment in different artificial shrub plantations in northern margin of Kubuqi Desert, China

Journal of Northwest Forestry University, 36(2), 46-53. (in Chinese with English abstract)

[本文引用: 1]

[ 刘江, 袁勤, 张立欣, 代香荣, 刘向阳, 丁茹, 叶丽娜 (2021)

库布齐沙漠北缘不同人工灌木林地土壤肥力质量状况

西北林学院学报, 36(2), 46-53.]

[本文引用: 1]

Liu L, Bai YX, She WW, Qiao YG, Qin SG, Zhang YQ (2021)

A nurse shrub species helps associated herbaceous plants by preventing shade-induced evaporation in a desert ecosystem

Land Degradation & Development, 32, 1796-1808.

DOI:10.1002/ldr.v32.4      URL     [本文引用: 1]

Liu MX, Zhang GJ, Yin FL, Wang YF, Li L (2022)

Relationship between biodiversity and ecosystem multifunctionality along the elevation gradient in alpine meadows on the eastern Qinghai-Tibetan Plateau

Ecological Indicators, 141, 109097.

DOI:10.1016/j.ecolind.2022.109097      URL     [本文引用: 1]

Liu QF, Zhang Q, Yan YZ, Zhang XF, Niu JM, Svenning JC (2020)

Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China)

Journal of Cleaner Production, 268, 122241.

DOI:10.1016/j.jclepro.2020.122241      URL     [本文引用: 1]

Liu XD, Chen L, Yang XG, Zhao W, Li XB (2016)

“Fertile Island” Effect of soil nutrients occurring in Caragana korshinskii and Artemisia ordosica shrubs in desert steppe

Journal of Northwest Forestry University, 31(4), 26-32, 92. (in Chinese with English abstract)

[本文引用: 1]

[ 刘学东, 陈林, 杨新国, 赵伟, 李学斌 (2016)

荒漠草原2种柠条(Caragana korshinskii)和油蒿(Artemisia ordosica)灌丛土壤养分“肥岛”效应

西北林学院学报, 31(4), 26-32, 92.]

[本文引用: 1]

Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, Brookes PC, Xu JM, Gilbert JA (2016)

Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in Eastern China

The ISME Journal, 10, 1891-1901.

DOI:10.1038/ismej.2015.261      [本文引用: 1]

Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018)

Redefining ecosystem multifunctionality

Nature Ecology & Evolution, 2, 427-436.

[本文引用: 1]

Martiny AC, Treseder K, Pusch G (2013)

Phylogenetic conservatism of functional traits in microorganisms

The ISME Journal, 7, 830-838.

DOI:10.1038/ismej.2012.160      [本文引用: 1]

Pérez-Valera E, Goberna M, Verdú M (2015)

Phylogenetic structure of soil bacterial communities predicts ecosystem functioning

FEMS Microbiology Ecology, 91, fiv031.

[本文引用: 2]

Qiu LP, Zhang Q, Zhu HS, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia XX, Shao MG, Liu BY, Jiao H, Li HQ, Wei XR (2021)

Erosion reduces soil microbial diversity, network complexity and multifunctionality

The ISME Journal, 15, 2474-2489.

DOI:10.1038/s41396-021-00913-1      [本文引用: 3]

While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.

Saghaï A, Wittorf L, Philippot L, Hallin S (2022)

Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere

Applied Soil Ecology, 169, 104224.

DOI:10.1016/j.apsoil.2021.104224      URL     [本文引用: 1]

Severin I, Östman Ö, Lindström ES (2013)

Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition

PLoS ONE, 8, e80825.

DOI:10.1371/journal.pone.0080825      URL     [本文引用: 1]

Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD, Acosta A (2012)

Scale dependence of vegetation-environment relationships: A meta-analysis of multivariate data

Journal of Vegetation Science, 23, 942-951.

DOI:10.1111/jvs.2012.23.issue-5      URL     [本文引用: 1]

Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012)

Phylogenetic diversity and the functioning of ecosystems

Ecology Letters, 15, 637-648.

DOI:10.1111/j.1461-0248.2012.01795.x      PMID:22583836      [本文引用: 2]

Phylogenetic diversity (PD) describes the total amount of phylogenetic distance among species in a community. Although there has been substantial research on the factors that determine community PD, exploration of the consequences of PD for ecosystem functioning is just beginning. We argue that PD may be useful in predicting ecosystem functions in a range of communities, from single-trophic to complex networks. Many traits show a phylogenetic signal, suggesting that PD can estimate the functional trait space of a community, and thus ecosystem functioning. Phylogeny also determines interactions among species, and so could help predict how extinctions cascade through ecological networks and thus impact ecosystem functions. Although the initial evidence available suggests patterns consistent with these predictions, we caution that the utility of PD depends critically on the strength of phylogenetic signals to both traits and interactions. We advocate for a synthetic approach that incorporates a deeper understanding of how traits and interactions are shaped by evolution, and outline key areas for future research. If these complexities can be incorporated into future studies, relationships between PD and ecosystem function bear promise in conceptually unifying evolutionary biology with ecosystem ecology.© 2012 Blackwell Publishing Ltd/CNRS.

Sun YF, Zhang YQ, Feng W, Qin SG, Liu Z, Bai YX, Yan R, Fa KY (2017)

Effects of xeric shrubs on soil microbial communities in a desert in Northern China

Plant and Soil, 414, 281-294.

DOI:10.1007/s11104-016-3111-y      URL     [本文引用: 1]

Sun YT, Yue YP, Cheng L, Pang YJ, Zhao HJ, Fei BQ, Xiu XM, Wu B, Zhao YX, Shi L, He JJ, Jia XH (2022)

Responses of growth and biomass allocation of Artemisia ordosica to desertification in Mu Us Sandyland

Journal of Desert Research, 42, 123-133. (in Chinese with English abstract)

[本文引用: 1]

[ 孙迎涛, 岳艳鹏, 成龙, 庞营军, 赵河聚, 费兵强, 修晓敏, 吴波, 赵雨兴, 石麟, 何金军, 贾晓红 (2022)

毛乌素沙地油蒿(Artemisia ordosica)生长及生物量分配对沙漠化的响应

中国沙漠, 42, 123-133.]

DOI:10.7522/j.issn.1000-694X.2021.00129      [本文引用: 1]

植物的资源分配模式可以反映植物对环境的生态适应策略。本研究以毛乌素沙地优势半灌木油蒿(Artemisia ordosica)为研究对象,通过样地调查法,系统分析了不同沙漠化程度(潜在、轻度、中度、重度)下油蒿营养、生殖器官的生长特征和生物量分配规律。结果表明:(1)随着沙漠化程度的加剧,单位面积油蒿种群密度及地上生物量降低,枯死率增加。(2)沙漠化程度的加剧会促进油蒿个体的生长,其当年单株地上总生物量由374.4 g(潜在)增加至2 999.6 g(重度),增幅高达701.18%;这一过程中油蒿繁殖分配明显增加,营养分配显著降低(P&lt;0.05),潜在、轻度沙漠化阶段油蒿繁殖分配均保持在18.6%左右,增加不显著(P&gt;0.05),但中度、重度沙漠化阶段油蒿繁殖分配达到40.6%和62.4%,远高于潜在沙漠化阶段。(3)油蒿营养枝和生殖枝的直径、长度及生物量均随着沙漠化程度的增加而增加,但轻度沙漠化阶段油蒿营养枝的生物量显著大于(P&lt;0.05)潜在、中度沙漠化阶段,约是两者的2.0倍和0.7倍。(4)面对沙漠化程度的加剧,油蒿营养枝和生殖枝构件的各指标(叶生物量、茎生物量、穗生物量、叶密度和穗密度)整体上均呈增加趋势,但油蒿叶分配所占比重显著降低(P&lt;0.05),茎分配所占比重先增加后降低,轻度沙漠化阶段油蒿营养生长的茎分配占比最大(41.1%),而生殖枝构件中穗(种子)分配所占比重不断增加。因此,沙漠化的发展严重影响油蒿种群的生存和发展,但油蒿个体的生长及生物量分配格局会随着沙漠化程度的加剧发生调整与权衡,油蒿个体生长策略由以营养生长为主向生殖生长为主发生转变。

Tang Q, Xia YQ, Ti CP, Shan J, Zhou W, Li CL, Yan X, Yan XY (2022)

Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity

Pedosphere, 32, 1-20.

DOI:10.1016/S1002-0160(21)60068-1      URL     [本文引用: 1]

Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, van Ruijven J, Cardinale BJ (2015)

Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies

Functional Ecology, 29, 615-626.

DOI:10.1111/fec.2015.29.issue-5      URL     [本文引用: 1]

Venail PA, Vives MJ (2013)

Phylogenetic distance and species richness interactively affect the productivity of bacterial communities

Ecology, 94, 2529-2536.

PMID:24400504      [本文引用: 2]

Our understanding of how biodiversity influences ecosystem functioning is entering a new stage of its development through the incorporation of information about the evolutionary relatedness of species. Bacteria are prime providers of essential ecosystem services, representing an excellent model system to perform biodiversity-ecosystem function research. By using bacteria isolated from petroleum-contaminated sites, we show that communities composed of poorly related species were more productive than those containing highly related species. The nature of the forces controlling this positive effect of phylogenetic diversity on community productivity depended on the number of species in culture. In communities of two species the positive effect of phylogenetic diversity on productivity was driven by changes in the selection effect. Communities of two distantly related species were dominated by the most productive species in monoculture, whereas communities of two closely related species were dominated by the less productive species in monoculture. In communities of four species the positive effect of phylogenetic diversity on productivity was driven by changes in the complementarity effect. In communities composed of four distantly related species the influence of positive interactions such as facilitation, cross-feeding, and niche partitioning seemed to outweigh the influence of negative interactions such as interference. As a consequence the proportion of species favored by the presence of other species increased as they became less related. Multiple facets of biodiversity may influence ecosystem functioning. Here, we present evidence of an interaction between phylogenetic and taxonomic diversity on community productivity, underlining the importance of considering multiple aspects of biodiversity when studying its impact on ecosystem functioning.

Vries FT, Wallenstein MD (2017)

Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere

Journal of Ecology, 105, 913-920.

DOI:10.1111/jec.2017.105.issue-4      URL     [本文引用: 1]

Wagg C, Bender SF, Widmer F, van der Heijden MGA, (2014)

Soil biodiversity and soil community composition determine ecosystem multifunctionality

Proceedings of the National Academy of Sciences, USA, 111, 5266-5270.

[本文引用: 2]

Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA, (2019)

Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning

Nature Communications, 10, 4841.

DOI:10.1038/s41467-019-12798-y      PMID:31649246      [本文引用: 6]

The soil microbiome is highly diverse and comprises up to one quarter of Earth's diversity. Yet, how such a diverse and functionally complex microbiome influences ecosystem functioning remains unclear. Here we manipulated the soil microbiome in experimental grassland ecosystems and observed that microbiome diversity and microbial network complexity positively influenced multiple ecosystem functions related to nutrient cycling (e.g. multifunctionality). Grassland microcosms with poorly developed microbial networks and reduced microbial richness had the lowest multifunctionality due to fewer taxa present that support the same function (redundancy) and lower diversity of taxa that support different functions (reduced  functional uniqueness). Moreover, different microbial taxa explained different ecosystem functions pointing to the significance of functional diversity in microbial communities. These findings indicate the importance of microbial interactions within and among fungal and bacterial communities for enhancing ecosystem performance and demonstrate that the extinction of complex ecological associations belowground can impair ecosystem functioning.

Webb CO (2000)

Exploring the phylogenetic structure of ecological communities: An example for rain forest trees

The American Naturalist, 156, 145-155.

DOI:10.1086/303378      PMID:10856198      [本文引用: 2]

Because of the correlation expected between the phylogenetic relatedness of two taxa and their net ecological similarity, a measure of the overall phylogenetic relatedness of a community of interacting organisms can be used to investigate the contemporary ecological processes that structure community composition. I describe two indices that use the number of nodes that separate taxa on a phylogeny as a measure of their phylogenetic relatedness. As an example of the use of these indices in community analysis, I compared the mean observed net relatedness of trees (≥10 cm diameter at breast height) in each of 28 plots (each 0.16 ha) in a Bornean rain forest with the net relatedness expected if species were drawn randomly from the species pool (of the 324 species in the 28 plots), using a supertree that I assembled from published sources. I found that the species in plots were more phylogenetically related than expected by chance, a result that was insensitive to various modifications to the basic methodology. I tentatively infer that variation in habitat among plots causes ecologically more similar species to co-occur within plots. Finally, I suggest a range of applications for phylogenetic relatedness measures in community analysis.

Xu P, Rong XY, Liu CH, Du F, Yin BF, Tao Y, Zhang YM (2022)

Effects of extreme drought on community and ecological network of soil fungi in a temperate desert

Biodiversity Science, 30, 21327. (in Chinese with English abstract)

DOI:10.17520/biods.2021327      [本文引用: 1]

<p id="p00005"><strong>Aims</strong> Extreme drought exacerbates the expansion of desert areas around the world. Microbial diversity is associated with multiple ecosystem functions in the desert. Evaluating the response of fungal communities to extreme drought is essential for our understanding of regional desertification caused by drought in a temperate desert.</p><p id="p00010"><strong>Methods</strong> Based on three-year (D3) and ten-year (D10) drought plots established in the Gurbantunggut Desert, we investigated the effect of extreme drought on the diversity and ecological network of fungal communities.</p><p id="p00015"><strong>Results</strong> Our results demonstrated that in both the D3 and D10 plots, the droughts had no significant influence on the Chao1 and Shannon diversity indexes of the whole and abundant fungi, while the rare fungal Shannon diversity index significantly increased. Both extreme drought treatments had a noticeable effect on community composition of whole, abundant and rare fungi, with stronger effect on rare fungi (ANOSIM, <i>R</i> = 0.378-0.595, <i>P</i> &lt; 0.01) than that on the abundant fungi (ANOSIM, <i>R</i> = 0.282-0.555, <i>P</i> &lt; 0.01), suggesting that abundant fungi were more resistant to drought than rare taxa. Moreover, beta-diversity of the whole, abundant, and rare fungi decreased significantly in D3 and D10 treatments, suggesting that extreme drought served as an ecological filter on fungal community assembly. Molecular ecological network analysis revealed that in both the D3 and D10 plots there was a reduced fungal network complexity, suggesting that extreme drought reduced the interactions among fungal communities. In addition, abundant fungi had higher node topological parameters (<i>P</i> &lt; 0.05), indicating that abundant fungi were important for maintaining fungal species interactions under extreme drought conditions.</p><p id="p00020"><strong>Conclusion</strong> Extreme drought significantly altered fungal community composition and weakened the interactions among fungal communities in a temperate desert. Furthermore, rare fungi were sensitive to extreme drought, contributing to reducing the lag in the response to fungal communities, and abundant fungi, as the core microflora in fungal networks, were crucial to sustaining the stability of fungal communities and interactions among species under extreme drought conditions.</p>

[ 徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明 (2022)

极端干旱对温带荒漠土壤真菌群落和生态网络的影响

生物多样性, 30, 21327.]

DOI:10.17520/biods.2021327      [本文引用: 1]

评估极端干旱对温带荒漠土壤真菌群落的影响有助于进一步认识干旱导致的区域荒漠化特征。本研究利用在古尔班通古特沙漠建立的干旱三年和干旱十年样地, 分析了长期极端干旱对温带荒漠土壤真菌群落和生态网络的影响。结果显示, 干旱三年与干旱十年处理对总真菌和丰富真菌的Chao1和Shannon多样性指数均无显著性影响, 而对稀有真菌的Shannon多样性指数有显著促进作用; 干旱三年和干旱十年处理显著影响总真菌、丰富和稀有真菌的群落组成, 且极端干旱对稀有真菌群落变异的影响(ANOSIM, R = 0.378-0.595, P &lt; 0.01)大于对丰富真菌的影响(ANOSIM, R = 0.282-0.555, P &lt; 0.01), 表明丰富真菌具有更强的干旱抵抗力; 另外, 极端干旱显著降低了总真菌、丰富和稀有真菌的&#x003b2;多样性, 表明极端干旱具有生态过滤作用。分子生态网络结果显示, 干旱三年与干旱十年处理降低了荒漠土壤真菌群落网络复杂性, 表明极端干旱减弱了真菌物种间的相互作用; 相比稀有真菌, 丰富真菌具有更高的节点拓扑参数(P &lt; 0.05), 表明丰富真菌对维持极端干旱下的真菌物种间相互作用的重要性。综上所述, 极端干旱显著改变了荒漠表层土壤真菌群落组成, 减弱了真菌物种间的相互作用; 稀有真菌敏感响应极端干旱, 有利于减缓荒漠土壤真菌群落响应的滞后性; 丰富真菌作为网络的核心菌群, 对维持极端干旱下的真菌群落稳定性以及物种间的相互作用很关键。

Xu W, Jing X, Ma ZY, He JS (2016b)

A review on the measurement of ecosystem multifunctionality

Biodiversity Science, 24, 72-84. (in Chinese with English abstract)

DOI:10.17520/biods.2015170      URL     [本文引用: 1]

[ 徐炜, 井新, 马志远, 贺金生 (2016b)

生态系统多功能性的测度方法

生物多样性, 24, 72-84.]

[本文引用: 1]

Xu W, Ma ZY, Jing X, He JS (2016a)

Biodiversity and ecosystem multifunctionality: Advances and perspectives

Biodiversity Science, 24, 55-71. (in Chinese with English abstract)

DOI:10.17520/biods.2015091      URL     [本文引用: 1]

[ 徐炜, 马志远, 井新, 贺金生 (2016a)

生物多样性与生态系统多功能性: 进展与展望

生物多样性, 24, 55-71.]

[本文引用: 1]

Yan YZ, Zhang Q, Buyantuev A, Liu QF, Niu JM (2020)

Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality

Science of the Total Environment, 726, 138529.

DOI:10.1016/j.scitotenv.2020.138529      URL     [本文引用: 1]

Yang XL, Deng SQ, De Philippis R, Chen LZ, Hu CZ, Zhang WH (2012)

Chemical composition of volatile oil from Artemisia ordosica and its allelopathic effects on desert soil microalgae, Palmellococcus miniatus

Plant Physiology and Biochemistry, 51, 153-158.

DOI:10.1016/j.plaphy.2011.10.019      URL     [本文引用: 1]

Yang Y, Hasi, Sun BP, Du HS, Zhao Y, Zhong XJ (2012)

Effects of different vegetation restoration types on soil nutrients in southern edge of Mu Us Sandy Land

Chinese Agricultural Science Bulletin, 28(10), 37-42. (in Chinese with English abstract)

DOI:10.11924/j.issn.1000-6850.2011-3946      [本文引用: 1]

In order to discuss the effects of vegetation restoration on soil nutrient status, the variation characteristics of soil nutrients among 5 different vegetation restoration types (natural grassland, enclosed grassland, abandoned land, land as returning farmland to woodland, fixed sandy land) on soil nutrient status were studied in southern edge of Mu Us sandy land. The results showed that: the influence of different vegetation restoration types on soil organic matter, total nitrogen, available nitrogen and available phosphorus were conspicuously different. The contents of soil organic matter, total nitrogen and available nitrogen in these lands (enclosed grassland, land as returning farmland to woodland and fixed sandy land) which were the combination of shrub and herb, were higher than in those lands (natural grassland and abandoned land) with mainly herb. But just the opposite, the contents of soil available phosphorus in these were lower than in those. The influence of vegetation on the surface 0-20 cm soil nutrient was greater than that on the deep 20-60 cm soil, also the soil nutrient was to surface enrichment under the action of vegetation. Planting the species (Caragana korshinskii) for converting cropland to forest could give full play to its root system characteristics, which could be helpful for improving deeper soil nutrient.

[ 杨越, 哈斯, 孙保平, 杜会石, 赵岩, 钟晓娟 (2012)

毛乌素沙地南缘不同植被恢复类型的土壤养分效应

中国农学通报, 28(10), 37-42.]

[本文引用: 1]

Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021)

Climate warming enhances microbial network complexity and stability

Nature Climate Change, 11, 343-348.

DOI:10.1038/s41558-021-00989-9      [本文引用: 1]

Yuan XQ, Liu SQ, Ai F, Zhang Z, Li Q, Jiang JY, Shi CC (2022)

Wind erosion resistance of litter of Salix psammophila community in the southeast edge of Mu Us Sandy Land, China

Journal of Desert Research, 42, 134-138. (in Chinese with English abstract)

[本文引用: 1]

[ 袁小琴, 刘生权, 艾峰, 张正, 李强, 蒋晋豫, 石长春 (2022)

毛乌素沙地东南缘沙柳(Salix psammophila)群落枯落物抗风蚀特征

中国沙漠, 42, 134-138.]

DOI:10.7522/j.issn.1000-694X.2021.00138      [本文引用: 1]

地表枯落物是毛乌素沙地生态系统的重要组成部分,风蚀是影响枯落物蓄积量及再分配的重要因素。采用野外调查采样与室内人工模拟风洞试验相结合的研究方法,分析了沙柳(Salix psammophila)群落枯落物组分特征及其对土壤风蚀的影响。结果表明:(1)沙柳枯落物地表物质组成中枝和叶占比分别为56%和30%,且随着距沙柳基部距离的增大,枯落物量呈显著减小趋势;(2)随着沙柳枯落物量的增加,土壤流失量呈指数函数递减趋势,且以处理400 g·m<sup>-2</sup>为临界值;(3)与叶相比,沙柳群落枯落物的枝部分在抗风蚀方面起着主导作用。

Zhang B, Zhang J, Liu Y, Shi P, Wei G (2018)

Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale

Soil Biology and Biochemistry, 118, 178-186.

DOI:10.1016/j.soilbio.2017.12.011      URL     [本文引用: 1]

Zhang JH, Wang JY, Meng ZX, He J, Dong ZH, Liu KQ, Chen WQ (2022)

Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow

Acta Ecologica Sinica, 42, 2542-2558. (in Chinese with English abstract)

[本文引用: 1]

[ 张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青 (2022)

土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性

生态学报, 42, 2542-2558.]

[本文引用: 1]

Zhang X, Huang YT, Liu SR, Fu SL, Ming AG, Li XZ, Yao MJ, Li H, Tian C (2019)

Mixture of tree species enhances stability of the soil bacterial community through phylogenetic diversity

European Journal of Soil Science, 70, 644-654.

DOI:10.1111/ejss.12780      [本文引用: 1]

The composition of tree species might influence microbial diversity considerably, yet investigation of the consequences of changes in diversity for stability of the microbial community is still in its early stages. Understanding how diversity governs community stability is vital for predicting the response of an ecosystem to environmental changes. Phylogenetic diversity (PD) describes the distinct evolution of species in a community, and might be useful for estimating the effects of biodiversity on ecosystem function and stability. High-throughput 16S rRNA gene sequencing was used to examine soil bacterial phylogenetic distances, phylogenetic diversity and interactions between individuals in five single-species plantations and three mixed-species plantations. The plantations were established on the same initial substrate, and sampling was at 68 relatively spatially independent sites. Our results showed that mixed tree species enhanced soil bacterial phylogenetic diversity and community stability, and that phylogenetic diversity had a positive effect on stability of the soil microbial community. We also found evidence that microbial communities characterized by distantly related species with weak interactions were more stable in mixed plantations than communities with strong interactions in single-species plantations. These results may be explained by the "insurance hypothesis", that large phylogenetic diversity of microbial communities, which share different ecological niches, insures them against decline in their stability. This is because, even if some microbial species fail to deal with environmental change, others might not necessarily be affected similarly. Our findings demonstrate that phylogenetic diversity is the main controlling factor of the variation in stability across sites and requires more attention in sustainable forest management.

Zheng Q, Hu YT, Zhang SS, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019)

Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity

Soil Biology and Biochemistry, 136, 107521.

DOI:10.1016/j.soilbio.2019.107521      URL     [本文引用: 1]

/